1
|
Elkholy AR, El-Sheakh AR, Suddek GM. Nilotinib alleviates paraquat-induced hepatic and pulmonary injury in rats via the Nrf2/Nf-kB axis. Int Immunopharmacol 2023; 124:110886. [PMID: 37678030 DOI: 10.1016/j.intimp.2023.110886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Paraquat (PQ, 1,1'-dimethyl-4-4'-bipyridinium dichloride) is a highly toxic quaternary ammonium herbicide widely used in agriculture. It exerts its toxic effects mainly as a result of its redox cycle via the production of superoxide anions in organisms, leading to an imbalance in the redox state of the cell causing oxidative damage and finally cell death. The aim of this study was to estimate the beneficial protective role of nilotinib (NIL) on PQ-induced hepatic and pulmonary toxicity in rats. METHODS Male wistar rats were randomly divided into four groups, namely control, PQ (15 mg/kg), PQ plus NIL (5 mg/kg) and PQ plus NIL (10 mg/kg). NIL (5 and 10 mg/kg/day) was taken by oral syringe for five days followed by a single intra-peritoneal administration of PQ (15 mg/kg) on sixth day. RESULTS Pretreatment with NIL relieved the histological damage in liver and lung tissues and improved hepatic biochemical markers. It significantly (p < 0.05) reduced serum levels of ALT, AST, ALP, Y-GT and total bilirubin while increased that of albumin. Meanwhile, NIL significantly (p < 0.05) reduced oxidative stress markers via reduction of malondialdhyde (MDA) and elevation of glutathione (GSH) contents in liver and lung tissues. In addition, it significantly (p < 0.05) decreased the inflammation by reducing hepatic and pulmonary tumor necrosis factor alpha (TNF-α) and nuclear transcription factor kappa B (NF-KB/p65) contents. Nilotinib also down-regulated apoptosis by reducing cysteinyl aspartate-specific proteinase-3 (caspase-3). Furthermore, it upregulated the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and microtubule-associated protein 1A/1B-light chain 3 II (LC3II) in liver and lung tissues. SIGNIFICANCE NIL suppressed PQ-induced inflammation, oxidative stress and apoptosis in liver and lung tissues by modulating Nrf2/Nf-kB axis.
Collapse
Affiliation(s)
- Azza R Elkholy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ahmed R El-Sheakh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura National University, Gamasa, Egypt; Future studies and Risks management' National Committee of Drugs, Academy of Scientific Research, Ministry of Higher Education, Elsayeda Zeinab, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
2
|
Genovese T, Duranti A, D’Amico R, Fusco R, Impellizzeri D, Peritore AF, Crupi R, Gugliandolo E, Cuzzocrea S, Di Paola R, Siracusa R, Cordaro M. Fatty Acid Amide Hydrolase (FAAH) Inhibition Plays a Key Role in Counteracting Acute Lung Injury. Int J Mol Sci 2022; 23:2781. [PMID: 35269926 PMCID: PMC8910911 DOI: 10.3390/ijms23052781] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
Acute lung injury (ALI) is a group of lung illnesses characterized by severe inflammation, with no treatment. The fatty acid amide hydrolase (FAAH) enzyme is an integral membrane protein responsible for the hydrolysis of the main endocannabinoids, such as anandamide (AEA). In pre-clinical pain and inflammation models, increasing the endogenous levels of AEA and other bioactive fatty acid amides (FAAs) via genetic deletion or the pharmacological inhibition of FAAH produces many analgesic benefits in several different experimental models. To date, nobody has investigated the role of FAAH inhibition on an ALI mouse model. Mice were subjected to a carrageenan injection and treated orally 1 h after with the FAAH inhibitor URB878 dissolved in a vehicle consisting of 10% PEG-400, 10% Tween-80 and 80% saline at different doses: The inhibition of FAAH activity was able to counteract not only the CAR-induced histological alteration, but also the cascade of related inflammatory events. URB878 clears the way for further studies based on FAAH inhibition in acute lung pathologies.
Collapse
Affiliation(s)
- Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.D.); (D.I.); (A.F.P.); (R.S.)
| | - Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino, Carlo Bo Piazza del Rinascimento 6, 61029 Urbino, Italy;
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.D.); (D.I.); (A.F.P.); (R.S.)
| | - Roberta Fusco
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.D.); (D.I.); (A.F.P.); (R.S.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.D.); (D.I.); (A.F.P.); (R.S.)
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (R.C.); (E.G.)
| | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (R.C.); (E.G.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.D.); (D.I.); (A.F.P.); (R.S.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (R.C.); (E.G.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.D.); (D.I.); (A.F.P.); (R.S.)
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| |
Collapse
|
3
|
Almeida LL, Pitombeira GSGN, Teixeira ÁAC, Teixeira VW, Silva Júnior VA, Vieira Filho LD, Evêncio Neto J. Protective effect of melatonin against herbicides-induced hepatotoxicity in rats. Toxicol Res (Camb) 2021; 10:1-10. [PMID: 33613967 DOI: 10.1093/toxres/tfaa087] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/15/2020] [Accepted: 10/25/2020] [Indexed: 12/21/2022] Open
Abstract
Exposure to the herbicides Paraquat and Roundup® may cause cell lesions due to an increase in oxidative stress levels in different biological systems, even in the liver. The aim of this study was to analyze the effect of melatonin on liver of rats exposed to herbicides. A total of 35 rats were randomly divided into seven equal-sized groups: control, Paraquat, Roundup®, Paraquat + Roundup®, Paraquat + melatonin, Roundup® + melatonin, and Paraquat + Roundup® + melatonin. Samples of blood and hepatic tissue were collected at the end of the seventh day of exposure and treatment with melatonin. Body weight, hematological parameters, and histopathological, biochemical analyses and determination of oxidative stress levels in liver were evaluated. Body weight was compromised (P < 0.01). Alterations of hematologic parameters were significant when compared to control (P < 0.001). Biochemically, serum levels of albumin decreased (P < 0.001), but serum levels of alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase increased (P < 0.001). Histopathology revealed necrotic hepatocytes, portal and central-lobular inflammatory infiltrate, congestion of capillaries. Serum levels of thiobarbituric acid reactive substances were found to be significantly elevated (P < 0.05; P < 0.001), and serum level of reduced glutathione was significantly lower (P < 0.05; P < 0.001). The groups treated concomitantly with melatonin revealed results similar to those of the control. However, melatonin acted as a protective agent for the liver against experimentally induced hepatic toxicity, promoting prevention of body weight, oxidative stress, and normalization of hematological and biochemical parameters.
Collapse
Affiliation(s)
- Lécio Leone Almeida
- Department of Biological Sciences, Regional University of Cariri, Rua Coronel Antônio Luís 1161, Pimenta, Crato, CE 63105-000, Brazil
| | - Giovanna Silva Girão Nobre Pitombeira
- Postgraduate Program in Biological Diversity and Natural Resources, Regional University of Cariri, Rua Coronel Antônio Luís 1161, Pimenta, Crato, CE 63105-000, Brazil
| | - Álvaro Aguiar Coelho Teixeira
- Department of Animal Physiology and Morfology, Federal Rural University of Pernambuco, Rua Manuel de Medeiros s/n° Dois Irmãos, Recife, PE 52171-900, Brazil
| | - Valéria Wanderley Teixeira
- Department of Animal Physiology and Morfology, Federal Rural University of Pernambuco, Rua Manuel de Medeiros s/n° Dois Irmãos, Recife, PE 52171-900, Brazil
| | - Valdemiro Amaro Silva Júnior
- Department of Veterinary Medicine, Federal Rural University of Pernambuco, Rua Manuel de Medeiros s/n° Dois Irmãos, Recife, PE 52171-900, Brazil
| | - Leucio Duarte Vieira Filho
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Av. da Engenharia Cidade Universitária, Recife, PE 50670-901, Brazil
| | - Joaquim Evêncio Neto
- Department of Animal Physiology and Morfology, Federal Rural University of Pernambuco, Rua Manuel de Medeiros s/n° Dois Irmãos, Recife, PE 52171-900, Brazil
| |
Collapse
|
4
|
Yao H, Sun J, Wei J, Zhang X, Chen B, Lin Y. Kaempferol Protects Blood Vessels From Damage Induced by Oxidative Stress and Inflammation in Association With the Nrf2/HO-1 Signaling Pathway. Front Pharmacol 2020; 11:1118. [PMID: 32792954 PMCID: PMC7387620 DOI: 10.3389/fphar.2020.01118] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
Over recent years, an increasing number of studies have confirmed that the occurrence and development of vascular pathological changes are closely related to oxidative stress and the inflammatory response of the vascular endothelium. Kaempferol is the most common flavonoid compound found in fruits and vegetables. Our present research identified that kaempferol had the capability to protect the vascular endothelium in a mouse model of vascular injury and explored the specific mechanisms underlying these effects by investigating oxidative stress, the extent of cardiovascular injury, and inflammatory markers such as NF-κB, TNF-α, IL-6, and the Nrf2/HO-1 signaling pathway. Analysis showed that kaempferol reduced oxidative stress and inflammation mediated by H2O2 and paraquat, respectively, both in vitro and in vivo. Furthermore, kaempferol suppressed the levels of TNF-α and IL-6, and the activation of NF-κB, in aortic tissues and human umbilical vein endothelial cells (HUVECs). Finally, we observed that kaempferol corrected the levels of antioxidants and elevated the protein levels of Nrf2 and HO-1 in aortic tissues and HUVECs. Collectively, our findings prove that kaempferol protects blood vessels from damage induced by oxidative stress and inflammation and that the Nrf2/HO-1 signaling pathway plays a key role in mediating these effects.
Collapse
Affiliation(s)
- He Yao
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Jingyu Sun
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Jie Wei
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Xin Zhang
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Bing Chen
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yajun Lin
- The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, China.,The Key Laboratory of Geriatrics, Peking University Fifth School of Clinical Medicine, Beijing, China
| |
Collapse
|
5
|
Hirayama N, Aki T, Funakoshi T, Noritake K, Unuma K, Uemura K. Necrosis in human neuronal cells exposed to paraquat. J Toxicol Sci 2018. [PMID: 29540653 DOI: 10.2131/jts.43.193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Paraquat (PQ) is an herbicide that was once used worldwide, but is now prohibited in many nations due to its high toxicity to humans. However, there are still rare cases of the fetal intoxication of PQ, which was purchased prior to the prohibition in Japan. In this study, several cell death pathways, the mitochondrial stress response, and autophagy were examined in SH-SY5Y cells exposed to PQ. The results reveal the decrease of a mitochondrial stress sensitive-BNIP3 (Bcl-2/adenovirus E1B 19-kDa-interacting protein 3) protein, the suppression of autophagic flux, and the lack of apoptosis as well as other regulated forms of necrosis, such as necroptosis and ferroptosis. Taken together, our preliminary survey of cellular responses against PQ shows that, although responses of mitochondria and autophagy are observed, subsequent cell death is necrosis. Mechanism of PQ-induced SH-SY5Y cell death should be complicated and cannot be explained thoroughly by already-known mechanisms.
Collapse
|
6
|
Zhang Z, Zhao Y, Chen G, Li R, Yang J, Sun D. Study of lung toxicity in rats exposed to silica powder with different hard metal constituents. Toxicol Ind Health 2018; 34:449-457. [PMID: 29669483 DOI: 10.1177/0748233718758586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The objective of this study was to assess the lung toxicity induced by the inhalation of different hard metal constituents and silica powder and screen for potential toxicity biomarkers. Rats were randomly divided into saline, cobalt, tungsten carbide, silica, and hard metal (HM) groups and were administered a single 10-mg dose of the respective treatments. After 8 weeks, the lung tissue structure in the HM group was deformed, numerous nucleated giant and epithelial-like cells appeared in the stroma, and the computed tomography scanning images appeared abnormal. Krebs von den Lungen-6 (KL-6), transforming growth factor (TGF)-β1, and TGF-β2 expression in bronchoalveolar lavage fluid (BALF) significantly differed between the groups ( p < 0.05). Serum KL-6 and TGF-β1, but not TGF-β2, levels significantly differed between some groups ( p < 0.05). We observed multinucleated giant cells in the rat lung tissue. While the serum and BALF levels of KL-6 and TGF-β2 are not highly specific, TGF-β1 may be a valuable reference diagnostic marker in HM lung disease.
Collapse
Affiliation(s)
- Zhansai Zhang
- 1 Department of Occupational Disease, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yanfang Zhao
- 2 Department of Health Statistics, Second Military Medical University, Shanghai, China
| | - Gang Chen
- 3 Department of Orthopedics, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruoming Li
- 4 Department of Public Health, Lingyun Community Health Service Center, Shanghai, China
| | - Jun Yang
- 5 Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Daoyuan Sun
- 1 Department of Occupational Disease, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Chloroquine attenuates paraquat-induced lung injury in mice by altering inflammation, oxidative stress and fibrosis. Int Immunopharmacol 2017; 46:16-22. [PMID: 28249220 DOI: 10.1016/j.intimp.2017.02.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 02/16/2017] [Accepted: 02/18/2017] [Indexed: 12/14/2022]
Abstract
Paraquat is one of the most extensively used herbicides and has high toxicity for humans and animals. However, there is no effective treatment for paraquat poisoning. The aim of the present study was to evaluate the effects of chloroquine on paraquat-induced lung injury in mice. Mice received a single intraperitoneal injection of paraquat and a daily intraperitoneal injection of the indicated dosages of chloroquine or dexamethasone. The histological changes, inflammation and oxidative stress in the lungs were examined at day 3, and the degree of pulmonary fibrosis was examined at day 28. H&E staining showed that chloroquine markedly attenuated lung injury induced by paraquat. In addition, the inflammatory responses induced by paraquat were inhibited after treatment with chloroquine, as indicated by the decreased number of leukocytes, the reduced levels of TNF-α, IL-1β and IL-6 in the bronchoalveolar lavage fluid, the reduced NO content, and downregulation of iNOS expression in lung tissues. No different effect was found between high-dose chloroquine and dexamethasone. Additionally, the treatment with chloroquine increased the activity of SOD and decreased the level of MDA in the lung tissues. The expressions of the anti-oxidative proteins, Nrf2, HO-1 and NQO1, were also upregulated by chloroquine treatment. The high-dose chloroquine was more effective than dexamethasone in its anti-oxidation ability. Finally, the results of Masson's staining illustrated that chloroquine markedly attenuated fibrosis in the paraquat-exposed lungs. Immunohistochemistry staining showed that the expressions of the pro-fibrotic proteins TGF-β and α-SMA were downregulated after treatment with chloroquine. In conclusion, chloroquine effectively attenuated paraquat-induced lung injury in mice.
Collapse
|
8
|
Pulmonary innate inflammatory responses to agricultural occupational contaminants. Cell Tissue Res 2017; 367:627-642. [PMID: 28168324 DOI: 10.1007/s00441-017-2573-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/09/2017] [Indexed: 10/20/2022]
Abstract
Agricultural workers are exposed to many contaminants and suffer from respiratory and other symptoms. Dusts, gases, microbial products and pesticide residues from farms have been linked to effects on the health of agricultural workers. Growing sets of data from in vitro and in vivo models demonstrate the role of the innate immune system, especially Toll-like receptor 4 (TLR4) and TLR9, in lung inflammation induced following exposure to contaminants in agricultural environments. Interestingly, inflammation and lung function changes appear to be discordant indicating the complexity of inflammatory responses to exposures. Whereas the recent development of rodent models and exposure systems have yielded valuable data, we need new systems to examine the combined effects of multiple contaminants in order to increase our understanding of farm-exposure-induced negative health effects.
Collapse
|
9
|
Veríssimo G, Bast A, Weseler AR. Paraquat disrupts the anti-inflammatory action of cortisol in human macrophages in vitro: therapeutic implications for paraquat intoxications. Toxicol Res (Camb) 2017; 6:232-241. [PMID: 30090494 DOI: 10.1039/c6tx00406g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/01/2017] [Indexed: 12/19/2022] Open
Abstract
The herbicide paraquat (1,1'-dimethyl-4,4'-bipyridinium dichloride) has been banned in Europe since 2007 due to its high toxicity in humans. However, it is still widely used in Middle/South America and in Asia where it is annually associated with a high incidence of unintentional and intentional poisoning. Human macrophage-like cell lines were used to shed more light on the inflammatory response elicited by paraquat. Paraquat (3-1000 μM) reduced cell viability in a dose- and time-dependent manner. Exposure to 50 or 200 μM paraquat for 24 h elevated the release of interleukin 8 and gene expression of tumor necrosis factor-α. Expression of the 11β-hydroxysteroid dehydrogenase 1 gene tended to increase, while cellular glutathione concentrations decreased. The anti-inflammatory effect of cortisol was significantly disrupted. The paraquat-induced cortisol resistance could not be prevented by N-acetyl-l-cysteine. However, a polyphenolic extract of grape seeds consisting of monomeric and oligomeric flavan-3-ols (MOF) reduced paraquat-induced inflammation in the presence of cortisol to baseline. In conclusion, the results suggest that an impaired cortisol response may contribute to paraquat-mediated inflammation. Agents with pleiotropic cellular and subcellular effects on redox regulation and inflammation, such as plant-derived polyphenols, may be an effective add-on to the therapy of paraquat intoxications with glucocorticoids.
Collapse
Affiliation(s)
- Gesiele Veríssimo
- Institute for Studies in Collective Health , Federal University of Rio de Janeiro , Praça Jorge Machado Moreira 100 , Cidade Universitária , Rio de Janeiro 21941-598 , Brazil.,Department of Pharmacology and Toxicology , Maastricht University , PO Box 616 , 6200 MD Maastricht , The Netherlands . ; ;
| | - Aalt Bast
- Department of Pharmacology and Toxicology , Maastricht University , PO Box 616 , 6200 MD Maastricht , The Netherlands . ; ;
| | - Antje R Weseler
- Department of Pharmacology and Toxicology , Maastricht University , PO Box 616 , 6200 MD Maastricht , The Netherlands . ; ;
| |
Collapse
|
10
|
Amirshahrokhi K, Khalili AR. Carvedilol attenuates paraquat-induced lung injury by inhibition of proinflammatory cytokines, chemokine MCP-1, NF-κB activation and oxidative stress mediators. Cytokine 2016; 88:144-153. [PMID: 27619518 DOI: 10.1016/j.cyto.2016.09.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/01/2016] [Accepted: 09/06/2016] [Indexed: 11/16/2022]
Abstract
Paraquat is a highly toxic herbicide that selectively accumulates in the lungs and causes pulmonary damage through the oxidative and inflammatory processes. Carvedilol is a nonselective beta and alpha-adrenergic blocking agent that has been shown to possess powerful antioxidant and anti-inflammatory properties. In the present study, we evaluated the protective effects and the underlying mechanisms of carvedilol on paraquat-induced lung injury in a mouse model. Mice were injected with a single dose of paraquat (20mg/kg, ip), and treated with carvedilol (10 and 20mg/kg/day, orally) for eight days. At the end of the experiment, lung tissue and blood samples were collected for histological and biochemical analysis. The results showed that carvedilol treatment improved the histopathological changes in the lung tissue of mice exposed to paraquat. Carvedilol significantly decreased the levels of malondialdehyde (MDA), carbonyl protein, myeloperoxidase (MPO), and nitric oxide (NO), while increased the levels of glutathione (GSH), superoxide dismutase (SOD), catalase and glutathione reductase compared with paraquat group. Carvedilol treatment also significantly reduced the levels of proinflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, transforming growth factor (TGF)-β1 and monocyte chemoattractant protein (MCP)-1 in the lung tissue. Treatment of mice with carvedilol decreased paraquat-induced expression of nuclear factor kappa B (NF-κB). In addition the plasma levels of matrix metalloproteinase (MMP)-9 and the lung hydroxyproline content significantly reduced by carvedilol treatment. Taken together, these results indicate that carvedilol is able to decrease the severity of paraquat-induced lung injury through inhibition of inflammation and oxidative stress.
Collapse
Affiliation(s)
- Keyvan Amirshahrokhi
- Department of Pharmacology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Ali-Reza Khalili
- Division of Pathology, Imam Hospital, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
11
|
Daneshgar N, Rezaei M, Goudarzi M, Babadi N, Khodayar MJ. The Ameliorative Effect of Naringenin on Paraquat-Induced Toxicity in Mitochondria Isolated from Rats. Jundishapur J Nat Pharm Prod 2016. [DOI: 10.17795/jjnpp-32968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
12
|
Liu Z, Zhao H, Liu W, Li T, Wang Y, Zhao M. NLRP3 inflammasome activation is essential for paraquat-induced acute lung injury. Inflammation 2015; 38:433-44. [PMID: 25338942 PMCID: PMC7101550 DOI: 10.1007/s10753-014-0048-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The innate immune response is important in paraquat-induced acute lung injury, but the exact pathways involved are not elucidated. The objectives of this study were to determine the specific role of the NLRP3 inflammasome in the process. Acute lung injury was induced by administering paraquat (PQ) intraperitoneally. NLRP3 inflammasome including NLRP3, ASC, and caspase-1 mRNA and protein expression in lung tissue and IL-1β and IL-18 levels in BALF were detected at 4, 8, 24, and 72 h after PQ administration in rats. Moreover, rats were pretreated with 10, 30, and 50 mg/kg NLRP3 inflammasome blocker glybenclamide, respectively, 1 h before PQ exposure. At 72 h after PQ administration, lung histopathology changes, NLRP3, ASC, and caspase-1 protein expression, as well as secretion of cytokines including IL-1β and IL-18 in BALF were investigated. The NLRP3 inflammasome including NLRP3, ASC, caspase-1 expression, and cytokines IL-1β and IL-18 levels in PQ poisoning rats were significantly higher than that in the control group. NLRP3 inflammasome blocker glybenclamide pretreatment attenuated lung edema, inhibited the NLRP3, ASC, and caspase-1 activation, and reduced IL-1β and IL-18 levels in BALF. In the in vitro experiments, IL-1β and IL-18 secreted from RAW264.7 mouse macrophages treated with paraquat were attenuated by glybenclamide. In conclusion, paraquat can induce IL-1β/IL-18 secretion via NLRP3-ASC-caspase-1 pathway, and the NLRP3 inflammasome is essential for paraquat-induced acute lung injury.
Collapse
Affiliation(s)
- Zhenning Liu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, China
| | | | | | | | | | | |
Collapse
|
13
|
Protective effects of thalidomide on pulmonary injuries in a rat model of paraquat intoxication. JOURNAL OF INFLAMMATION-LONDON 2015. [PMID: 26221080 PMCID: PMC4517355 DOI: 10.1186/s12950-015-0093-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Background This study was designed to evaluate the protective effects of thalidomide on paraquat (PQ)-induced lung injuries in a rat model and to explore the underlying mechanisms. Methods Rats were exposed to 50 mg/kg PQ by oral gavage, and treated with thalidomide through oral administration at 60 mg/kg once a day, 6 days/week for 2 weeks. Serum levels of IL-6, TNF-alpha, TGFbeta1 and COL1A1 were detected at different time points after paraquat exposure. At the end of the study, lung tissues were collected for pathological inspection as well as analyses of water content and expression levels of IL-6, TNF-alpha, TGFbeta1 and COL1A1 mRNA. Results The results showed that thalidomide treatment could significantly alleviate PQ-induced pathological changes in lung tissue and severity of lung edema. Thalidomide treatment after PQ exposure resulted in significantly reduced serum levels of IL-6, TNF-alpha, TGF-beta1 and COL1A1, as compared to PQ group. PCR analysis demonstrated that expression levels of IL-6, TNF-alpha, TGF-beta1 and COL1A1 in lung tissue were significantly increased after PQ exposure but reduced by thalidomide, which were confirmed by immunohistochemistry staining. Conclusions Our results indicated that inflammatory factors played important roles in PQ-induced lung injuries and thalidomide could protect rats from PQ-induced lung injuries by inhibiting the upregulation of inflammatory factors.
Collapse
|
14
|
Shang AD, Lu YQ. A case report of severe paraquat poisoning in an HIV-positive patient: an unexpected outcome and inspiration. Medicine (Baltimore) 2015; 94:e587. [PMID: 25715264 PMCID: PMC4554141 DOI: 10.1097/md.0000000000000587] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We described and analyzed the treatment process of an HIV-positive patient with severe paraquat (PQ) poisoning. A 34-year-old man ingested about 50 mL of a 20% solution of PQ in a suicide attempt. He was treated with gastric lavage, oral administration of adsorbent, and symptomatic treatments at the local hospital, and was transferred to our emergency department. Ten hours after the exposure, the concentration of plasma PQ was 2.17 mg/L and was substantially above the survival limits of the severity index for PQ poisoning (SIPP) curve (0.30 mg/L). The equation produced by Jones et al (Jones AL, Elton R, Flanagan R. Multiple logistic regression analysis of plasma paraquat concentrations as a predictor of outcome in 375 cases of paraquat poisoning. QJM. 1999:92;573-578) predicted a 20.5% probability of survival at admission. Unfortunately, the patient was diagnosed as HIV infected, and CD4 lymphocyte count also confirmed that the patient was in a state of mild suppression of immunological function. Immediately, the patient received normative immunosuppressive therapy and hemoperfusion (HP). On the 15th day after poisoning, the patient recovered well and was discharged. All along, the evolution of the patient's status was in accordance with the characteristics of PQ poisoning, but the extent and duration of damage was mismatching and drastically alleviative by the previous biological indices. The particular case of treatment may be indirectly supporting the effectiveness of immunosuppressive therapy in treating patients with PQ poisoning.
Collapse
Affiliation(s)
- An-Dong Shang
- From the Department of Emergency Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | | |
Collapse
|
15
|
Guo F, Sun YB, Su L, Li S, Liu ZF, Li J, Hu XT, Li J. Losartan attenuates paraquat-induced pulmonary fibrosis in rats. Hum Exp Toxicol 2014; 34:497-505. [PMID: 25233898 DOI: 10.1177/0960327114543840] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Paraquat (PQ) is one of the most widely used herbicides in the world and can cause pulmonary fibrosis in the cases with intoxication. Losartan, an angiotensin II type 1 receptor antagonist, has beneficial effects on the treatment of fibrosis. The aim of this study was to examine the effect of losartan on pulmonary fibrosis in PQ-intoxicated rats. Adult male Sprague Dawley rats (n = 32, 180-220 g) were randomly assigned to four groups: (i) control group; (ii) PQ group; (iii) PQ + losartan 7d group; and (iv) PQ + losartan 14d group. Losartan treatment (intragastrically (i.g.), 10 mg/kg) was performed for 7 and 14 days after a single i.g. dose of 40 mg/kg PQ. All rats were killed on the 16th day, and hematoxylin-eosin and Masson's trichrome staining were used to examine lung injury and fibrosis. The levels of hydroxyproline and transforming growth factor β1 (TGF-β1), matrix metallopeptidase 9 (Mmp9), and tissue inhibitor of metalloproteinase 1 (TIMP-1) messenger RNA (mRNA) expression and relative expression levels of collagen type I and III were also detected. PQ caused a significant increase in hydroxyproline content, mRNA expression of TGF-β1, Mmp9, and TIMP-1, and relative expression levels of collagen type I and III ( p < 0.05), while losartan significantly decreased the amount of hydroxyproline and downregulated TGF-β1, Mmp9, and TIMP-1 mRNA and collagen type I and III expressions ( p < 0.05). Histological examination of PQ-treated rats showed lung injury and widespread inflammatory cell infiltration in the alveolar space and pulmonary fibrosis, while losartan could markedly reduce such damage and prevent pulmonary fibrosis. The results of this study indicated that losartan could reduce lung damage and prevent pulmonary fibrosis induced by PQ.
Collapse
Affiliation(s)
- F Guo
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Y B Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - L Su
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - S Li
- Lanzhou Municipal Center for Disease Control, Lanzhou, China
| | - Z F Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - J Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - X T Hu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - J Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
16
|
Qian J, Ye Y, Lv L, Zhu C, Ye S. FTY720 attenuates paraquat-induced lung injury in mice. Int Immunopharmacol 2014; 21:426-31. [PMID: 24893116 DOI: 10.1016/j.intimp.2014.05.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/10/2014] [Accepted: 05/21/2014] [Indexed: 10/25/2022]
Abstract
Paraquat (PQ) poisoning, with the lung as a primary target organ, is a devastating disease which irreversibly progresses to diffuse alveolitis followed by extensive lung fibrosis. In the present study, we aimed to investigate the effect of FTY720, an immune modulator, on PQ-induced lung injury in mice. C57BL/6 mice were randomized into four groups: 1) PQ group (n=12): mice was instilled with PQ (30 mg/kg, ip); 2) PQ+FTY720 group (n=12): animals received FTY720 (0.1mg/kg, ip) solution 2h after PQ exposure and twice a week for 4 consecutive weeks; 3) FTY720 group (n=5): FTY720 (0.1mg/kg, ip) was administrated twice a week for 4 consecutive weeks; and 4) Control group (n=10): same volumes of saline were injected. Mice were sacrificed on either day 3 or day 28 for histopathological, biochemical and immunohistochemical analyses of lung damage indicators. We found that FTY720 treatment attenuated PQ-induced acute lung injury and lung fibrosis as evaluated by histopathological changes and Ashcroft score. On day 3, FTY720 administration reduced PQ-induced increases in lung wet weight/body weight (LW/BW), total protein and cytokine levels including interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in bronchoalceolar lavage fluid (BALF). On day 28, the expressions of alpha-smooth muscle actin (α-SMA), transforming growth factor-beta (TGF-β) and vascular endothelial growth factor (VEGF) detected by immunohistochemistry, as well as the mRNA levels of α-SMA, Type-I Collagen and Type-III Collagen examined by Real-time PCR were down-regulated after FTY720 treatment. These results indicate that FTY720 could attenuate PQ-induced lung injury, but further investigation is necessary.
Collapse
Affiliation(s)
- Jie Qian
- Department of Emergency Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yan Ye
- Department of Emergency Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China; Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200001, China
| | - Lixiong Lv
- Department of Emergency Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Changqing Zhu
- Department of Emergency Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.
| | - Shuang Ye
- Department of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200001, China.
| |
Collapse
|
17
|
CB2 receptor activation ameliorates the proinflammatory activity in acute lung injury induced by paraquat. BIOMED RESEARCH INTERNATIONAL 2014; 2014:971750. [PMID: 24963491 PMCID: PMC4054852 DOI: 10.1155/2014/971750] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 05/08/2014] [Indexed: 01/21/2023]
Abstract
Paraquat, a widely used herbicide, is well known to exhibit oxidative stress and lung injury. In the present study, we investigated the possible underlying mechanisms of cannabinoid receptor-2 (CB2) activation to ameliorate the proinflammatory activity induced by PQ in rats. JWH133, a CB2 agonist, was administered by intraperitoneal injection 1 h prior to PQ exposure. After PQ exposure for 4, 8, 24, and 72 h, the bronchoalveolar lavage fluid was collected to determine levels of TNF-α and IL-1β, and the arterial blood samples were collected for detection of PaO2 level. At 72 h after PQ exposure, lung tissues were collected to determine the lung wet-to-dry weight ratios, myeloperoxidase activity, lung histopathology, the protein expression level of CB2, MAPKs (ERK1/2, p38MAPK, and JNK1/2), and NF-κBp65. After rats were pretreated with JWH133, PQ-induced lung edema and lung histopathological changes were significantly attenuated. PQ-induced TNF-α and IL-1β secretion in BALF, increases of PaO2 in arterial blood, and MPO levels in the lung tissue were significantly reduced. JWH133 could efficiently activate CB2, while inhibiting MAPKs and NF-κB activation. The results suggested that activating CB2 receptor exerted protective activity against PQ-induced ALI, and it potentially contributed to the suppression of the activation of MAPKs and NF-κB pathways.
Collapse
|
18
|
Toygar M, Aydin I, Agilli M, Aydin FN, Oztosun M, Gul H, Macit E, Karslioglu Y, Topal T, Uysal B, Honca M. The relation between oxidative stress, inflammation, and neopterin in the paraquat-induced lung toxicity. Hum Exp Toxicol 2014; 34:198-204. [PMID: 24818613 DOI: 10.1177/0960327114533808] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Paraquat (PQ) is a well-known quaternary nitrogen herbicide. The major target organ in PQ poisoning is the lung. Reactive oxygen species (ROS) and inflammation play a crucial role in the development of PQ-induced pulmonary injury. Neopterin is synthesized in macrophage by interferon γ and other cytokines. We aimed to evaluate the utility of neopterin as a diagnostic marker in PQ-induced lung toxicity. Sprague Dawley rats were randomly divided into two groups (sham and PQ), administered intraperitoneally 1 mL saline and PQ (15 mg/kg/mL) respectively. Blood samples and lungs were collected for analyses. Lung injury and fibrosis were seen in the PQ group. Serum total antioxidant capacity, lactate dehydrogenase (LDH), and lung transforming growth factor-1β (TGF-1β) levels were significantly higher than the sham group (in all, p < 0.001). In addition, in the PQ group, serum neopterin and lung malondialdehyde (MDA) levels were also significantly higher than the sham group (in all, p = 0.001). Serum neopterin levels were correlated with LDH activities, lung MDA, lung TGF-1β levels, and the degree of lung injury. These findings demonstrated that oxidative stress, reduction of antioxidant capacity, and inflammation play a crucial role in the PQ-induced lung injury. Elevated serum neopterin levels may be a prognostic parameter to determine extends of PQ-induced lung toxicity. Further studies may be performed to clarify the role of neopterin by different doses of PQ.
Collapse
Affiliation(s)
- M Toygar
- Department of ForensicMedicine, Gulhane Military Medical Academy and Medical School, Ankara, Turkey
| | - I Aydin
- Department of Clinical Biochemistry, Gulhane Military Medical Academy, Ankara, Turkey
| | - M Agilli
- Department of Clinical Biochemistry, Gulhane Military Medical Academy, Ankara, Turkey
| | - F N Aydin
- Department of Clinical Biochemistry, Gulhane Military Medical Academy, Ankara, Turkey
| | - M Oztosun
- Turkish Armed Forces, Health Services Command, Ankara, Turkey
| | - H Gul
- Department of Toxicology, Gulhane Military Medical Academy, Ankara, Turkey
| | - E Macit
- Department of Toxicology, Gulhane Military Medical Academy, Ankara, Turkey
| | - Y Karslioglu
- Department of Pathology, Gulhane Military Medical Academy, Ankara, Turkey
| | - T Topal
- Department of Physiology, Gulhane Military Medical Academy, Ankara, Turkey
| | - B Uysal
- Department of Physiology, Gulhane Military Medical Academy, Ankara, Turkey
| | - M Honca
- Department of Anesthesiology and Reanimation, Kecioren Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
19
|
Amirshahrokhi K, Bohlooli S. Effect of methylsulfonylmethane on paraquat-induced acute lung and liver injury in mice. Inflammation 2014; 36:1111-21. [PMID: 23595869 DOI: 10.1007/s10753-013-9645-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Methylsulfonylmethane (MSM) is a natural organosulfur compound that exhibits antioxidative and anti-inflammatory effects. This study was carried out to investigate the effect of MSM on paraquat (PQ)-induced acute lung and liver injury in mice. A single dose of PQ (50 mg/kg, i.p.) induced acute lung and liver toxicity. Mice were treated with MSM (500 mg/kg/day, i.p.) for 5 days. At the end of the experiment, animals were euthanized, and lung and liver tissues were collected for histological and biochemical analysis. Tissue samples were used to determine malondialdehyde (MDA), myeloperoxidase (MPO), catalase (CAT), superoxide dismutase (SOD), glutathione (GSH), and tumor necrosis factor-α (TNF-α) levels. Blood samples were used to measure plasma alanine transaminase (ALT), γ-glutamyl transferase (GGT), and alkaline phosphatase (ALP). Histological examination indicated that MSM decreased lung and liver damage caused by PQ. Biochemical results showed that MSM treatment significantly reduced tissue levels of MDA, MPO, and TNF-α, while increased the levels of SOD, CAT, and GSH compared with PQ group. MSM treatment also significantly reduced plasma levels of ALT, GGT, and ALP. These findings suggest that MSM as a natural product attenuates PQ-induced pulmonary and hepatic oxidative injury.
Collapse
Affiliation(s)
- Keyvan Amirshahrokhi
- Department of Pharmacology, School of Medicine, Ardabil University of Medical Sciences, P.O. Box 5618953141, Ardabil, Iran,
| | | |
Collapse
|
20
|
Anti-inflammatory effect of thalidomide in paraquat-induced pulmonary injury in mice. Int Immunopharmacol 2013; 17:210-5. [DOI: 10.1016/j.intimp.2013.06.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 05/23/2013] [Accepted: 06/03/2013] [Indexed: 11/22/2022]
|
21
|
Zhang R, Mi SQ, Wang NS. Effect of borneol on cytochrome P450 3A enzyme and midazolam pharmacokinetics in rats. Eur J Drug Metab Pharmacokinet 2013; 38:159-69. [DOI: 10.1007/s13318-013-0125-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/20/2013] [Indexed: 10/27/2022]
|
22
|
Dong XS, Hu XB, Liu W, Sun YQ, Liu Z. Effects of RNA interference-induced Smad3 gene silencing on pulmonary fibrosis caused by paraquat in mice. Exp Biol Med (Maywood) 2012; 237:548-55. [PMID: 22581813 DOI: 10.1258/ebm.2011.011280] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Paraquat (PQ) poisoning induces many physiological and histological changes in the human body, but PQ-induced pulmonary fibrosis is most often associated with death. The signaling pathway associated with pulmonary fibrosis is reliant on transforming growth factor-beta 1 (tgf-β(1)) activation of Smad3, as evidenced by Smad3-deficient mice being resistant to tgf-β(1)-induced pulmonary fibrosis. Thus, we sought to determine whether targeted silencing of Smad3 gene expression could inhibit PQ-induced pulmonary fibrosis in mice. We developed an RNA interference (RNAi) method using short hairpin RNAs (shRNAs) targeting Smad3. The shRNA expression cassettes capable of effectively silencing Smad3 in L929 mouse fibroblasts were transferred to an adenovirus vector and intratracheally administered into mouse lung. Treated mice presented with inhibited Smad3 mRNA and protein and were resistant to PQ-induced pulmonary fibrosis, as evidenced by suppressed expressions of procollagen type I mRNA and hydroxyproline amino acid. Thus, silencing of Smad3 appears to be a promising alternative strategy for the treatment of PQ-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Xue-Song Dong
- Department of Emergency, The First Affiliated Hospital, China Medical University, Shenyang 110001, China.
| | | | | | | | | |
Collapse
|
23
|
Cho SC, Rhim JH, Choi HR, Son YH, Lee SJ, Song KY, Park SC. Protective effect of 4,4'-diaminodiphenylsulfone against paraquat-induced mouse lung injury. Exp Mol Med 2012; 43:525-37. [PMID: 21765237 DOI: 10.3858/emm.2011.43.9.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Although 4,4'-diaminodiphenylsulfone (DDS, dapsone) has been used to treat several dermatologic conditions, including Hansen disease, for the past several decades, its mode of action has remained a topic of debate. We recently reported that DDS treatment significantly extends the lifespan of the nematode C. elegans by decreasing the generation of reactive oxygen species. Additionally, in in vitro experiments using non-phagocytic human fibroblasts, we found that DDS effectively counteracted the toxicity of paraquat (PQ). In the present study, we extended our work to test the protective effect of DDS against PQ in vivo using a mouse lung injury model. Oral administration of DDS to mice significantly attenuated the lung tissue damage caused by subsequent administration of PQ. Moreover, DDS reduced the local expression of mRNA transcripts encoding inflammation-related molecules, including endothelin-1 (ET-1), macrophage inflammatory protein-1α (MIP-1α), and transforming growth factor-β (TGF-β). In addition, DDS decreased the PQ-induced expression of NADPH oxidase mRNA and activation of protein kinase Cμ (PKCμ). DDS treatment also decreased the PQ-induced generation of superoxide anions in mouse lung fibroblasts. Taken together, these data suggest the novel efficacy of DDS as an effective protective agent against oxidative stress-induced tissue damages.
Collapse
Affiliation(s)
- Sung Chun Cho
- Department of Biochemistry and Molecular Biology, Institute on Aging, Seoul National University College of Medicine, Seoul 110-799, Korea
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
OBJECTIVE To evaluate the possible therapeutic effect of ambroxol on pulmonary fibrosis induced by paraquat. METHODS Adult male Sprague-Dawley rats (n=144, 200-250 g) were divided into four groups (Control, Ambroxol, Paraquat, and Paraquat+Ambroxol group) and sacrificed on day 1, 3, 5, 7, 14 and 28. Several significant oxidant stress markers (MDA, SOD and GSH-PX), MPO activity, cytokines (TNF-α, MCP-1, TGF-β1, MMP-2 and TIMP-1), total inflammatory cell count, hydroxyproline content, collagen I and III mRNA were analyzed. RESULTS In Paraquat group, the MDA, MPO activity, hydroxyproline contents, the mRNA expression of TNF-α, MCP-1, TGF-β1, MMP-2, TIMP-1, collagen I, collagen III and the number of total inflammatory cells were up-regulated in lung tissue, but SOD and GSH-PX activity were down-regulated in lung tissue compared with Control group (p<0.05). In paraquat+ambroxol group, the MDA, MPO activity, hydroxyproline content, the mRNA expression of TNF-α, MCP-1, TGF-β1, MMP-2, TIMP-1 collagen I, collagen III and the number of total inflammatory cells were significantly decreased, while the SOD and GSH-PX activities in lung tissue were increased compared with Paraquat group (p<0.05). Histological examination of paraquat-treated rats showed lung injury with interstitial edema and widespread inflammatory cell infiltration in the alveolar space and septum, as well as pulmonary fibrosis. Ambroxol could markedly reduce such damage in lung tissue and prevent pulmonary fibrosis. CONCLUSION The results of this study indicated that ambroxol could reduce lung damage and prevent pulmonary fibrosis induced by paraquat.
Collapse
Affiliation(s)
- Qiao-Ming Zhi
- Department of Emergency Medicine, Jinling Hospital, School of Clinical Medicine, Nanjing University, PR China.
| | | | | |
Collapse
|
25
|
Zhi Q, Sun H, Qian X, Yang L. Edaravone, a novel antidote against lung injury and pulmonary fibrosis induced by paraquat? Int Immunopharmacol 2011; 11:96-102. [DOI: 10.1016/j.intimp.2010.10.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/13/2010] [Accepted: 10/14/2010] [Indexed: 01/17/2023]
|
26
|
Maeda H, Zhu BL, Ishikawa T, Michiue T. Forensic molecular pathology of violent deaths. Forensic Sci Int 2010; 203:83-92. [DOI: 10.1016/j.forsciint.2010.07.024] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Mitsopoulos P, Suntres ZE. Cytotoxicity and gene array analysis of alveolar epithelial A549 cells exposed to paraquat. Chem Biol Interact 2010; 188:427-36. [DOI: 10.1016/j.cbi.2010.09.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 09/16/2010] [Accepted: 09/22/2010] [Indexed: 10/19/2022]
|
28
|
Superoxide radicals increase transforming growth factor-β1 and collagen release from human lung fibroblasts via cellular influx through chloride channels. Toxicol Appl Pharmacol 2009; 237:111-8. [DOI: 10.1016/j.taap.2009.02.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 02/12/2009] [Accepted: 02/17/2009] [Indexed: 11/20/2022]
|
29
|
Shimada I, Matsui K, Brinkmann B, Hohoff C, Hiraga K, Tabuchi Y, Takasaki I, Kato I, Kawaguchi H, Takasawa K, Iida R, Takizawa H, Matsuki T. Novel transcript profiling of diffuse alveolar damage induced by hyperoxia exposure in mice: normalization by glyceraldehyde 3-phosphate dehydrogenase. Int J Legal Med 2008; 122:373-83. [DOI: 10.1007/s00414-008-0226-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 01/29/2008] [Indexed: 11/29/2022]
|
30
|
Satomi Y, Sakaguchi K, Kasahara Y, Akahori F. Novel and extensive aspects of paraquat-induced pulmonary fibrogenesis: comparative and time-course microarray analyses in fibrogenic and non-fibrogenic rats. J Toxicol Sci 2008; 32:529-53. [PMID: 18198484 DOI: 10.2131/jts.32.529] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Although paraquat (PQ) is widely known to induce pulmonary fibrosis, the molecular mechanisms are poorly understood. Therefore, to bring a new dimension to the elucidation of the mechanisms, we conducted microarray experiments to investigate the expression profiles of 1,090 genes in the lungs during the progressive phase of PQ-induced pulmonary fibrosis in rats. After several s.c. injections of PQ, rats were divided into a fibrogenic group and a non-fibrogenic group. Time-course gene expression analysis of the fibrogenic group showed altered gene regulation throughout the experimental period. The expression levels of many cell membrane channel, transporter, and receptor genes were substantially altered. These genes were classified into two categories: polyamine transporter- and electrolyte/fluid balance-related genes. Moreover, comparative analysis of the fibrogenic and the non-fibrogenic group revealed 36 genes with significantly different patterns of expression, including the pro-apoptotic gene Bad. This indicates that Bad is a key factor in apoptosis and that apoptosis provides a major turning point in PQ-induced pulmonary fibrosis. Notably, subtypes of transforming growth factor (TGF)-beta genes that are considered to play a pivotal role in fibrogenesis showed no differences in expression between the two groups, though TGF-beta3 was markedly induced in both groups. These results provide novel and extensive insights into the molecular mechanisms that lead to pulmonary fibrosis after exposure to PQ.
Collapse
Affiliation(s)
- Yoshihide Satomi
- Pharmacology & Safety Research Department, Pharmaceutical Development Research Laboratories, Teijin Pharma Ltd., Japan.
| | | | | | | |
Collapse
|
31
|
Dinis-Oliveira RJ, Sousa C, Remião F, Duarte JA, Ferreira R, Sánchez Navarro A, Bastos ML, Carvalho F. Sodium salicylate prevents paraquat-induced apoptosis in the rat lung. Free Radic Biol Med 2007; 43:48-61. [PMID: 17561093 DOI: 10.1016/j.freeradbiomed.2007.03.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 03/11/2007] [Accepted: 03/13/2007] [Indexed: 11/24/2022]
Abstract
The nonselective contact herbicide, paraquat (PQ), is a strong pneumotoxicant, especially due to its accumulation in the lung through a polyamine uptake system and to its capacity to induce redox cycling, leading to oxidative stress-related damage. In the present study, we aimed to investigate the occurrence of apoptotic events in the lungs of male Wistar rats, 24, 48, and 96 h after PQ exposure (25 mg/kg ip) as well as the putative healing effects provided by sodium salicylate [(NaSAL), 200 mg/kg ip] when administered 2 h after PQ. PQ exposure resulted in marked lung apoptosis, in a time-dependent manner, characterized by the "ladder-like" pattern of DNA observed through electrophoresis and by the presence of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling (TUNEL)-positive cells (TPC) as revealed by immunohistochemistry. The two main caspase cascades (the extrinsic receptor-mediated and the intrinsic mitochondria-mediated) and the expressions of p53 and activator protein-1 (AP-1) were also evaluated, to obtain an insight into apoptotic cellular signaling. PQ-exposed rats suffered a time-dependent increase of caspase-3 and caspase-8 and a decrease of caspase-1 activities in lungs compared to the control group. A marked mitochondrial dysfunction evidenced by cytochrome c (Cyt c) release was also observed as a consequence of PQ exposure. In addition, fluorescence electrophoretic mobility shift assay (fEMSA) revealed a transcriptional induction of the p53 and AP-1 transcription factors in a time-dependent manner as a consequence of PQ exposure. NaSAL treatment resulted in the remission of the observed apoptotic signaling and consequently of lung apoptosis. Taken together, the present results showed that PQ activates several events involved in the apoptotic pathways, which might contribute to its lung toxicodynamics. NaSAL, a recently implemented antidote for PQ intoxications, proved to protect lungs from PQ-induced apoptosis.
Collapse
Affiliation(s)
- R J Dinis-Oliveira
- REQUIMTE, Departamento de Toxicologia, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha, 164, 4099-030 Porto, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
RNA in forensic science. Forensic Sci Int Genet 2007; 1:69-74. [DOI: 10.1016/j.fsigen.2006.11.002] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 11/09/2006] [Accepted: 11/10/2006] [Indexed: 11/18/2022]
|
33
|
Mainwaring G, Lim FL, Antrobus K, Swain C, Clapp M, Kimber I, Orphanides G, Moggs JG. Identification of early molecular pathways affected by paraquat in rat lung. Toxicology 2006; 225:157-72. [PMID: 16854511 DOI: 10.1016/j.tox.2006.05.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 05/19/2006] [Accepted: 05/22/2006] [Indexed: 10/24/2022]
Abstract
We have used global gene expression profiling, combined with pathway analysis tools, to identify in rats the molecular events associated with paraquat toxicity in the lung. Early (2, 8 and 18h) gene expression changes induced following intraperitoneal (i.p.) exposure to paraquat were measured in the caudal lobe of lungs using Affymetrix rat genome GeneChips (31,042 probe sets). A single high dose of paraquat dichloride (20mg/kg) was used that has been shown previously to cause in rats extensive lung fibrosis after 10 days. Hierarchical clustering of 543 paraquat-responsive genes (false discovery rate<0.05) revealed that under these conditions of exposure paraquat induces a staged transcriptional response in the rat lung that precedes the appearance of lung damage. We report here that many of the transcriptional responses to paraquat were rapid (being maximal at 2h post-dose), and that the predominant molecular functions and biological processes associated with these genes include membrane transport, oxidative stress, lung development, epithelial cell differentiation and transforming growth factor beta (TGF-beta) signalling. These data provide novel insights into the molecular pathways that lead to toxicity after exposure of the rat lung to paraquat.
Collapse
Affiliation(s)
- Guy Mainwaring
- Syngenta CTL, Alderley Park, Cheshire SK10 4TJ, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|