1
|
Terrado-Ortuño N, May P. Forensic DNA phenotyping: a review on SNP panels, genotyping techniques, and prediction models. Forensic Sci Res 2025; 10:owae013. [PMID: 39990695 PMCID: PMC11843099 DOI: 10.1093/fsr/owae013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/16/2023] [Indexed: 02/25/2025] Open
Abstract
In the past few years, forensic DNA phenotyping has attracted a strong interest in the forensic research. Among the increasing publications, many have focused on testing the available panels to infer biogeographical ancestry on less represented populations and understanding the genetic mechanisms underlying externally visible characteristics. However, there are currently no publications that gather all the existing panels limited to forensic DNA phenotyping and discuss the main technical limitations of the technique. In this review, we performed a bibliographic search in Scopus database of phenotyping-related literature, which resulted in a total of 48, 43, and 15 panels for biogeographical ancestry, externally visible characteristics, and both traits inference, respectively. Here we provide a list of commercial and non-commercial panels and the limitations regarding the lack of harmonization in terms of terminology (i.e., categorization and measurement of traits) and reporting, the lack of genetic knowledge and environment influence to select markers and develop panels, and the debate surrounding the selection of genotyping technologies and prediction models and algorithms. In conclusion, this review aims to be an updated guide and to present an overview of the current related literature.
Collapse
Affiliation(s)
- Nuria Terrado-Ortuño
- Luxembourg Centre for Systems Biomedicine, Genome Analysis, Bioinformatics Core, Esch-sur-Alzette, Luxembourg
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, Genome Analysis, Bioinformatics Core, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
2
|
Becher D, Jmel H, Kheriji N, Sarno S, Kefi R. Genetic landscape of forensic DNA phenotyping markers among Mediterranean populations. Forensic Sci Int 2024; 354:111906. [PMID: 38128201 DOI: 10.1016/j.forsciint.2023.111906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
Forensic DNA Phenotyping can reveal the appearance of an unknown individual by predicting the External Visible Characteristics (EVC) from DNA obtained at the crime scene. Our aim is to characterize the genetic landscape of Human identification markers responsible for EVC among Mediterranean populations compared to other worldwide groups. We conducted an exhaustive search for genes involved in EVC variation. Then, variants located on these genes were extracted from public genotypic data of Mediterranean, American, African and East Asiatic populations. The genetic landscape of these Human identification markers, their allelic distribution and admixture analyses, were determined using plink, R and ADMIXTURE softwares. Our results showed that the Mediterranean populations appear close to the Mexican populations and distinguished from sub Saharan African populations living in the USA and from East Asiatic populations. We highlighted a total of 103454 common variants shared between the studied populations and among them, 25 common variants associated with EVC. Interestingly, genotype frequencies results showed that the rs17646946, rs13016869, rs977588, rs1805008 and rs2240751 variants located respectively in the TCHH, PRKCE, OCA2, MC1R and MFSD12 genes are significantly different between the Mediterranean and Asiatic populations. The genotype frequencies of the variants rs977589 and rs7179994 located in the OCA2 gene, and of rs12913832 and rs2240751 located respectively in HERC2 and MFSD12 genes are significantly different between the Mediterranean and American populations. Our work generates a large number of EVC variants that could be a valuable resource for future studies in the forensic field.
Collapse
Affiliation(s)
- Dorra Becher
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, BP 74, 13 Place Pasteur, Tunis 1002, Tunisia; Directorate of Technical and Scientific Police, Sub-Directorate of Forensic and Scientific Laboratories, Tunis,Tunisia; University of Carthage, National Institute of Applied Science and Technology, Tunis, Tunisia
| | - Haifa Jmel
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, BP 74, 13 Place Pasteur, Tunis 1002, Tunisia; Genetic Typing Service, Institut Pasteur de Tunis, BP 74, 13 Place Pasteur, Tunis 1002, Tunisia; University of Tunis El Manar, 2092 El Manar I, Tunis, Tunisia
| | - Nadia Kheriji
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, BP 74, 13 Place Pasteur, Tunis 1002, Tunisia; University of Tunis El Manar, 2092 El Manar I, Tunis, Tunisia
| | - Stefania Sarno
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Rym Kefi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, BP 74, 13 Place Pasteur, Tunis 1002, Tunisia; Genetic Typing Service, Institut Pasteur de Tunis, BP 74, 13 Place Pasteur, Tunis 1002, Tunisia; University of Tunis El Manar, 2092 El Manar I, Tunis, Tunisia.
| |
Collapse
|
3
|
Fridman C, Ferreira MA, Marano LA, Forlenza BS. Analysis of genetic polymorphisms associated with the presence of freckles for phenotypic prediction. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2022. [DOI: 10.1016/j.fsigss.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Carratto TMT, Marcorin L, do Valle-Silva G, de Oliveira MLG, Donadi EA, Simões AL, Castelli EC, Mendes-Junior CT. Prediction of eye and hair pigmentation phenotypes using the HIrisPlex system in a Brazilian admixed population sample. Int J Legal Med 2021; 135:1329-1339. [PMID: 33884487 DOI: 10.1007/s00414-021-02554-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/26/2021] [Indexed: 01/23/2023]
Abstract
Human pigmentation is a complex trait, probably involving more than 100 genes. Predicting phenotypes using SNPs present in those genes is important for forensic purpose. For this, the HIrisPlex tool was developed for eye and hair color prediction, with both models achieving high accuracy among Europeans. Its evaluation in admixed populations is important, since they present a higher frequency of intermediate phenotypes, and HIrisPlex has demonstrated limitations in such predictions; therefore, the performance of this tool may be impaired in such populations. Here, we evaluate the set of 24 markers from the HIrisPlex system in 328 individuals from Ribeirão Preto (SP) region, predicting eye and hair color and comparing the predictions with their real phenotypes. We used the HaloPlex Target Enrichment System and MiSeq Personal Sequencer platform for massively parallel sequencing. The prediction of eye and hair color was accomplished by the HIrisPlex online tool, using the default prediction settings. Ancestry was estimated using the SNPforID 34-plex to observe if and how an individual's ancestry background would affect predictions in this admixed sample. Our sample presented major European ancestry (70.5%), followed by African (21.1%) and Native American/East Asian (8.4%). HIrisPlex presented an overall sensitivity of 0.691 for hair color prediction, with sensitivities ranging from 0.547 to 0.782. The lowest sensitivity was observed for individuals with black hair, who present a reduced European contribution (48.4%). For eye color prediction, the overall sensitivity was 0.741, with sensitivities higher than 0.85 for blue and brown eyes, although it failed in predicting intermediate eye color. Such struggle in predicting this phenotype category is in accordance with what has been seen in previous studies involving HIrisPlex. Individuals with brown eye color are more admixed, with European ancestry decreasing to 62.6%; notwithstanding that, sensitivity for brown eyes was almost 100%. Overall sensitivity increases to 0.791 when a 0.7 threshold is set, though 12.5% of the individuals become undefined. When combining eye and hair prediction, hit rates between 51.3 and 68.9% were achieved. Despite the difficulties with intermediate phenotypes, we have shown that HIrisPlex results can be very helpful when interpreted with caution.
Collapse
Affiliation(s)
- Thássia Mayra Telles Carratto
- Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, SP, 14040-901, Ribeirão Preto, Brazil
| | - Letícia Marcorin
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Guilherme do Valle-Silva
- Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, SP, 14040-901, Ribeirão Preto, Brazil
| | | | - Eduardo Antônio Donadi
- Divisão de Imunologia Clínica, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14048-900, Brazil
| | - Aguinaldo Luiz Simões
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Erick C Castelli
- Departamento de Patologia, Faculdade de Medicina de Botucatu, Unesp - Universidade Estadual Paulista, Botucatu, SP, 18618-970, Brazil
| | - Celso Teixeira Mendes-Junior
- Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, SP, 14040-901, Ribeirão Preto, Brazil.
| |
Collapse
|
5
|
Zorina-Lichtenwalter K, Lichtenwalter RN, Zaykin DV, Parisien M, Gravel S, Bortsov A, Diatchenko L. A study in scarlet: MC1R as the main predictor of red hair and exemplar of the flip-flop effect. Hum Mol Genet 2020; 28:2093-2106. [PMID: 30657907 DOI: 10.1093/hmg/ddz018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 12/11/2022] Open
Abstract
Genetic variation in melanocortin-1 receptor (MC1R) is a known contributor to disease-free red hair in humans. Three loss-of-function single-nucleotide variants (rs1805007, rs1805008 and rs1805009) have been established as strongly correlated with red hair. The contribution of other loss-of-function MC1R variants (in particular rs1805005, rs2228479 and rs885479) and the extent to which other genetic loci are involved in red hair colour is less well understood. Here, we used the UK Biobank cohort to capture a comprehensive list of MC1R variants contributing to red hair colour. We report a correlation with red hair for both strong-effect variants (rs1805007, rs1805008 and rs1805009) and weak-effect variants (rs1805005, rs2228479 and rs885479) and show that their coefficients differ by two orders of magnitude. On the haplotype level, both strong- and weak-effect variants contribute to the red hair phenotype, but when considered individually, weak-effect variants show a reverse, negative association with red hair. The reversal of association direction in the single-variant analysis is facilitated by a distinguishing structure of MC1R, in which loss-of-function variants are never found to co-occur on the same haplotype. The other previously reported hair colour genes' variants do not substantially improve the MC1R red hair colour predictive model. Our best model for predicting red versus other hair colours yields an unparalleled area under the receiver operating characteristic of 0.96 using only MC1R variants. In summary, we present a comprehensive statistically derived characterization of the role of MC1R variants in red hair colour and offer a powerful, economical and parsimonious model that achieves unsurpassed performance.
Collapse
Affiliation(s)
| | - Ryan N Lichtenwalter
- Anesthesia and the Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Dima V Zaykin
- Biostatistics, National Institutes of Health, Research Triangle Park, NC, USA
| | - Marc Parisien
- Anesthesia and the Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Simon Gravel
- Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, Canada
| | - Andrey Bortsov
- Department of Anesthesiology, Center for Translational Pain Medicine, Durham, NC, USA
| | - Luda Diatchenko
- Anesthesia and the Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| |
Collapse
|
6
|
Bradbury C, Köttgen A, Staubach F. Off-target phenotypes in forensic DNA phenotyping and biogeographic ancestry inference: A resource. Forensic Sci Int Genet 2018; 38:93-104. [PMID: 30391626 DOI: 10.1016/j.fsigen.2018.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/27/2018] [Accepted: 10/13/2018] [Indexed: 01/04/2023]
Abstract
With recent advances in DNA sequencing technologies it has become feasible and cost effective to genotype larger marker sets for forensic purposes. Two technologies that make use of the larger marker sets have come into focus in forensic research and applications; inference of biogeographic ancestry (BGA) and forensic DNA phenotyping (FDP). These methods hold the promise to reveal information about a yet unknown perpetrator from a DNA sample. In contrast, DNA-profiling, that is a standard practice in case work, relies on matching DNA-profiles between crime scene material and suspects on a database of DNA-profiles. Markers for DNA-profiling were developed under the premise to reveal as little additional information about the human source of the profile as possible, the rationale being that personal privacy rights have to be balanced against the public interest in solving a crime. The same argument holds for markers used in BGA and FDP; these markers might also reveal information on off-target phenotypes (OTPs), that go beyond BGA and the phenotypes targeted in FDP. In particular, health related OTPs might shift the balance between privacy protection and public interest. However, to our knowledge, there is currently no convenient resource available to incorporate knowledge on OTPs in BGA and FDP assay design and application. In order to provide such a resource, we performed a systematic search for OTPs associated with a comprehensive set of markers (1766 SNPs) used or suggested to be used for BGA inference and FDP. In this set, we identified a relatively small number of 27 SNPs (1.53%) that convey information on diverse health related OTPs such as cancer risk, induced asthma, or risk of alcoholism. Some of these SNPs are commonly used for FDP and BGA across different marker sets. We conclude that the effects of SNP markers used in FDP and BGA on OTPs are currently limited, with few exceptions that should be considered in a balanced decision on assay design and application.
Collapse
Affiliation(s)
- Cedric Bradbury
- University College Freiburg, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Dept. of Biometry, Epidemiology and Medical Bioinformatics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Fabian Staubach
- Institute of Biology I, Dept. of Evolutionary Biology and Ecology, Albert-Ludwigs-University Freiburg, Freiburg, Germany.
| |
Collapse
|