1
|
Gong G, Chen X, Zhang X, Yin J, Wan W. Potential therapeutic effects of IL28RA inhibition on acute myocardial infarction through phosphorylated JAK1/STAT1 signaling pathways. Sci Rep 2024; 14:30576. [PMID: 39706854 DOI: 10.1038/s41598-024-83668-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024] Open
Abstract
While current coronary intervention therapies and surgical bypass procedures are widely utilized, the treatment of acute myocardial infarction (AMI) in the elderly continues to pose significant challenges. Following AMI, the body's immune system is activated, resulting in the release of inflammatory mediators that exacerbate myocardial damage. Interleukin 28A (IL28A) and interleukin 28B (IL28B) may play a role in immune regulation post-AMI by specifically binding to interleukin 28 receptor alpha (IL28RA). However, the precise underlying mechanisms remain incompletely understood. This study aims to investigate the levels of IL28A and IL28B following AMI, as well as the protective effects of inhibiting IL28RA expression in the context of AMI and its potential mechanisms. We analyzed serum samples from 55 patients with AMI and 41 control individuals using ELISA to evaluate the levels of IL28A and IL28B, as well as to assess their correlation with the clinical parameters of the patients. Additionally, we established a mouse model of AMI and employed intramyocardial injection of lentivirus to knock down IL28RA in the myocardium. Echocardiography was utilized to compare structural and functional changes, while HE staining was conducted to analyze the infarct area and assess changes in myocardial tissue and cell morphology. The expressions of IL28A, IL28B, IL28RA, and JAK1/STAT1 pathway-related proteins in the infarct area were compared through immunofluorescence and Western blot analysis. Finally, TUNEL staining and the BAX/Bcl2 ratio were utilized to evaluate cardiomyocyte apoptosis. The study demonstrated that serum IL28A levels in patients with AMI were significantly elevated compared to those in normal controls, whereas IL28B levels were significantly reduced. Additionally, both IL28A and IL28B levels exhibit a linear relationship with high-density lipoprotein (HDL) and body mass index (BMI). In a mouse model, cardiac function deteriorated and ventricular structural changes were observed 14 days post-myocardial infarction relative to controls. The expressions of IL28A and IL28RA were significantly upregulated in the myocardium of the infarcted area, while IL28B levels showed no significant variation. Additionally, the ratios of p-JAK1/JAK1 and p-STAT1/STAT1 were significantly increased, accompanied by a notable rise in apoptotic cells within the myocardial infarction area. Importantly, the knockdown of IL28RA expression in the infarcted region effectively mitigated these alterations. These results suggest that IL28A but not IL28B contributes to the process post-AMI and may induce cardiomyocyte apoptosis through the JAK1/STAT1 pathway in conjunction with IL28RA.
Collapse
Affiliation(s)
- Ge Gong
- Department of Geriatrics, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, 210002, China
| | - Xiangxuan Chen
- Department of Cardiology, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, China
| | - Xinghu Zhang
- Department of Geriatrics, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, 210002, China
| | - Jian Yin
- Department of Orthopedics, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, 211100, China.
- Department of Orthopedics, Jiangning Clinical College of Medicine, Kangda College, Nanjing Medical University, Nanjing, 211100, Jiangsu, China.
- Department of Orthopedics, Jiangning Clinical College of Medicine, Jiangsu Institute of Health Vocational College, Nanjing, 211100, Jiangsu, China.
| | - Wenhui Wan
- Department of Geriatrics, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, 210002, China.
| |
Collapse
|
2
|
Phenothiazine Inhibits Neuroinflammation and Inflammasome Activation Independent of Hypothermia After Ischemic Stroke. Mol Neurobiol 2021; 58:6136-6152. [PMID: 34455546 DOI: 10.1007/s12035-021-02542-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/17/2021] [Indexed: 01/01/2023]
Abstract
A depressive or hibernation-like effect of chlorpromazine and promethazine (C + P) on brain activity was reported to induce neuroprotection, with or without induced-hypothermia. However, the underlying mechanisms remain unclear. The current study evaluated the pharmacological function of C + P on the inhibition of neuroinflammatory response and inflammasome activation after ischemia/reperfusion. A total of 72 adult male Sprague-Dawley rats were subjected to 2 h middle cerebral artery occlusion (MCAO) followed by 6 or 24 h reperfusion. At the onset of reperfusion, rats received C + P (8 mg/kg) with temperature control. Brain cell death was detected by measuring CD68 and myeloperoxidase (MPO) levels. Inflammasome activation was measured by mRNA levels of NLRP3, IL-1β, and TXNIP, and protein quantities of NLRP3, IL-1β, TXNIP, cleaved-Caspase-1, and IL-18. Activation of JAK2/STAT3 pathway was detected by the phosphorylation of STAT3 (p-STAT3) and JAK2 (p-JAK2), and the co-localization of p-STAT3 and NLRP3. Activation of the p38 pathway was assessed with the protein levels of p-p38/p38. The mRNA and protein levels of HIF-1α, FoxO1, and p-FoxO1, and the co-localization of p-STAT3 with HIF-1α or FoxO1 were quantitated. As expected, C + P significantly reduced cell death and attenuated the neuroinflammatory response as determined by reduced CD68 and MPO. C + P decreased ischemia-induced inflammasome activation, shown by reduced mRNA and protein expressions of NLRP3, IL-1β, TXNIP, cleaved-Caspase-1, and IL-18. Phosphorylation of JAK2/STAT3 and p38 pathways and the co-localization of p-STAT3 with NLRP3 were also inhibited by C + P. Furthermore, mRNA levels of HIF-1α and FoxO1 were decreased in the C + P group. While C + P inhibited HIF-1α protein expression, it increased FoxO1 phosphorylation, which promoted the exclusion of FoxO1 from the nucleus and inhibited FoxO1 activity. At the same time, C + P reduced the co-localization of p-STAT3 with HIF-1α or FoxO1. In conclusion, C + P treatment conferred neuroprotection in stroke by suppressing neuroinflammation and NLRP3 inflammasome activation. The present study suggests that JAK2/STAT3/p38/HIF-1α/FoxO1 are vital regulators and potential targets for efficacious therapy following ischemic stroke.
Collapse
|
3
|
Liu A, Jia K, Liang H, Jin Q. Comprehensive analysis of autophagy-related genes and patterns of immune cell infiltration in valvular atrial fibrillation. BMC Cardiovasc Disord 2021; 21:132. [PMID: 33706714 PMCID: PMC7948357 DOI: 10.1186/s12872-021-01939-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/28/2021] [Indexed: 12/18/2022] Open
Abstract
Background The development of atrial fibrillation (AF) following valvular heart disease (VHD) remains a common disease and is associated with substantial adverse complications. However, valid molecular diagnostic and therapeutic tools for post-VHD AF have not been fully established. This study was conducted to discover the molecular mechanisms and immune microenvironment underlying AF following VHD. Methods Gene expression profiles of the GSE41177 dataset were assessed to construct a protein–protein interaction network, and then, autophagy-related hub genes were identified. In addition, to determine the functions of immune cell infiltration in valvular AF, we used the CIBERSORT algorithm to estimate the composition of 22 immune cell types in valvular heart disease. Finally, correlation analysis was carried out to identify the relationship between differentially expressed autophagy-related genes (DEARGs) and significant immune cell subpopulations to reveal potential regulatory pathways. Results A total of 153 DEARGs were identified in AF-VHD patients compared with controlled donors. Moreover, we screened the top ten hub nodes with the highest degrees through a network analysis. The ten hub nodes were considered hub genes related to AF genesis and progression. Then, we revealed six significant immune cell subpopulations through the CIBERSORT algorithm. Finally, correlation analysis was performed, and six DEARGs (BECN1, GAPDH, ATG7, MAPK3, BCL2L1, and MYC) and three immune cell subpopulations (T cells CD4 memory resting, T cells follicular helper, and neutrophils) were identified as the most significant potential regulators. Conclusion The DEARGs and immune cells identified in our study may be critical in AF development following VHD and provide potential predictive markers and therapeutic targets for determining a treatment strategy for AF patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-021-01939-1.
Collapse
Affiliation(s)
- Ao Liu
- Department of Cardiology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Shanghai Ruijin Er Road, Shanghai, 200025, China
| | - Kangni Jia
- Department of Cardiology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Shanghai Ruijin Er Road, Shanghai, 200025, China
| | - Huaibin Liang
- Department of Neurology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Jin
- Department of Cardiology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Shanghai Ruijin Er Road, Shanghai, 200025, China.
| |
Collapse
|
4
|
Gong G, Yang XX, Li Y, Geng HY, Yang ZJ, Wang LS, Kim HJ, Lu XZ. LncRNA260-specific siRNA targeting IL28RA gene inhibit cardiomyocytes hypoxic/reoxygenation injury. J Thorac Dis 2017; 9:2447-2460. [PMID: 28932550 DOI: 10.21037/jtd.2017.07.07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The interleukin 28 receptor alpha (IL28RA) gene was indicated to be associated with apoptosis. However, it was not clear whether long non-coding RNA 260 (lncRNA 260)-specific siRNA targeting IL28RA gene could inhibit hypoxic reoxygenation (H/R) cardiomyocytes injury or not. To explore the mechanisms underlying the protective effects of lncRNA260-specific siRNA-mediated inhibition of IL28RA from H/R injury in cardiomyocytes, the current research was performed. METHODS The primary neonatal rat cardiomyocytes were transfected with three different pairs of siRNA specific to lncRNA260 targeting IL28RA gene and then were undergone with the conditions simulating H/R injury. RESULTS All three groups of cardiomyocytes treated with lncRNA260-specific siRNA experienced significantly decreased levels of lactate dehydrogenase activity and apoptosis rate relative to the non-treatment and negative control groups (P<0.05), also expressed reduced levels of IL28RA, and increased levels of PI3KCG and Bcl-2/Bax (P<0.05). CONCLUSIONS The lncRNA260-specific siRNA may reduce cardiomyocyte apoptosis associated with H/R injury by decreasing levels of the IL28RA gene product and thus activating the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Ge Gong
- Department of Gerontology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xin-Xing Yang
- Department of Gerontology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yanyan Li
- Department of Gerontology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hong-Yu Geng
- Department of Gerontology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhi-Jian Yang
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lian-Sheng Wang
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hyun Jun Kim
- Department of Physiology, University of Cincinnati, Cincinnati 45267, USA
| | - Xin-Zheng Lu
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
5
|
Abstract
Objective: We demonstrate the protective effects of the siRNA-mediated inhibition of the interleukin-28 receptor alpha (IL28RA) subunit on cardiomyocytes in hypoxia/reoxygenation (H/R) injury and explore the associated mechanism. Methods: After designing and synthesizing three pairs of siRNA that effectively reduced IL28RA gene expression in vitro (siRNA-6158, siRNA-6160, and siRNA-6162), primary neonatal rat cardiomyocytes were transfected using a liposome transfection method. Six groups were included based on the siRNA that was used and the treatment simulating reperfusion injury: control group, H/R group, H/R+negative control group, H/R+siRNA-6158 group, H/R+siRNA-6160 group, and H/R+siRNA-6162 group. Cell survival and apoptosis rates were measured along with lactate dehydrogenase levels in the cell culture supernatant. Protein levels of IL28RA, phosphatidylinositol 3-kinase, catalytic subunit gamma (PI3KCG), Bcl-2, Bax, and b-actin were also measured. Results: The H/R+siRNA-6158 and H/R+siRNA-6160 groups had significantly higher survival rates and increased PI3KCG-to-b-actin and Bcl-2-to-Bax ratios than the the H/R and H/R+negative control groups (p<0.05). The H/R+siRNA-6158 and H/R+siRNA-6160 groups also exhibited reduced rates of apoptosis and reduced IL28RA-to-b-actin ratios (p<0.05). No significant difference was observed among the H/R+siRNA-6162, H/R, and H/R+negative control groups. Conclusion: IL28RA siRNA-6158 and -6160 were able to protect cardiomyocytes from H/R injury by inhibiting apoptosis. This strategy of inhibiting IL28RA gene expression may reduce reperfusion injury in the treatment of patients with acute myocardial infarction.
Collapse
|
6
|
Constanzo JD, Deng M, Rindhe S, Tang KJ, Zhang CC, Scaglioni PP. Pias1 is essential for erythroid and vascular development in the mouse embryo. Dev Biol 2016; 415:98-110. [PMID: 27155222 DOI: 10.1016/j.ydbio.2016.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/24/2016] [Accepted: 04/18/2016] [Indexed: 01/26/2023]
Abstract
The protein inhibitor of activated STAT-1 (PIAS1) is one of the few known SUMO E3 ligases. PIAS1 has been implicated in several biological processes including repression of innate immunity and DNA repair. However, PIAS1 function during development and tissue differentiation has not been studied. Here, we report that Pias1 is required for proper embryonic development. Approximately 90% of Pias1 null embryos die in utero between E10.5 and E12.5. We found significant apoptosis within the yolk sac (YS) blood vessels and concomitant loss of red blood cells (RBCs) resulting in profound anemia. In addition, Pias1 loss impairs YS angiogenesis and results in defective capillary plexus formation and blood vessel occlusions. Moreover, heart development is impaired as a result of loss of myocardium muscle mass. Accordingly, we found that Pias1 expression in primary myoblasts enhances the induction of cardiac muscle genes MyoD, Myogenin and Myomaker. PIAS1 protein regulation of cardiac gene transcription is dependent on transcription factors Myocardin and Gata-4. Finally, endothelial cell specific inactivation of Pias1 in vivo impairs YS erythrogenesis, angiogenesis and recapitulates loss of myocardium muscle mass. However, these defects are not sufficient to recapitulate the lethal phenotype of Pias1 null embryos. These findings highlight Pias1 as an essential gene for YS erythropoiesis and vasculogenesis in vivo.
Collapse
Affiliation(s)
- Jerfiz D Constanzo
- Department of Internal Medicine and Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mi Deng
- Departments of Physiology, and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Smita Rindhe
- Department of Internal Medicine and Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ke-Jing Tang
- Department of Internal Medicine and Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pulmonary Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Cheng-Cheng Zhang
- Departments of Physiology, and Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pier Paolo Scaglioni
- Department of Internal Medicine and Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
7
|
Cocchi E, Drago A, de Ronchi D, Serretti A. The genetics of vascular incidents associated with second-generation antipsychotic administration. Expert Rev Clin Pharmacol 2013; 7:75-90. [PMID: 24325740 DOI: 10.1586/17512433.2014.865515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Second-generation antipsychotics (SGA) have been associated with risk of stroke in elderly patients, but the molecular and genetic background under this association has been poorly investigated. The aim of the present study was to prioritize a list of genes with an SGA altered expression in order to characterize the genetic background of the SGA-associated stroke risk. Genes with evidence of an altered expression after SGA treatments in genome-wide investigations, both in animals and men, were identified. The Genetic Association Database (GAD) served to verify which of these genes had a proven positive association with an increased stroke risk, and along with it each evidence was tested and recorded. Seven hundred and forty five genes had evidence of a change of their expression profile after SGA administration in various studies. Nine out of them have also been significantly related to an increased strokes risk. We identified and described nine genes as potential candidates for future genetic studies aimed at identifying the genetic background of the SGA-related stroke risk. Further, we identify the molecular pathways in which these genes operate in order to provide a molecular framework to understand on which basis SGA may enhance the risk for stroke.
Collapse
Affiliation(s)
- Enrico Cocchi
- Department of Biomedical and NeuroMotor Sciences, University of Bologna, Italy
| | | | | | | |
Collapse
|