1
|
Loscocco GG, Ascani S, Mannelli F, Zanelli M, Rotunno G, Santi R, Vannucchi AM. Concomitant myeloproliferative neoplasm with eosinophilia, B and T cell lymphoblastic lymphoma/leukemia and mast cell proliferation driven by ZMYM2::FGFR1 rearrangement. Am J Hematol 2023; 98:1959-1962. [PMID: 37435901 DOI: 10.1002/ajh.27026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/22/2023] [Accepted: 06/30/2023] [Indexed: 07/13/2023]
Affiliation(s)
- Giuseppe G Loscocco
- Department of Experimental and Clinical Medicine, CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
- Doctorate School GenOMec, University of Siena, Siena, Italy
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera "Santa Maria" di Terni, University of Perugia, Perugia, Italy
| | - Francesco Mannelli
- Department of Experimental and Clinical Medicine, CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Magda Zanelli
- Pathology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Giada Rotunno
- Department of Experimental and Clinical Medicine, CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| | - Raffaella Santi
- Pathology Section, Department of Health Sciences, University of Florence, Florence, Italy
| | - Alessandro M Vannucchi
- Department of Experimental and Clinical Medicine, CRIMM, Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliero-Universitaria Careggi, University of Florence, Florence, Italy
| |
Collapse
|
2
|
Chen D, Liu G, Lewis MR, Li X, Ulrickson M, Nath R, Chen W. Myeloid/lymphoid neoplasm with ZMYM2::FGFR1 rearrangement: A complex trilineage phenotypic and clonal evolution with associated genomic alterations. Leuk Res Rep 2023; 19:100370. [PMID: 37275466 PMCID: PMC10236454 DOI: 10.1016/j.lrr.2023.100370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 05/25/2023] [Indexed: 06/07/2023] Open
Abstract
We report a case of myeloid/lymphoid neoplasm with ZMYM2::FGFR1 rearrangement (MLNZMYM2::FGFR1) exhibiting a complex disease evolution. This neoplasm initially presented as T-lymphoblastic lymphoma (T-LBL) in lymph node and myeloproliferative neoplasm (MPN) with eosinophilia in bone marrow, then transitioned to systemic mastocytosis (SM) likely accompanied by additional JAK3 and other mutations and finally transformed to acute myeloid leukemia (AML) accompanied by additional/secondary genetic abnormality (gain of chromosome 21, der(13)t(8;13), and RUNX1 mutation). To our knowledge, this is the first case of MLNZMYM2::FGFR1 with a complex trilineage/phenotypic [T-cell (T-LBL), mast cell (SM), and myeloid (MPN and AML)] lineage evolution.
Collapse
Affiliation(s)
- Dong Chen
- Pathology and Laboratory Medicine, University of Connecticut, Farmington, CT, United States
| | - Guang Liu
- Department of Pathology, University of Arizona, College of Medicine, Phoenix, AZ, United States
| | - Michael R. Lewis
- Banner MD Anderson Cancer Center at Banner Gateway Medical Center, Gilbert, AZ, United States
| | - Xia Li
- Department of Pathology, University of Arizona, College of Medicine, Phoenix, AZ, United States
| | - Matthew Ulrickson
- Banner MD Anderson Cancer Center at Banner Gateway Medical Center, Gilbert, AZ, United States
| | - Rajneesh Nath
- Banner MD Anderson Cancer Center at Banner Gateway Medical Center, Gilbert, AZ, United States
| | - Weina Chen
- University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
3
|
Pozdnyakova O, Orazi A, Kelemen K, King R, Reichard KK, Craig FE, Quintanilla-Martinez L, Rimsza L, George TI, Horny HP, Wang SA. Myeloid/Lymphoid Neoplasms Associated With Eosinophilia and Rearrangements of PDGFRA, PDGFRB, or FGFR1 or With PCM1-JAK2. Am J Clin Pathol 2021; 155:160-178. [PMID: 33367495 DOI: 10.1093/ajcp/aqaa208] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES To summarize cases submitted to the 2019 Society for Hematopathology/European Association for Haematopathology Workshop under the category of myeloid/lymphoid neoplasms with eosinophilia and PDGFRA, PDGFRB, or FGFR1 or with PCM1-JAK2 rearrangements, focusing on recent updates and relevant practice findings. METHODS The cases were summarized according to their respective gene rearrangement to illustrate the spectrum of clinical, laboratory, and histopathology manifestations and to explore the appropriate molecular genetic tests. RESULTS Disease presentations were heterogeneous, including myeloproliferative neoplasms (MPNs), myelodysplastic syndromes (MDSs), MDS/MPN, acute myeloid leukemia, acute B- or T-lymphoblastic lymphoma/acute lymphoblastic lymphoma (ALL/LBL), or mixed-lineage neoplasms. Frequent extramedullary involvement occurred. Eosinophilia was common but not invariably present. With the advancement of RNA sequencing, cryptic rearrangements were recognized in genes other than PDGFRA. Additional somatic mutations were more frequent in the FGFR1-rearranged cases. Cases with B-ALL presentations differed from Philadelphia-like B-ALL by the presence of an underlying MPN. Cases with FLT3 and ABL1 rearrangements could be potential candidates for future inclusion in this category. CONCLUSIONS Accurate diagnosis and classification of this category of myeloid/lymphoid neoplasms has important therapeutic implications. With the large number of submitted cases, we expand our understanding of these rare neoplasms and improve our ability to diagnose these genetically defined disorders.
Collapse
Affiliation(s)
- Olga Pozdnyakova
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Attilio Orazi
- Department of Pathology, Texas Tech University Health Sciences Center, P. L. Foster School of Medicine, El Paso
| | | | - Rebecca King
- Division of Hematopathology, Mayo Clinic, Rochester, MN
| | | | - Fiona E Craig
- Division of Hematopathology, Mayo Clinic, Rochester, MN
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, Tübingen University Hospital, Tübingen, Germany
| | - Lisa Rimsza
- Division of Hematopathology, Mayo Clinic, Rochester, MN
| | - Tracy I George
- Department of Pathology, University of Utah School of Medicine, Salt Lake City
| | | | - Sa A Wang
- MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
4
|
Chang K, Liu JH, Yu SC, Lin CW. FGFR1 translocation with concurrent myeloproliferative neoplasm, systemic mastocytosis, and lymphoblastic lymphoma: a case report. Hum Pathol 2018; 74:114-121. [DOI: 10.1016/j.humpath.2017.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/27/2017] [Accepted: 10/13/2017] [Indexed: 11/29/2022]
|
5
|
Umino K, Fujiwara SI, Ikeda T, Toda Y, Ito S, Mashima K, Minakata D, Nakano H, Yamasaki R, Kawasaki Y, Sugimoto M, Yamamoto C, Ashizawa M, Hatano K, Sato K, Oh I, Ohmine K, Muroi K, Kanda Y. Clinical outcomes of myeloid/lymphoid neoplasms with fibroblast growth factor receptor-1 (FGFR1) rearrangement. Hematology 2018; 23:470-477. [DOI: 10.1080/10245332.2018.1446279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Kento Umino
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Shin-ichiro Fujiwara
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Takashi Ikeda
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Yumiko Toda
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Shoko Ito
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Kiyomi Mashima
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Daisuke Minakata
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Hirofumi Nakano
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Ryoko Yamasaki
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Yasufumi Kawasaki
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Miyuki Sugimoto
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Chihiro Yamamoto
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Masahiro Ashizawa
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Kaoru Hatano
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Kazuya Sato
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Iekuni Oh
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Ken Ohmine
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Kazuo Muroi
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Yoshinobu Kanda
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
6
|
Molderings GJ. The genetic basis of mast cell activation disease - looking through a glass darkly. Crit Rev Oncol Hematol 2015; 93:75-89. [DOI: 10.1016/j.critrevonc.2014.09.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/14/2014] [Accepted: 09/16/2014] [Indexed: 01/08/2023] Open
|
7
|
Savage NM, Johnson RC, Gotlib J, George TI. Myeloid and lymphoid neoplasms with FGFR1 abnormalities: diagnostic and therapeutic challenges. Am J Hematol 2013; 88:427-30. [PMID: 22886804 DOI: 10.1002/ajh.23296] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 06/02/2012] [Accepted: 06/15/2012] [Indexed: 12/20/2022]
Affiliation(s)
- Natasha M. Savage
- Department of Pathology; Georgia Health Sciences University and Charlie Norwood VA Medical Center; Augusta; Georgia
| | - Ryan C. Johnson
- Department of Pathology; Stanford University School of Medicine; Stanford; California
| | - Jason Gotlib
- Division of Hematology; Department of Medicine; Stanford University School of Medicine; Stanford; California
| | - Tracy I. George
- Department of Pathology; Stanford University School of Medicine; Stanford; California
| |
Collapse
|
8
|
Gotlib J, Akin C. Mast cells and eosinophils in mastocytosis, chronic eosinophilic leukemia, and non-clonal disorders. Semin Hematol 2012; 49:128-37. [PMID: 22449623 DOI: 10.1053/j.seminhematol.2012.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mast cells and eosinophils often travel in the same biologic circles. In non-clonal states, such as allergic and inflammatory conditions, cell-to-cell contact and the pleiotropic actions of multiple cytokines and chemokines, derived from local tissues or mast cells themselves, foster the co-recruitment of these cells to the same geographic cellular niche. While eosinophils and mast cells serve critical roles as part of the host immune response and in maintenance of normal homeostasis, these cell types can undergo neoplastic transformation due to the development of clonal molecular abnormalities that arise in early hematopoietic progenitors. The dysregulated tyrosine kinases, D816V KIT and FIP1L1-PDGFRA, are the prototypic oncogenic lesions resulting in systemic mastocytosis (SM) and chronic eosinophilic leukemia, respectively. We review the pathobiology of these myeloproliferative neoplasms (MPNs) with a focus on the relationship between mast cells and eosinophils, and discuss murine models, which further elucidate how the phenotype of these diseases can be influenced by stem cell factor (SCF) and expression of the potent eosinophilopoietic cytokine, interleukin-5 (IL-5). Therapy of SM and FIP1L1-PDGFRA-positive disease and the prognostic relevance of increased peripheral blood and tissue mast cells in hematolymphoid malignancies will also be addressed.
Collapse
Affiliation(s)
- Jason Gotlib
- Stanford University School of Medicine/Stanford Cancer Institute, Stanford, CA, USA
| | | |
Collapse
|