1
|
Antioxidant Phytochemicals as Potential Therapy for Diabetic Complications. Antioxidants (Basel) 2023; 12:antiox12010123. [PMID: 36670985 PMCID: PMC9855127 DOI: 10.3390/antiox12010123] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/10/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
The global prevalence of diabetes continues to increase partly due to rapid urbanization and an increase in the aging population. Consequently, this is associated with a parallel increase in the prevalence of diabetic vascular complications which significantly worsen the burden of diabetes. For these diabetic vascular complications, there is still an unmet need for safe and effective alternative/adjuvant therapeutic interventions. There is also an increasing urge for therapeutic options to come from natural products such as plants. Hyperglycemia-induced oxidative stress is central to the development of diabetes and diabetic complications. Furthermore, oxidative stress-induced inflammation and insulin resistance are central to endothelial damage and the progression of diabetic complications. Human and animal studies have shown that polyphenols could reduce oxidative stress, hyperglycemia, and prevent diabetic complications including diabetic retinopathy, diabetic nephropathy, and diabetic peripheral neuropathy. Part of the therapeutic effects of polyphenols is attributed to their modulatory effect on endogenous antioxidant systems. This review attempts to summarize the established effects of polyphenols on endogenous antioxidant systems from the literature. Moreover, potential therapeutic strategies for harnessing the potential benefits of polyphenols for diabetic vascular complications are also discussed.
Collapse
|
2
|
The Effects of a Meldonium Pre-Treatment on the Course of the LPS-Induced Sepsis in Rats. Int J Mol Sci 2022; 23:ijms23042395. [PMID: 35216510 PMCID: PMC8924897 DOI: 10.3390/ijms23042395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
A dysregulated and overwhelming response to an infection accompanied by the exaggerated pro-inflammatory state and metabolism disturbance leads to the fatal outcome in sepsis. Previously we showed that meldonium, an anti-ischemic drug clinically used to treat myocardial and cerebral ischemia, strongly increases mortality in faecal-induced peritonitis (FIP) in rats. We postulated that the same mechanism that is responsible for the otherwise strong anti-inflammatory effects of meldonium could be the culprit of the increased mortality. In the present study, we applied the LPS-induced model of sepsis to explore the presence of any differences from and/or similarities to the FIP model. When it comes to energy production, despite some shared similarities, it is evident that LPS and FIP models of sepsis differ greatly. A different profile of sympathoadrenal activation may account for this observation, as it was lacking in the FIP model, whereas in the LPS model it was strong enough to overcome the effects of meldonium. Therefore, choosing the appropriate model of sepsis induction is of great importance, especially if energy homeostasis is the main focus of the study. Even when differences in the experimental design of the two models are acknowledged, the role of different patterns of energy production cannot be excluded. On that account, our results draw attention to the importance of uninterrupted energy production in sepsis but also call for much-needed revisions of the current recommendations for its treatment.
Collapse
|
3
|
Hong YA, Park CW. Catalytic Antioxidants in the Kidney. Antioxidants (Basel) 2021; 10:antiox10010130. [PMID: 33477607 PMCID: PMC7831323 DOI: 10.3390/antiox10010130] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 02/08/2023] Open
Abstract
Reactive oxygen species and reactive nitrogen species are highly implicated in kidney injuries that include acute kidney injury, chronic kidney disease, hypertensive nephropathy, and diabetic nephropathy. Therefore, antioxidant agents are promising therapeutic strategies for kidney diseases. Catalytic antioxidants are defined as small molecular mimics of antioxidant enzymes, such as superoxide dismutase, catalase, and glutathione peroxidase, and some of them function as potent detoxifiers of lipid peroxides and peroxynitrite. Several catalytic antioxidants have been demonstrated to be effective in a variety of in vitro and in vivo disease models that are associated with oxidative stress, including kidney diseases. This review summarizes the evidence for the role of antioxidant enzymes in kidney diseases, the classifications of catalytic antioxidants, and their current applications to kidney diseases.
Collapse
Affiliation(s)
- Yu Ah Hong
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Cheol Whee Park
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence: ; Tel.: +82-2-2258-6038
| |
Collapse
|
4
|
Li Z, Liu Y, Zhang H, Pu Z, Wu X, Li P. Effect of fosinopril on the renal cortex protein expression profile of Otsuka Long-Evans Tokushima Fatty rats. Exp Ther Med 2019; 19:172-182. [PMID: 31853288 PMCID: PMC6909786 DOI: 10.3892/etm.2019.8188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 08/23/2019] [Indexed: 12/21/2022] Open
Abstract
Angiotensin-converting enzyme inhibitors (ACEIs) can reduce urinary protein excretion and postpone the deterioration of renal function. However, the mechanisms of renal protection are not yet fully understood. To investigate the mechanisms of ACEIs in the treatment of diabetic nephropathy (DN), the present study determined the effects of the ACEI fosinopril (FP) on the profiling of renal cortex protein expression in Otsuka Long-Evans Tokushima Fatty (OLETF) rats using Long-Evans Tokushima Otsuka (LETO) rats as controls. Urinary protein levels at 24 h were examined using the Broadford method. PAS staining was performed to observe renal histopathological changes. The kidney cortices of OLETF, FP-treated OLETF and LETO rats were examined using soluble and insoluble high-resolution subproteomic analysis methodology at age of 36 and 56 weeks. Differentiated proteins were further confirmed using western blotting analysis. The results demonstrated that FP significantly decreased the glomerulosclerosis index and reduced the 24 h urinary protein excretion of OLETF rats. Additionally, 17 proteins significantly changed following FP-treatment. Amongst these proteins, the abundances of the stress-response protein heat shock protein family A member 9 and the antioxidant glutathione peroxidase 3 were particularly increased. These results indicated that FP ameliorated diabetic renal injuries by inhibiting oxidative stress. In conclusion, the differentially expressed proteins may improve our understanding of the mechanism of ACEIs in the OLETF rats.
Collapse
Affiliation(s)
- Zhiguo Li
- Department of Medical Research Center, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Yeqiang Liu
- Department of Endocrinology, Kailuan General Hospital, Tangshan, Hebei 063000, P.R. China
| | - Haojun Zhang
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Zhijie Pu
- Graduate School, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Xuejing Wu
- Graduate School, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Ping Li
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| |
Collapse
|
5
|
Tan SM, Sharma A, Stefanovic N, de Haan JB. Late-intervention study with ebselen in an experimental model of type 1 diabetic nephropathy. Free Radic Res 2015; 49:219-27. [DOI: 10.3109/10715762.2014.993628] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Quezada C, Alarcón S, Cárcamo JG, Yáñez A, Casanello P, Sobrevia L, San Martín R. Increased expression of the multidrug resistance-associated protein 1 (MRP1) in kidney glomeruli of streptozotocin-induced diabetic rats. Biol Chem 2011; 392:529-37. [DOI: 10.1515/bc.2011.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Oxidative stress has been linked to the podocytopathy, mes-angial expansion and progression of diabetic nephropathy. The major cell defence mechanism against oxidative stress is reduced glutathione (GSH). Some ABC transporters have been shown to extrude GSH, oxidised glutathione or their conjugates out of the cell, thus implying a role for these transporters in GSH homeostasis. We found a remarkable expression of mRNA for multidrug resistance-associated proteins (MRP/ABCC) 1, 3, 4 and 5 in rat glomeruli. Three weeks after induction of diabetes in glomeruli of streptozotocin-treated rats, we observed a decline in reduced GSH levels and an increase in the expression and activity of MRP1 (ABCC1). These lower GSH levels were improved by ex vivo treatment with pharmacological inhibitors of MRP1 activity (MK571). We conclude that increased activity of MRP1 in diabetic glomeruli is correlated with an inadequate adaptive response to oxidative stress.
Collapse
|
7
|
Kulinsky VI, Kolesnichenko LS. The glutathione system. I. Synthesis, transport, glutathione transferases, glutathione peroxidases. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2009. [DOI: 10.1134/s1990750809020036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Barati MT, Merchant ML, Kain AB, Jevans AW, McLeish KR, Klein JB. Proteomic analysis defines altered cellular redox pathways and advanced glycation end-product metabolism in glomeruli of db/db diabetic mice. Am J Physiol Renal Physiol 2007; 293:F1157-65. [PMID: 17609286 DOI: 10.1152/ajprenal.00411.2006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
To attain a profile of protein expression during diabetes, we applied proteomic analysis to glomeruli of 160-day-old db/db diabetic and db/m nondiabetic mice. Glomerular proteins were extracted and separated by two-dimensional gel electrophoresis to construct a proteome map. Matrix-assisted laser desorption and ionization-time of flight mass spectrometry and peptide mass fingerprinting were used to identify 190 proteins. Of 105 analyzed spots, expression of 40 proteins, including the antioxidative enzymes peroxiredoxin 1 and 3, glutathione peroxidase 1, and SOD-1, was increased with diabetes, suggesting an adaptive response to oxidative stress associated with this diabetic model. However, activity of glutathione peroxidase and SOD was unaltered in glomeruli of diabetic mice. Expression of glyoxalase I was increased in glomeruli of diabetic mice. Because the cofactor for glyoxalase I, glutathione, is decreased in renal cortex of db/db mice, renal cortical glyoxalase I activity was measured in vitro with fixed amounts of exogenous glutathione. Glyoxalase I activity was decreased in renal cortex of db/db mice. These data indicate that diabetes-induced decreases in glyoxalase I activity are likely to be due to glutathione-dependent and -independent mechanisms and that increased expression of glyoxalase I may represent an insufficient adaptive response to increased methylglyoxal formation.
Collapse
Affiliation(s)
- Michelle T Barati
- Department of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | | | | | |
Collapse
|
9
|
Tarry-Adkins JL, Joles JA, Chen JH, Martin-Gronert MS, van der Giezen DM, Goldschmeding R, Hales CN, Ozanne SE. Protein restriction in lactation confers nephroprotective effects in the male rat and is associated with increased antioxidant expression. Am J Physiol Regul Integr Comp Physiol 2007; 293:R1259-66. [PMID: 17581837 DOI: 10.1152/ajpregu.00231.2007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Telomere shortening has been implicated in the aging process and various age-associated disorders, including renal disease. Moreover, oxidative stress has been identified as an initiator of accelerated telomere shortening. We have shown previously that maternal protein restriction during lactation leads to reduced renal telomere shortening, reduced albuminuria, and increased longevity in rats. Here we address the hypothesis that maternal protein restriction during lactation is nephroprotective and associated with increased expression of antioxidative enzymes and decreased age-dependent renal telomere shortening. Newborn rats were suckled by a dam fed either a control (20% protein) or low-protein (8% protein) diet. All animals were weaned onto standard chow. Offspring that had been suckled by protein-restricted mothers had reduced albuminuria, N-acetyl-glucosaminidase, and urinary aldosterone excretion. These animals also did not show significant age-dependent renal telomere shortening and hence had significantly longer telomeres at 12 mo of age. This lack of renal telomere shortening was associated with increased levels of the antioxidant enzymes manganese superoxide dismutase, glutathione peroxidase, and glutathione reductase. These findings suggest that beneficial effects of slow growth during lactation are associated with increased antioxidant capacity and prevention of age-dependent telomere shortening in the kidney.
Collapse
Affiliation(s)
- Jane L Tarry-Adkins
- Department of Clinical Biochemistry, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, UK.
| | | | | | | | | | | | | | | |
Collapse
|