1
|
Tantoush F, Allsup D, Naylor-Adamson L, Voncken F, Caserta S. Ibrutinib enhances the bias of T cell responses towards staphylococcal superantigens sustaining inflammation in chronic lymphocytic leukaemia. Front Immunol 2025; 16:1531059. [PMID: 40207214 PMCID: PMC11978837 DOI: 10.3389/fimmu.2025.1531059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/25/2025] [Indexed: 04/11/2025] Open
Abstract
Chronic lymphocytic leukaemia (CLL) is an uncurable haematological malignancy and is associated with significant infection morbidity. Bruton's tyrosine-kinase inhibitors (e.g., ibrutinib) have improved disease outcomes, but severe infections and poor immunization responses afflict patients. Recently, carriage of the endemic Staphylococcus aureus (SA) was associated with lymphocytosis and decreased survival in CLL patients. We then hypothesized that exposure to staphylococcal superantigens (SAgs), known to promote hyper-inflammatory responses, impairs immunity and increases severe infection risk in CLL patients. Herein, we evaluate the reactivity of T cells and CLL cells to SA SAgs, in cultures derived from ibrutinib-treated and untreated CLL patients. We found that ibrutinib-treated patients had less naive CD8+ T cells (p=0.0348), more checkpoint receptor (TIM-3) expression in memory T cells (p<0.0001), and lower IFNγ/cytokine responses in patient T cells (p≤0.0298). Exposure to SA SAg further increased the accumulation of memory T cells with an exhaustion-phenotype, preferentially in cultures derived from ibrutinib-treated patients (p≤0.0350). Nevertheless, staphylococcal SAgs could not induce regulatory T cells from CLL patients inasmuch as healthy donors (p≤0.0461) and this was associated with accumulation of inflammatory T cells. Significantly, SAg-exposure enhanced inflammatory activation of CLL tumour cells, which acquired CD38, CD40, CD86, while downregulating CD27 (p≤0.005), even in cultures from ibrutinib-treated CLL patients. Thus, we suggest that environmental SAg-exposure promotes the accumulation of pseudo-exhausted T cells, which induce/sustain tumour cell activation, not counteracted by ibrutinib. Our study critically helps understand the chronic inflammatory milieu in CLL patients, with implications for infection morbidity, disease aetiology and future interventions.
Collapse
Affiliation(s)
- Fisal Tantoush
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, Faculty of Health Sciences, University of Hull, Hull, United Kingdom
| | - David Allsup
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, Faculty of Health Sciences, University of Hull, Hull, United Kingdom
- Department of Haematology, Castle Hill Hospital, Hull University Teaching Hospital NHS Trust, Hull, United Kingdom
| | - Leigh Naylor-Adamson
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, Faculty of Health Sciences, University of Hull, Hull, United Kingdom
| | - Frank Voncken
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, Faculty of Health Sciences, University of Hull, Hull, United Kingdom
| | - Stefano Caserta
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, Faculty of Health Sciences, University of Hull, Hull, United Kingdom
| |
Collapse
|
2
|
Ayoub M, Susin SA, Bauvois B. Tumor Cell Survival Factors and Angiogenesis in Chronic Lymphocytic Leukemia: How Hot Is the Link? Cancers (Basel) 2024; 17:72. [PMID: 39796700 PMCID: PMC11719013 DOI: 10.3390/cancers17010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of neoplastic CD5+/CD19+ B lymphocytes in the blood. These cells migrate to and proliferate in the bone marrow and lymphoid tissues. Despite the development of new therapies for CLL, drug resistance and disease relapse still occur; novel treatment approaches are therefore still needed. Inhibition of the angiogenesis involved in the progression of CLL might be a relevant therapeutic strategy. The literature data indicate that vascular endothelial growth factor, angiopoietin-2, and matrix metalloproteinase-9 are pro-angiogenic factors in CLL. A number of other CLL factors might have pro-angiogenic activity: fibroblast growth factor-2, certain chemokines (such as CXCL-12 and CXCL-2), tumor necrosis factor-α, insulin-like growth factor-1, neutrophil gelatinase-associated lipocalin, and progranulin. All these molecules contribute to the survival, proliferation, and migration of CLL cells. Here, we review the literature on these factors' respective expression profiles and roles in CLL. We also summarize the main results of preclinical and clinical trials of novel agents targeting most of these molecules in a CLL setting. Through the eradication of leukemic cells and the inhibition of angiogenesis, these therapeutic approaches might alter the course of CLL.
Collapse
Affiliation(s)
| | | | - Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; (M.A.); (S.A.S.)
| |
Collapse
|
3
|
Domagala M, Ysebaert L, Ligat L, Lopez F, Fournié JJ, Laurent C, Poupot M. IL-10 Rescues CLL Survival through Repolarization of Inflammatory Nurse-like Cells. Cancers (Basel) 2021; 14:cancers14010016. [PMID: 35008174 PMCID: PMC8750769 DOI: 10.3390/cancers14010016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/04/2022] Open
Abstract
Simple Summary In in vitro co-cultures of CLL cells and nurse-like cells (NLC), protection against apoptosis is only provided by M2-like NLC, and not M1-like NLC. In this study, we propose that fine-tuning of NLC polarization (and therefore survival of leukemic cells) is dictated by a balance between IL-10 and TNF. Abstract Tumor-associated macrophages (TAMs) in chronic lymphocytic leukemia (CLL) are also called nurse-like cells (NLC), and confer survival signals through the release of soluble factors and cellular contacts. While in most patient samples the presence of NLC in co-cultures guarantees high viability of leukemic cells in vitro, in some cases this protective effect is absent. These macrophages are characterized by an “M1-like phenotype”. We show here that their reprogramming towards an M2-like phenotype (tumor-supportive) with IL-10 leads to an increase in leukemic cell survival. Inflammatory cytokines, such as TNF, are also able to depolarize M2-type protective NLC (decreasing CLL cell viability), an effect which is countered by IL-10 or blocking antibodies. Interestingly, both IL-10 and TNF are implied in the pathophysiology of CLL and their elevated level is associated with bad prognosis. We propose that the molecular balance between these two cytokines in CLL niches plays an important role in the maintenance of the protective phenotype of NLCs, and therefore in the survival of CLL cells.
Collapse
Affiliation(s)
- Marcin Domagala
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (L.Y.); (L.L.); (F.L.); (J.-J.F.); (C.L.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
| | - Loïc Ysebaert
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (L.Y.); (L.L.); (F.L.); (J.-J.F.); (C.L.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
- IUCT-O, 31000 Toulouse, France
| | - Laetitia Ligat
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (L.Y.); (L.L.); (F.L.); (J.-J.F.); (C.L.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
| | - Frederic Lopez
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (L.Y.); (L.L.); (F.L.); (J.-J.F.); (C.L.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
| | - Jean-Jacques Fournié
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (L.Y.); (L.L.); (F.L.); (J.-J.F.); (C.L.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
| | - Camille Laurent
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (L.Y.); (L.L.); (F.L.); (J.-J.F.); (C.L.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
- IUCT-O, 31000 Toulouse, France
| | - Mary Poupot
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (L.Y.); (L.L.); (F.L.); (J.-J.F.); (C.L.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
- Correspondence: ; Tel.: +33-582741662
| |
Collapse
|
4
|
Chronic lymphocytic leukemia B-cell-derived TNFα impairs bone marrow myelopoiesis. iScience 2020; 24:101994. [PMID: 33458625 PMCID: PMC7797930 DOI: 10.1016/j.isci.2020.101994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/15/2020] [Accepted: 12/22/2020] [Indexed: 12/22/2022] Open
Abstract
TNFα is implicated in chronic lymphocytic leukemia (CLL) immunosuppression and disease progression. TNFα is constitutively produced by CLL B cells and is a negative regulator of bone marrow (BM) myelopoiesis. Here, we show that co-culture of CLL B cells with purified normal human hematopoietic stem and progenitor cells (HSPCs) directly altered protein levels of the myeloid and erythroid cell fate determinants PU.1 and GATA-2 at the single-cell level within transitional HSPC subsets, mimicking ex vivo expression patterns. Physical separation of CLL cells from control HSPCs or neutralizing TNFα abrogated upregulation of PU.1, yet restoration of GATA-2 required TNFα neutralization, suggesting both cell contact and soluble-factor-mediated regulation. We further show that CLL patient BM myeloid progenitors are diminished in frequency and function, an effect recapitulated by chronic exposure of control HSPCs to low-dose TNFα. These findings implicate CLL B-cell-derived TNFα in impaired BM myelopoiesis. CLL patient BM HSPCs exhibit aberrant molecular and functional characteristics CLL B-cell-derived TNFα upregulates PU.1 and GATA-2 in BM HSPCs The effects of CLL B-cell-derived TNFα are reversible upon TNFα neutralization Chronic TNFα exposure in vitro recapitulates ex vivo HSPC functional deficiencies
Collapse
|
5
|
Erythrodermic psoriasis de novo versus skin lesions in chronic lymphocytic leukaemia. Postepy Dermatol Alergol 2020; 37:277-279. [PMID: 32489368 PMCID: PMC7262804 DOI: 10.5114/ada.2020.94849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/11/2019] [Indexed: 11/18/2022] Open
|
6
|
Allegra A, Musolino C, Tonacci A, Pioggia G, Casciaro M, Gangemi S. Clinico-Biological Implications of Modified Levels of Cytokines in Chronic Lymphocytic Leukemia: A Possible Therapeutic Role. Cancers (Basel) 2020; 12:cancers12020524. [PMID: 32102441 PMCID: PMC7072434 DOI: 10.3390/cancers12020524] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/08/2020] [Accepted: 02/22/2020] [Indexed: 12/19/2022] Open
Abstract
B-cell chronic lymphocytic leukemia (B-CLL) is the main cause of mortality among hematologic diseases in Western nations. B-CLL is correlated with an intense alteration of the immune system. The altered functions of innate immune elements and adaptive immune factors are interconnected in B-CLL and are decisive for its onset, evolution, and therapeutic response. Modifications in the cytokine balance could support the growth of the leukemic clone via a modulation of cellular proliferation and apoptosis, as some cytokines have been reported to be able to affect the life of B-CLL cells in vivo. In this review, we will examine the role played by cytokines in the cellular dynamics of B-CLL patients, interpret the contradictions sometimes present in the literature regarding their action, and evaluate the possibility of manipulating their production in order to intervene in the natural history of the disease.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Haematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (A.A.); (C.M.)
| | - Caterina Musolino
- Division of Haematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy; (A.A.); (C.M.)
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy;
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy;
| | - Marco Casciaro
- Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
- Correspondence:
| |
Collapse
|
7
|
Manso BA, Zhang H, Mikkelson MG, Gwin KA, Secreto CR, Ding W, Parikh SA, Kay NE, Medina KL. Bone marrow hematopoietic dysfunction in untreated chronic lymphocytic leukemia patients. Leukemia 2018; 33:638-652. [PMID: 30291337 DOI: 10.1038/s41375-018-0280-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 08/17/2018] [Accepted: 09/12/2018] [Indexed: 12/16/2022]
Abstract
The consequences of immune dysfunction in B-chronic lymphocytic leukemia (CLL) likely relate to the incidence of serious recurrent infections and second malignancies that plague CLL patients. The well-described immune abnormalities are not able to consistently explain these complications. Here, we report bone marrow (BM) hematopoietic dysfunction in early and late stage untreated CLL patients. Numbers of CD34+ BM hematopoietic progenitors responsive in standard colony-forming unit (CFU) assays, including CFU-GM/GEMM and CFU-E, were significantly reduced. Flow cytometry revealed corresponding reductions in frequencies of all hematopoietic stem and progenitor cell (HSPC) subsets assessed in CLL patient marrow. Consistent with the reduction in HSPCs, BM resident monocytes and natural killer cells were reduced, a deficiency recapitulated in blood. Finally, we report increases in protein levels of the transcriptional regulators HIF-1α, GATA-1, PU.1, and GATA-2 in CLL patient BM, providing molecular insight into the basis of HSPC dysfunction. Importantly, PU.1 and GATA-2 were rapidly increased when healthy HSPCs were exposed in vitro to TNFα, a cytokine constitutively produced by CLL B cells. Together, these findings reveal BM hematopoietic dysfunction in untreated CLL patients that provides new insight into the etiology of the complex immunodeficiency state in CLL.
Collapse
Affiliation(s)
- Bryce A Manso
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Henan Zhang
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Kimberly A Gwin
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Wei Ding
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sameer A Parikh
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Neil E Kay
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kay L Medina
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
8
|
Dürr C, Hanna BS, Schulz A, Lucas F, Zucknick M, Benner A, Clear A, Ohl S, Öztürk S, Zenz T, Stilgenbauer S, Li-Weber M, Krammer PH, Gribben JG, Lichter P, Seiffert M. Tumor necrosis factor receptor signaling is a driver of chronic lymphocytic leukemia that can be therapeutically targeted by the flavonoid wogonin. Haematologica 2018; 103:688-697. [PMID: 29326123 PMCID: PMC5865430 DOI: 10.3324/haematol.2017.177808] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/11/2018] [Indexed: 12/19/2022] Open
Abstract
Chronic lymphocytic leukemia is a malignancy of mature B cells that strongly depend on microenvironmental factors, and their deprivation has been identified as a promising treatment approach for this incurable disease. Cytokine array screening of 247 chronic lymphocytic leukemia serum samples revealed elevated levels of tumor necrosis factor (TNF) receptor-1 which were associated with poor clinical outcome. We detected a microenvironment-induced expression of TNF receptor-1 in chronic lymphocytic leukemia cells in vitro, and an aberrantly high expression of this receptor in the proliferation centers of patients’ lymph nodes. Stimulation of TNF receptor-1 with TNF-α enhanced nuclear factor κ-light-chain-enhancer of activated B cells (NFκB) activity and viability of chronic lymphocytic leukemia cells, which was inhibited by wogonin. The therapeutic effects of wogonin were analyzed in mice after adoptive transfer of Eμ-T-cell leukemia 1 (TCL1) leukemic cells. Wogonin treatment prevented leukemia development when given early after transplantation. The treatment of full-blown leukemia resulted in the loss of the TNF receptor-1 on chronic lymphocytic leukemia cells and their mobilization to blood. Targeting TNF receptor-1 signaling is therefore proposed for the treatment of chronic lymphocytic leukemia.
Collapse
Affiliation(s)
- Claudia Dürr
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bola S Hanna
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Angela Schulz
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fabienne Lucas
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, UK
| | - Manuela Zucknick
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Oslo Center for Biostatistics and Epidemiology; Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrew Clear
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, UK
| | - Sibylle Ohl
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Selcen Öztürk
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thorsten Zenz
- Molecular Therapy in Haematology and Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), and Department of Medicine V, University Hospital Heidelberg, Germany
| | | | - Min Li-Weber
- Division of Immunogenetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter H Krammer
- Division of Immunogenetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - John G Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, UK
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Seiffert
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
9
|
Genetic Variability of Tumor Necrosis Factor Receptors Type I and II in Lymphoproliferative Diseases in the Serbian Population –. ACTA FACULTATIS MEDICAE NAISSENSIS 2017. [DOI: 10.1515/afmnai-2017-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Summary
TNF-alpha and LT-alpha are involved in the pathogenesis of established lymphoproliferative diseases. Both molecules bind to TNFRI and TNFRII. TNFRI is the major mediator of the TNF pro-apoptotic and proliferative effects and TNFRII might enhance these effects. TNF receptors I and II are normally present on hematopoetic cells. TNFR II is characteristic only on immune cells, especially on peripheral leukocytes. Neoplastic B cells and activated B lymphocytes have increased expression of surface TNFR I. In this study, we have analyzed polymorphisms in the TNFRI gene (TNFRI+36A/G SNP) and polymorphism in the TNFRII gene (TNFRII + 676 T/G). All these polymorphisms were studied in patients with chronic lymphocytic leukemia (CLL), patients with non-Hodkin’s lymphoma (NHL) and in healthy controls. The present study was undertaken to investigate the genetic association of these polymorphisms with lymproproliferative disease development.
A total of 68 patients (49-CLL, 19-HNL) were diagnosed at the Clinic of Hematology, Clinical centre Niš, Serbia, using clinical findings and conventional morphological, cytochemical and immunological tests. Genomic DNA was isolated from isolated lymphocytes by proteinase K/phenol/chloroform method, and genotyped for TNFR I (A36G) and TNFR II (T676G) using the PCR-RFLP method.
No significant differences in allele frequencies of TNFR1 polymorphism were found between the patients with lymphoproliferative disease and healthy individuals. In a group of healthy individuals, the study has revealed for the first time significantly higher TNFRI G/G genotype compared to the patients with lymphoproliferative disease (χ22 = 5.66; p = 0.017). Also, we reported the implication of TNFRII T allele in NHL pathogenesis, respectively (χ22 = 10.77; p = 0.001; Mantel-Haenszel: χ22 = 10.64; p = 0.0011).
Our data showed that TNFRII T676G polymorphisms have an important role in NHL pathogenesis but not in CLL patients. A/A polymorphism in TNFRI was not associated with CLL and NHL patients in the Serbian population. Investigated polymorphisms on TNFR genes in leukemic cells of CLL and NHL patients have not showed a correlation with increased proliferation of B lymphocytes and increased expression of TNF R II on B CLL lymphocytes.
Collapse
|
10
|
CD84 mediates CLL-microenvironment interactions. Oncogene 2016; 36:628-638. [PMID: 27452524 DOI: 10.1038/onc.2016.238] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 05/04/2016] [Accepted: 06/01/2016] [Indexed: 12/21/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is a malignant disease of small mature lymphocytes. Signals from the CLL microenvironment promote progression of the disease and induce drug resistance. This phenomenon is largely dependent on direct contact between the malignant B cells and stromal cells. CD84 belongs to the signaling lymphocyte activation molecule family of immunoreceptors, which self-associates, forming an orthogonal homophilic dimer. We therefore hypothesized that CD84 may bridge between CLL cells and their microenvironment, promoting cell survival. Our in vitro results show that CD84 expressed on CLL cells interact with CD84 expressed on cells in their microenvironment, inducing cell survival in both sides. Blocking CD84 in vitro and in vivo disrupt the interaction of CLL cells with their microenvironment, resulting in induced cell death. Thus, our findings suggest novel therapeutic strategies based on the blockade of this CD84-dependent survival pathway.
Collapse
|
11
|
Abstract
Acute leukaemias are a group of malignancies characterised by the invasion of the bone marrow by immature haematopoietic precursors and differentiation arrest at various maturation steps. Multiplicity of intrinsic and extrinsic factors influences the transformation and progression of leukaemia. The intrinsic factors encompass genetic alterations of cellular pathways leading to the activation of, among others, inflammatory pathways (such as nuclear factor kappa B). The extrinsic components include, among others, the inflammatory pathways activated by the bone marrow microenvironment and include chemokines, cytokines and adhesion molecules. In this chapter, we review the role of inflammatory processes in the transformation, survival and proliferation of leukaemias, particularly the role of nuclear factor kappa B and its downstream signalling in leukaemias and the novel therapeutic strategies that exploit potentially unique properties of inflammatory signalling that offer interesting options for future therapeutic interventions.
Collapse
|
12
|
Hus I, Bojarska-Junak A, Chocholska S, Tomczak W, Woś J, Dmoszyńska A, Roliński J. Th17/IL-17A might play a protective role in chronic lymphocytic leukemia immunity. PLoS One 2013; 8:e78091. [PMID: 24223764 PMCID: PMC3815235 DOI: 10.1371/journal.pone.0078091] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/06/2013] [Indexed: 12/12/2022] Open
Abstract
Th17 cells, a recently discovered subset of T helper cells that secrete IL-17A, can affect the inflammation process autoimmune and cancer diseases development. The purpose of this study was to evaluate the role of Th17 cells and IL17A in biology of CLL. The study group included 294 untreated CLL patients in different clinical stages. Here, we show that higher Th17 and IL-17A values were associated with less advanced clinical stage of CLL. Th17 cells' percentages in PB were lower in patients who died due to CLL during follow-up due to CLL (as compared to surviving patients) and in patients responding to first-line therapy with fludarabine-based regimens (as compared to non-responders). IL-17A inversely correlated with the time from CLL diagnosis to the start of therapy and was lower in patients who required treatment during follow-up. Th-17 and IL-17A values were lower in patients with adverse prognostic factors (17p and 11q deletion, CD38 and ZAP-70 expression). CLL patients with detectable IL-17A mRNA in T cells were in Rai Stage 0 and negative for both ZAP-70 and CD38 expression. Th17 percentages positively correlated with iNKT and adversely with Treg cells. The results of this study suggest that Th17 may play a beneficial role in CLL immunity.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Case-Control Studies
- Cells, Cultured
- Female
- Gene Expression
- Humans
- Immunity, Cellular
- Interleukin-17/physiology
- Kaplan-Meier Estimate
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Male
- Middle Aged
- Neoplasm Staging
- Prognosis
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Treatment Outcome
- Vidarabine/administration & dosage
- Vidarabine/analogs & derivatives
Collapse
Affiliation(s)
- Iwona Hus
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | | | - Sylwia Chocholska
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Waldemar Tomczak
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Justyna Woś
- Department of Clinical Immunology, Medical University of Lublin, Lublin, Poland
| | - Anna Dmoszyńska
- Department of Haematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Jacek Roliński
- Department of Clinical Immunology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
13
|
Lech-Maranda E, Mlynarski W, Grzybowska-Izydorczyk O, Borowiec M, Pastorczak A, Cebula-Obrzut B, Klimkiewicz-Wojciechowska G, Wcislo M, Majewski M, Kotkowska A, Robak T, Warzocha K. Polymorphisms of TNF and IL-10 genes and clinical outcome of patients with chronic lymphocytic leukemia. Genes Chromosomes Cancer 2012; 52:287-96. [PMID: 23225254 DOI: 10.1002/gcc.22028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 10/08/2012] [Indexed: 01/14/2023] Open
Abstract
Genetic variations in tumor necrosis factor (TNF) and interleukin-10 (IL-10) were reported to influence susceptibility to and outcome of patients with non-Hodgkin lymphoma. Therefore, we investigated whether single nucleotide polymorphisms in TNF and IL-10 may play a role in the clinical course of patients with chronic lymphocytic leukemia (CLL). TNF-308G>A, IL-10-3575T>A, and IL-10-1082A>G seem to be functionally relevant, were genotyped in 292 previously untreated patients with CLL. The control group consisted of 192 randomly selected blood donors. The patients carrying TNF-308GG and IL-10-1082AA genotypes presented a higher 3-year treatment-free survival (56.6 vs. 40.6%, P = 0.05) as well as a 10-year overall survival (OS) rates (92.3 vs. 57.6%, P = 0.005) than those with other TNF-308 and IL-10-1082 genotype combinations. Multivariate analysis demonstrated the Rai stage (P = 0.0002), IGHV mutation status (P = 0.01), TNF-308G>A (P = 0.03), and TNF/IL-10 polymorphism-based risk groups (P = 0.05) to be independent factors predicting OS. When the mutated IGHV patients were analyzed, the homozygotes TNF-308GG and IL-10-1082AA presented a higher 10-year OS rate than those carrying other TNF-308 and IL-10-1082 genotypes (100 vs. 67.7%, P = 0.01). In the unmutated IGHV patients, only the TNF-308G>A polymorphism influenced OS. The genetic variations in TNF and IL-10 genes work as independent predictors of survival and may play a role in the clinical course of CLL. It suggests inherited ability of the host to shift the balance between the Th1 and Th2 response, which in turn might contribute to the pathogenesis and prognosis of B-cell malignancies.
Collapse
Affiliation(s)
- Ewa Lech-Maranda
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Serum tumor necrosis factor-α and interleukin-10 levels as markers to predict outcome of patients with chronic lymphocytic leukemia in different risk groups defined by the IGHV mutation status. Arch Immunol Ther Exp (Warsz) 2012; 60:477-86. [PMID: 22945689 DOI: 10.1007/s00005-012-0197-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 07/23/2012] [Indexed: 10/27/2022]
Abstract
Tumor necrosis factor (TNF)-α and interleukin (IL)-10 are cytokines involved in the balance between cell-mediated and humoral immunity. We investigated whether serum TNF-α and IL-10 levels have any impact on clinical outcome of patients with chronic lymphocytic leukemia (CLL). TNF-α and IL-10 levels were determined in the serum of 160 CLL patients at the time of diagnosis. The cytokine low-risk group consisted of patients with either TNF-α and IL-10 levels below their medians or those with only one elevated parameter. Both TNF-α and IL-10 levels greater than or equal to their medians defined the cytokine high-risk group. The high-risk patients presented a shorter 3-year treatment-free survival (TFS) than low-risk subjects (15 vs. 69.6 %; p < 0.0001). The high-risk group (p = 0.0002) along with high leukocyte count (p < 0.0001) and unmutated immunoglobulin heavy-chain variable region genes (p < 0.0001) independently predict the risk of progression in patients with Rai stage 0-II. Furthermore, the high-risk group had an independent prognostic impact on shorter TFS both in patients with mutated (24.3 vs. 78.2 %; p < 0.0001) and unmutated (8.2 vs. 49 %; p = 0.004) immunoglobulin heavy-chain variable region genes (IGHV) as compared to the low-risk group. The estimated 5-year overall survival (OS) of high-risk patients was shorter than those in the low-risk group (83.3 vs. 97.1 %; p = 0.003). Multivariate analysis demonstrated the cytokine high-risk group (p = 0.02) followed by Rai stage III-IV (p = 0.048) to be independent factors predicting shorter OS. At diagnosis, TNF-α and IL-10 may predict the outcome of patients with CLL.
Collapse
|
15
|
Abstract
Chronic lymphocytic leukemia (CLL) is a clinically heterogeneous disease, as some patients progress rapidly toward the more advanced studies, whereas others survive for a long period without the need for treatment. This heterogeneity of clinical course was somehow unexplained until studies on the CLL cell features disclosed that the CLL clones were heterogeneous and were characterized by different phenotypic and genotypic features in the different patients. On the basis of these observations, it was determined in retrospective studies that clones characterized by unmutated IGHV genes, and/or CD38 and/or ZAP-70 expression conferred a more severe prognosis to the CLL patients. Here, we present data on prospective studies carried out on Binet A-stage patients, in whom the markers were determined at diagnosis and their predictive value was assessed in comparison with chromosomal abnormalities and gene expression or micro RNA profiles. In addition, hypothesis on the potential pathogenetic role of these markers will be presented.
Collapse
|
16
|
Polzonetti V, Carpi FM, Micozzi D, Pucciarelli S, Vincenzetti S, Napolioni V. Population variability in CD38 activity: correlation with age and significant effect of TNF-α -308G>A and CD38 184C>G SNPs. Mol Genet Metab 2012; 105:502-7. [PMID: 22236458 DOI: 10.1016/j.ymgme.2011.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 12/17/2011] [Accepted: 12/17/2011] [Indexed: 11/26/2022]
Abstract
CD38 (EC 3.2.2.6, NAD(+)-glycohydrolase) is a multifunctional enzyme catalyzing the synthesis and hydrolysis of cyclic ADP-ribose from NAD(+) to ADP-ribose. The loss of CD38 function is associated with impaired immune responses, metabolic disturbances, and behavioral modifications. Notably, it has been linked to HIV infection, leukemias, myelomas, solid tumors, Type II Diabetes mellitus, bone metabolism, as well as Autism Spectrum Disorder. Taking into account the crucial role played by CD38 in many diseases and in clinical practice, here we assessed the distribution of CD38 NADase activity in a healthy population (104 sex-matched unrelated individuals, 12-98 years) and determined its main predictors among genetic and physiological factors (age and sex). The mean value of CD38 NADase activity was 0.051±0.023 mU/mg (0.010-0.099 mU/mg), following a normal distribution in the study population (Kolmogorov-Smirnov test P=0.200). The TNF-α -308G>A (rs1800629) resulted the main predictor (β=0.364, P=0.00008), followed by Age (β=0.280, P=0.002) and the CD38 184C>G (rs6449182) (β=0.193, P=0.033). Our study contributes to understanding CD38 enzyme physiological functions, by reporting, for the first time, its activity distribution in healthy individuals and demonstrating a significant positive correlation with age. Moreover, the possible use of TNF-α -308G>A (rs1800629) and the CD38 184C>G (rs6449182) SNPs as predictive genetic markers of CD38 activity, clearly point toward possible pharmacogenomic applications and to a more refined use of CD38 in clinical settings.
Collapse
Affiliation(s)
- Valeria Polzonetti
- School of Biosciences and Biotechnologies, University of Camerino, Camerino, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Chronic lymphocytic leukemia cells induce anti-apoptotic effects of bone marrow stroma. Ann Hematol 2011; 90:1381-90. [DOI: 10.1007/s00277-011-1218-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Accepted: 03/14/2011] [Indexed: 11/25/2022]
|
18
|
Friedman DR, Weinberg JB, Barry WT, Goodman BK, Volkheimer AD, Bond KM, Chen Y, Jiang N, Moore JO, Gockerman JP, Diehl LF, Decastro CM, Potti A, Nevins JR. A genomic approach to improve prognosis and predict therapeutic response in chronic lymphocytic leukemia. Clin Cancer Res 2009; 15:6947-55. [PMID: 19861443 DOI: 10.1158/1078-0432.ccr-09-1132] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Chronic lymphocytic leukemia (CLL) is a B-cell malignancy characterized by a variable clinical course. Several parameters have prognostic capabilities but are associated with altered response to therapy in only a small subset of patients. EXPERIMENTAL DESIGN We used gene expression profiling methods to generate predictors of therapy response and prognosis. Genomic signatures that reflect progressive disease and responses to chemotherapy or chemoimmunotherapy were created using cancer cell lines and patient leukemia cell samples. We validated and applied these three signatures to independent clinical data from four cohorts, representing a total of 301 CLL patients. RESULTS A genomic signature of prognosis created from patient leukemic cell gene expression data coupled with clinical parameters significantly differentiated patients with stable disease from those with progressive disease in the training data set. The progression signature was validated in two independent data sets, showing a capacity to accurately identify patients at risk for progressive disease. In addition, genomic signatures that predict response to chlorambucil or pentostatin, cyclophosphamide, and rituximab were generated and could accurately distinguish responding and nonresponding CLL patients. CONCLUSIONS Thus, microarray analysis of CLL lymphocytes can be used to refine prognosis and predict response to different therapies. These results have implications for standard and investigational therapeutics in CLL patients.
Collapse
Affiliation(s)
- Daphne R Friedman
- Divisions of Hematology, Oncology, and Cellular Therapy, Duke Institute for Genome Sciences and Policy, Durham VA Medical Center, Durham, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Giannopoulos K, Dmoszynska A, Kowal M, Wasik-Szczepanek E, Bojarska-Junak A, Rolinski J, Döhner H, Stilgenbauer S, Bullinger L. Thalidomide exerts distinct molecular antileukemic effects and combined thalidomide/fludarabine therapy is clinically effective in high-risk chronic lymphocytic leukemia. Leukemia 2009; 23:1771-8. [PMID: 19440214 DOI: 10.1038/leu.2009.98] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Thalidomide represents a promising immunomodulatory drug that targets both leukemia cells and the tumor microenvironment. We treated patients with chronic lymphocytic leukemia (CLL) with a combined thalidomide/fludarabine regimen and monitored cellular and molecular changes induced by thalidomide in vivo before fludarabine treatment. Thalidomide was given daily (100 mg p.o. per day) and fludarabine was administered on days 7-11 (25 mg/m(2) i.v. per day) within each 4-week cycle (maximum of 6 cycles). Twenty patients received thalidomide/fludarabine as first-line therapy and 20 patients were previously treated. Unmutated IgVH mutation status was found in 36 cases and 13 had high-risk cytogenetic aberrations (del17p, del11q). The overall response rate was 80 and 25% for untreated and previously treated patients, respectively. Although thalidomide reduced the number of CLL cells, the number of CD3 lymphocytes showed no significant change, but the number of CD4(+)CD25(hi)FOXP3(+) regulatory T cells (Tregs) was significantly decreased. Gene expression profiling revealed a thalidomide-induced signature containing both targets known to have a function in immunomodulatory drug action as well as novel candidate genes. Combined thalidomide/fludarabine therapy demonstrated efficacy in high-risk patients with CLL. Furthermore, our study provides novel biological insights into thalidomide effect, which might act by enhancing apoptosis of CLL cells and reducing Tregs, thereby enabling T-cell-dependent antitumor effect.
Collapse
Affiliation(s)
- K Giannopoulos
- Department of Clinical Immunology, Medical University of Lublin, Lublin, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|