1
|
Ye C, Zhao Z, Lai P, Chen C, Jian F, Liang H, Guo Q. Strategies for the detection of site-specific DNA methylation and its application, opportunities and challenges in the field of electrochemical biosensors. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5496-5508. [PMID: 39051422 DOI: 10.1039/d4ay00779d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
DNA methylation is an epigenetic modification that plays a crucial role in various biological processes. Aberrant DNA methylation is closely associated with the onset of diseases, and the specific localization of methylation sites in the genome offers further insight into the connection between methylation and diseases. Currently, there are numerous methods available for site-specific methylation detection. Electrochemical biosensors have garnered significant attention due to their distinct advantages, such as rapidity, simplicity, high sensitivity, low cost, and the potential for miniaturization. In this paper, we present a systematic review of the primary sensing strategies utilized in the past decade for analyzing site-specific methylation and their applications in electrochemical sensors, from a novel perspective focusing on the localization analysis of site-specific methylation. These strategies include bisulfite treatment, restriction endonuclease treatment, other sensing strategies, and deamination without direct bisulfite treatment. We hope that this paper can offer ideas and references for establishing site-specific methylation electrochemical analysis in clinical practice.
Collapse
Affiliation(s)
- Chenliu Ye
- Department of Pharmacy, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan 364000, China.
| | - Zhibin Zhao
- Department of Pharmacy, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan 364000, China.
| | - Penghui Lai
- The Second Hospital of Longyan, Longyan 364000, China
| | - Chunmei Chen
- Department of Pharmacy, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan 364000, China.
| | - Fumei Jian
- Department of Pharmacy, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan 364000, China.
| | - Haiying Liang
- Department of Pharmacy, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan 364000, China.
| | - Qiongying Guo
- Department of Pharmacy, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan 364000, China.
| |
Collapse
|
2
|
Zhang S, Yan J, Yang Y, Mo F, Li Y, Huang H, Fang L, Huang J, Zheng J. DNA methylation detection and site analysis by using an electrochemical biosensor constructed based on toehold-mediated strand displacement reaction. Talanta 2022; 249:123603. [PMID: 35696976 DOI: 10.1016/j.talanta.2022.123603] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/21/2022] [Accepted: 05/25/2022] [Indexed: 10/31/2022]
Abstract
DNA methylation has become a novel target for early diagnosis and prognosis of cancer as well as other related diseases. The accurate detection of the methylation sites of specific genes proved to be of great significance. However, the complex biological nature of clinical samples and the detection of low-abundance targets led to higher requirements for the testing technology. It has been found that by virtue of high sensitivity, rapid response, low cost, facile operation and applicability to microanalysis, electrochemical sensors have greatly contributed to the process of clinical diagnosis. In this study, a facile, rapid and highly sensitive electrochemical biosensor based on the peak current change was developed on the basis of high selectivity of toehold and greater efficiency of PNA strand displacement and used for the detection and site analysis of DNA methylation. Moreover, compared with non-methylated DNA sequences, methylated DNA sequences could be readily invaded by PNA probes, thereby resulting in the strand displacement and significant electrical signals. Therefore, methylation of cytosine sites was primarily analyzed based on electrical signals. Strand displacement by the target DNA sequences with different methylated sites can lead to substantial changes of strand displacement efficiency. As a result, the methylation sites can be analyzed on the basis of corresponding peak current response relation. This method has a detection limit of 0.075 pM and does not involve various complicated steps such as bisulfite treatment, enzyme digestion and PCR amplification. Indeed, one detection cycle can be completed in 60 min. The proposed technology might exhibit great potential in early clinical diagnosis and risk assessment of cancers and related diseases.
Collapse
Affiliation(s)
- Shu Zhang
- Center for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China; Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China
| | - Jiaoyan Yan
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China
| | - Ye Yang
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China
| | - Fei Mo
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China
| | - Yan Li
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China
| | - Hui Huang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China
| | - Lichao Fang
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China
| | - Jian Huang
- Center for Clinical Laboratories, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China; Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, 550004, China.
| | - Junsong Zheng
- Department of Clinical and Military Laboratory Medicine, College of Medical Laboratory Science, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
3
|
Yalcin A, Kovarbasic M, Wehrle J, Claus R, Becker H, Abdelkarim M, Gaidzik VI, Schmidts A, Wäsch R, Pahl HL, Döhner K, Bullinger L, Duyster J, Lübbert M, Hackanson B. The oligodendrocyte lineage transcription factor 2 (OLIG2) is epigenetically regulated in acute myeloid leukemia. Exp Hematol 2017; 55:76-85.e3. [PMID: 28760688 DOI: 10.1016/j.exphem.2017.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 10/19/2022]
Abstract
DNA methylation differences between normal tissue and cancerous tissue resulting in differential expression of genes are a hallmark of acute myeloid leukemia (AML) and can provide malignant cells with a growth advantage via silencing of specific genes, for example, transcription factors. Oligodendrocyte lineage transcription factor 2 (OLIG2) was reported to be differentially methylated and associated with prognosis in AML and, as reported for acute lymphoblastic leukemia and malignant glioma, may play a role in malignant transformation. We report that DNA methylation of OLIG2 is associated with decreased expression of mRNA in AML cell lines and patients. Moreover, in cell lines, decreased mRNA expression also translated into decreased OLIG2 protein expression. Treatment of non-expressing cell lines PL-21 and U-937 with the demethylating agent decitabine resulted in robust re-expression of OLIG2 on mRNA and protein levels. Furthermore, stable overexpression of OLIG2 in non-expressing cell lines Kasumi-1 and U-937, using a lentiviral vector system, led to moderate growth inhibition after 4 days and resulted in signs of differentiation in U-937 cells. Interestingly, although CD34 + cells from healthy donors and 10 of 12 AML patients exhibited no protein expression, OLIG2 was expressed in two patients, both bearing the translocation t(15;17), corresponding to OLIG2 expression in NB-4 cells, also harboring t(15;17). In conclusion, we provide first evidence that OLIG2 is epigenetically regulated via DNA methylation and expressed in a subset of AML patients. OLIG2 may exert antiproliferative activity in leukemia cell lines, and its potential leukemia-suppressing role in AML warrants further investigation.
Collapse
Affiliation(s)
- Arzu Yalcin
- Department of Hematology/Oncology and Stem Cell Transplantation, University Medical Center, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Marlon Kovarbasic
- Department of Hematology/Oncology and Stem Cell Transplantation, University Medical Center, Freiburg, Germany
| | - Julius Wehrle
- Department of Hematology/Oncology and Stem Cell Transplantation, University Medical Center, Freiburg, Germany; Berta-Ottenstein-Programm, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rainer Claus
- Department of Hematology/Oncology and Stem Cell Transplantation, University Medical Center, Freiburg, Germany
| | - Heiko Becker
- Department of Hematology/Oncology and Stem Cell Transplantation, University Medical Center, Freiburg, Germany
| | - Mahmoud Abdelkarim
- Department of Hematology/Oncology and Stem Cell Transplantation, University Medical Center, Freiburg, Germany
| | - Verena I Gaidzik
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Andrea Schmidts
- Department of Hematology/Oncology and Stem Cell Transplantation, University Medical Center, Freiburg, Germany
| | - Ralph Wäsch
- Department of Hematology/Oncology and Stem Cell Transplantation, University Medical Center, Freiburg, Germany
| | - Heike L Pahl
- Department of Hematology/Oncology and Stem Cell Transplantation, University Medical Center, Freiburg, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Lars Bullinger
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Justus Duyster
- Department of Hematology/Oncology and Stem Cell Transplantation, University Medical Center, Freiburg, Germany
| | - Michael Lübbert
- Department of Hematology/Oncology and Stem Cell Transplantation, University Medical Center, Freiburg, Germany
| | - Björn Hackanson
- Department of Hematology/Oncology and Stem Cell Transplantation, University Medical Center, Freiburg, Germany; Department of Hematology/Oncology, Medical Center Augsburg, Augsburg, Germany.
| |
Collapse
|
4
|
Differential Analysis of Genetic, Epigenetic, and Cytogenetic Abnormalities in AML. Int J Genomics 2017; 2017:2913648. [PMID: 28713819 PMCID: PMC5496127 DOI: 10.1155/2017/2913648] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 03/21/2017] [Accepted: 04/18/2017] [Indexed: 11/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is a haematological malignancy characterized by the excessive proliferation of immature myeloid cells coupled with impaired differentiation. Many AML cases have been reported without any known cytogenetic abnormalities and carry no mutation in known AML-associated driver genes. In this study, 200 AML cases were selected from a publicly available cohort and differentially analyzed for genetic, epigenetic, and cytogenetic abnormalities. Three genes (FLT3, DNMT3A, and NPMc) are found to be predominantly mutated. We identified several aberrations to be associated with genome-wide methylation changes. These include Del (5q), T (15; 17), and NPMc mutations. Four aberrations-Del (5q), T (15; 17), T (9; 22), and T (9; 11)-are significantly associated with patient survival. Del (5q)-positive patients have an average survival of less than 1 year, whereas T (15; 17)-positive patients have a significantly better prognosis. Combining the methylation and mutation data reveals three distinct patient groups and four clusters of genes. We speculate that combined signatures have the better potential to be used for subclassification of AML, complementing cytogenetic signatures. A larger sample cohort and further investigation of the effects observed in this study are required to enable the clinical application of our patient classification aided by DNA methylation.
Collapse
|
5
|
Epigenetic Guardian: A Review of the DNA Methyltransferase DNMT3A in Acute Myeloid Leukaemia and Clonal Haematopoiesis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5473197. [PMID: 28286768 PMCID: PMC5329657 DOI: 10.1155/2017/5473197] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/18/2016] [Accepted: 11/14/2016] [Indexed: 12/25/2022]
Abstract
Acute myeloid leukaemia (AML) is a haematological malignancy characterized by clonal stem cell proliferation and aberrant block in differentiation. Dysfunction of epigenetic modifiers contributes significantly to the pathogenesis of AML. One frequently mutated gene involved in epigenetic modification is DNMT3A (DNA methyltransferase-3-alpha), a DNA methyltransferase that alters gene expression by de novo methylation of cytosine bases at CpG dinucleotides. Approximately 22% of AML and 36% of cytogenetically normal AML cases carry DNMT3A mutations and around 60% of these mutations affect the R882 codon. These mutations have been associated with poor prognosis and adverse survival outcomes for AML patients. Advances in whole-exome sequencing techniques have recently identified a large number of DNMT3A mutations present in clonal cells in normal elderly individuals with no features of haematological malignancy. Categorically distinct from other preleukaemic conditions, this disorder has been termed clonal haematopoiesis of indeterminate potential (CHIP). Further insight into the mutational landscape of CHIP may illustrate the consequence of particular mutations found in DNMT3A and identify specific “founder” mutations responsible for clonal expansion that may contribute to leukaemogenesis. This review will focus on current research and understanding of DNMT3A mutations in both AML and CHIP.
Collapse
|
6
|
Li Y, Xu Q, Lv N, Wang L, Zhao H, Wang X, Guo J, Chen C, Li Y, Yu L. Clinical implications of genome-wide DNA methylation studies in acute myeloid leukemia. J Hematol Oncol 2017; 10:41. [PMID: 28153026 PMCID: PMC5290606 DOI: 10.1186/s13045-017-0409-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/27/2017] [Indexed: 01/01/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common type of acute leukemia in adults. AML is a heterogeneous malignancy characterized by distinct genetic and epigenetic abnormalities. Recent genome-wide DNA methylation studies have highlighted an important role of dysregulated methylation signature in AML from biological and clinical standpoint. In this review, we will outline the recent advances in the methylome study of AML and overview the impacts of DNA methylation on AML diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Yan Li
- Department of Hematology and BMT center, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.,Department of Hematology, Hainan Branch of Chinese PLA General Hospital, Sanya, 572013, Hainan Province, China
| | - Qingyu Xu
- Department of Hematology and BMT center, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.,Medical school of Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Na Lv
- Department of Hematology and BMT center, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Lili Wang
- Department of Hematology and BMT center, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Hongmei Zhao
- Annoroad Gene Technology Co. Ltd, Beijing, 100176, China
| | - Xiuli Wang
- Annoroad Gene Technology Co. Ltd, Beijing, 100176, China
| | - Jing Guo
- Annoroad Gene Technology Co. Ltd, Beijing, 100176, China
| | - Chongjian Chen
- Annoroad Gene Technology Co. Ltd, Beijing, 100176, China
| | - Yonghui Li
- Department of Hematology and BMT center, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Li Yu
- Department of Hematology and BMT center, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
7
|
Evaluating the impact of genetic and epigenetic aberrations on survival and response in acute myeloid leukemia patients receiving epigenetic therapy. Ann Hematol 2017; 96:559-565. [PMID: 28058491 DOI: 10.1007/s00277-016-2912-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/23/2016] [Indexed: 10/20/2022]
Abstract
Treatment with hypomethylating agents such as decitabine, which results in overall response rates of up to 50%, has become standard of care in older patients with acute myeloid leukemia (AML) who are not candidates for intensive chemotherapy. However, there still exists a lack of prognostic and predictive molecular biomarkers that enable selection of patients who are likely to benefit from epigenetic therapy. Here, we investigated distinct genetic (FLT3-ITD, NPM1, DNMT3A) and epigenetic (estrogen receptor alpha (ERα), C/EBPα, and OLIG2) aberrations in 87 AML patients from the recently published phase II decitabine trial (AML00331) to identify potential biomarkers for patients receiving hypomethylating therapy. While FLT3-ITD and NPM1 mutational status were not associated with survival or response to therapy, patients harboring DNMT3A R882 mutations showed a non-significant association towards shorter overall survival (hazard ratio (HR) 2.15, 95% confidence interval (CI) 0.91-5.12, p = 0.08). Promoter DNA methylation analyses using pyrosequencing also revealed a non-significant association towards shorter overall survival of patients with higher levels of methylation of ERα (HR 1.50, CI 0.97-2.32, p = 0.07) and OLIG2 CpG4 (HR 1.52, CI 0.96-2.41, p = 0.08), while DNA methylation of C/EBPα showed no association with outcome. Importantly, in multivariate analyses adjusted for clinical baseline parameters, the impact of ERα and OLIG2 CpG4 methylation was conserved (HR 1.76, CI 1.01-3.06, p = 0.05 and HR 1.67, CI 0.91-3.08, p = 0.10, respectively). In contrast, none of the investigated genetic and epigenetic markers was associated with response to treatment. Additional to the previously reported adverse prognostic clinical parameters such as patients' age, reduced performance status, and elevated lactate dehydrogenase levels, DNMT3A R882 mutation status, as well as ERα and OLIG2 CpG4 DNA methylation status, may prove to be molecular markers in older AML patients prior to hypomethylating therapy.
Collapse
|
8
|
Marzese DM, Hoon DS. Emerging technologies for studying DNA methylation for the molecular diagnosis of cancer. Expert Rev Mol Diagn 2015; 15:647-64. [PMID: 25797072 DOI: 10.1586/14737159.2015.1027194] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DNA methylation is an epigenetic mechanism that plays a key role in regulating gene expression and other functions. Although this modification is seen in different sequence contexts, the most frequently detected DNA methylation in mammals involves cytosine-guanine dinucleotides. Pathological alterations in DNA methylation patterns are described in a variety of human diseases, including cancer. Unlike genetic changes, DNA methylation is heavily influenced by subtle modifications in the cellular microenvironment. In all cancers, aberrant DNA methylation is involved in the alteration of a large number of oncological pathways with relevant theranostic utility. Several technologies for DNA methylation mapping have been developed recently and successfully applied in cancer studies. The scope of these technologies varies from assessing a single cytosine-guanine locus to genome-wide distribution of DNA methylation. Here, we review the strengths and weaknesses of these approaches in the context of clinical utility for the molecular diagnosis of human cancers.
Collapse
Affiliation(s)
- Diego M Marzese
- Department of Molecular Oncology, Saint John's Health Center, John Wayne Cancer Institute, 2200 Santa Monica Blvd, Santa Monica, CA 90404, USA
| | | |
Collapse
|
9
|
O'Brien EC, Brewin J, Chevassut T. DNMT3A: the DioNysian MonsTer of acute myeloid leukaemia. Ther Adv Hematol 2014; 5:187-96. [PMID: 25469209 DOI: 10.1177/2040620714554538] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In the mythology of Ancient Greece, there was often a creative tension between the opposing forces of the gods Apollo and Dionysius, the two sons of Zeus. The Apollonian force was considered to be rational and lifegiving, whilst Dionysian forces were chaotic and elemental. Acute myeloid leukaemia is characterised by the clash of these forces: the chaotic proliferation of immature myeloid cells in the bone marrow overcomes the normal, orderly production of healthy blood cells. DNMT3A mutations occur early in the leukaemogenic process and may even act as "founder" mutations - the first step in a pathway towards malignant transformation. As such, these mutations may represent a Dionysian agent of disorder, inciting the chaotic myeloid proliferation and arrest of differentiation which are hallmarks of AML. This review will focus on the role of DNMT3A mutations in leukaemia pathogenesis, their influence on prognosis, and the potential for therapeutic targeting.
Collapse
Affiliation(s)
- Emma Conway O'Brien
- Medical Research Building, Brighton and Sussex Medical School, Sussex University, Falmer, Brighton, UK
| | - John Brewin
- Medical Research Building, Brighton and Sussex Medical School, Sussex University, Falmer, Brighton, UK
| | - Timothy Chevassut
- Medical Research Building, Brighton and Sussex Medical School, Sussex University, Falmer, Brighton BN1 9PS, UK
| |
Collapse
|
10
|
Advances in the profiling of DNA modifications: cytosine methylation and beyond. Nat Rev Genet 2014; 15:647-61. [PMID: 25159599 DOI: 10.1038/nrg3772] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chemical modifications of DNA have been recognized as key epigenetic mechanisms for maintenance of the cellular state and memory. Such DNA modifications include canonical 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxycytosine (5caC). Recent advances in detection and quantification of DNA modifications have enabled epigenetic variation to be connected to phenotypic consequences on an unprecedented scale. These methods may use chemical or enzymatic DNA treatment, may be targeted or non-targeted and may utilize array-based hybridization or sequencing. Key considerations in the choice of assay are cost, minimum sample input requirements, accuracy and throughput. This Review discusses the principles behind recently developed techniques, compares their respective strengths and limitations and provides general guidelines for selecting appropriate methods for specific experimental contexts.
Collapse
|
11
|
Qu Y, Lennartsson A, Gaidzik VI, Deneberg S, Karimi M, Bengtzén S, Höglund M, Bullinger L, Döhner K, Lehmann S. Differential methylation in CN-AML preferentially targets non-CGI regions and is dictated by DNMT3A mutational status and associated with predominant hypomethylation of HOX genes. Epigenetics 2014; 9:1108-19. [PMID: 24866170 DOI: 10.4161/epi.29315] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The extent and role of aberrant DNA methylation in promoter CpG islands (CGIs) have been extensively studied in leukemia and other malignancies. Still, CGIs represent only a small fraction of the methylome. We aimed to characterize genome-wide differential methylation of cytogenetically normal AML (CN-AML) cells compared with normal CD34(+) bone marrow cells using the Illumina 450K methylation array. Differential methylation in CN-AML was most prominent in genomic areas far from CGIs, in so called open sea regions. Furthermore, differential methylation was specifically found in genes encoding transcription factors (TFs), with WT1 being the most differentially methylated TF. Among genetic mutations in AML, DNMT3A mutations showed the most prominent association with the DNA methylation pattern, characterized by hypomethylation of CGIs (as compared with DNMT3A wild type cases). The differential methylation in DNMT3A mutant cells vs. wild type cells was predominantly found in HOX genes, which were hypomethylated. These results were confirmed and validated in an independent CN-AML cohort. In conclusion, we show that, in CN-AML, the most pronounced changes in DNA methylation occur in non-CGI regions and that DNMT3A mutations confer a pattern of global hypomethylation that specifically targets HOX genes.
Collapse
Affiliation(s)
- Ying Qu
- Center for Hematology and Regenerative Medicine (HERM); Department of Medicine Huddinge; Karolinska Institute; Stockholm, Sweden
| | - Andreas Lennartsson
- Department of Biosciences and Nutrition; NOVUM; Karolinska Institutet; Stockholm, Sweden
| | - Verena I Gaidzik
- Department of Internal Medicine III; University Hospital of Ulm; Ulm, Germany
| | - Stefan Deneberg
- Center for Hematology and Regenerative Medicine (HERM); Department of Medicine Huddinge; Karolinska Institute; Stockholm, Sweden; Hematology Centre, M54; Karolinska University Hospital and Karolinska Institute; Stockholm, Sweden
| | - Mohsen Karimi
- Center for Hematology and Regenerative Medicine (HERM); Department of Medicine Huddinge; Karolinska Institute; Stockholm, Sweden
| | - Sofia Bengtzén
- Center for Hematology and Regenerative Medicine (HERM); Department of Medicine Huddinge; Karolinska Institute; Stockholm, Sweden
| | - Martin Höglund
- Department of Hematology; Uppsala University Hospital; Uppsala, Sweden
| | - Lars Bullinger
- Department of Internal Medicine III; University Hospital of Ulm; Ulm, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III; University Hospital of Ulm; Ulm, Germany
| | - Sören Lehmann
- Center for Hematology and Regenerative Medicine (HERM); Department of Medicine Huddinge; Karolinska Institute; Stockholm, Sweden; Hematology Centre, M54; Karolinska University Hospital and Karolinska Institute; Stockholm, Sweden
| |
Collapse
|