1
|
Bahar NAA, Al‐Ouqaili MTS, Talib NM. Improving the Diagnosis and Follow-Up of Chronic Myeloid Leukemia Using Conventional and Molecular Techniques. J Clin Lab Anal 2025; 39:e70001. [PMID: 39927600 PMCID: PMC11904808 DOI: 10.1002/jcla.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/25/2024] [Accepted: 01/26/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND The Philadelphia chromosome (Ph) represented a finding of chronic myeloid leukemia (CML) in most cases which formed from t (9; 22) (q34; q11) resulting in the Breakpoint cluster region-Abelson tyrosine-protein kinase1 (BCR-ABL1) fusion gene. Assuming CCE's inaccuracies in diagnosing CML and FISH's limitations with low BCR-ABL1 percentages, a Predicted-FISH (Pred-FISH) was developed. This model predicts treatment response during follow-up by integrating qRT-PCR results, White Blood Cell (WBC) counts, and Cytogenetic Response data. METHODS Quantitative Real-Time Polymerase Chain Reaction Analysis (qRT-PCR), fluorescence in situ hybridization (FISH), and Conventional Cytogenetic Examination (CCE or Karyotyping) have been used in the detection and follow-up of CML patients. The study included 110 individuals, divided into three groups: 31.82% (35 individuals) were newly diagnosed CML patients, another 22.73% (25 individuals) were healthy control samples, and the remaining 45.45% (50 individuals) were previously diagnosed CML patients. RESULTS Include BCR-ABL1 fusion gene levels detected by qRT-PCR, Ph chromosome presence t (9; 22) (q34; q11) observed by CCE, and WBC counts. The FISH test, used to confirm disease in new patients before treatment, was compared to CCE results due to its insensitivity in certain conditions. Data from CCE, FISH, qRT-PCR, and WBC for newly diagnosed patients provided a standard for evaluating the Predicted-FISH. CONCLUSION The FISH technique excels in disease detection with over 98% accuracy and high sensitivity. QRT-PCR is effective for monitoring CML and BCR-ABL1 gene levels, indicating MMR and DMR. CCE, while useful for posttreatment monitoring, is less accurate in measuring treatment response over time.
Collapse
|
2
|
Wu PS, Wang CY, Chen PS, Hung JH, Yen JH, Wu MJ. 8-Hydroxydaidzein Downregulates JAK/STAT, MMP, Oxidative Phosphorylation, and PI3K/AKT Pathways in K562 Cells. Biomedicines 2021; 9:biomedicines9121907. [PMID: 34944720 PMCID: PMC8698423 DOI: 10.3390/biomedicines9121907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/05/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
A metabolite isolated from fermented soybean, 8-hydroxydaidzein (8-OHD, 7,8,4′-trihydroxyisoflavone, NSC-678112), is widely used in ethnopharmacological research due to its anti-proliferative and anti-inflammatory effects. We reported previously that 8-OHD provoked reactive oxygen species (ROS) overproduction, and induced autophagy, apoptosis, breakpoint cluster region-Abelson murine leukemia viral oncogene (BCR-ABL) degradation, and differentiation in K562 human chronic myeloid leukemia (CML) cells. However, how 8-OHD regulates metabolism, the extracellular matrix during invasion and metastasis, and survival signaling pathways in CML remains largely unexplored. High-throughput technologies have been widely used to discover the therapeutic targets and pathways of drugs. Bioinformatics analysis of 8-OHD-downregulated differentially expressed genes (DEGs) revealed that Janus kinase/signal transducer and activator of transcription (JAK/STAT), matrix metalloproteinases (MMPs), c-Myc, phosphoinositide 3-kinase (PI3K)/AKT, and oxidative phosphorylation (OXPHOS) metabolic pathways were significantly altered by 8-OHD treatment. Western blot analyses validated that 8-OHD significantly downregulated cytosolic JAK2 and the expression and phosphorylation of STAT3 dose- and time-dependently in K562 cells. Zymography and transwell assays also confirmed that K562-secreted MMP9 and invasion activities were dose-dependently inhibited by 8-OHD after 24 h of treatment. RT-qPCR analyses verified that 8-OHD repressed metastasis and OXPHOS-related genes. In combination with DisGeNET, it was found that 8-OHD’s downregulation of PI3K/AKT is crucial for controlling CML development. A STRING protein–protein interaction analysis further revealed that AKT and MYC are hub proteins for cancer progression. Western blotting revealed that AKT phosphorylation and nuclear MYC expression were significantly inhibited by 8-OHD. Collectively, this systematic investigation revealed that 8-OHD exerts anti-CML effects by downregulating JAK/STAT, PI3K/AKT, MMP, and OXPHOS pathways, and MYC expression. These results could shed new light on the development of 8-OHD for CML therapy.
Collapse
Affiliation(s)
- Pei-Shan Wu
- Department of Applied Life Science and Health, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan; (P.-S.W.); (P.-S.C.)
| | - Chih-Yang Wang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan
| | - Pin-Shern Chen
- Department of Applied Life Science and Health, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan; (P.-S.W.); (P.-S.C.)
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan;
| | - Jui-Hsiang Hung
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan;
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan;
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
| | - Ming-Jiuan Wu
- Department of Applied Life Science and Health, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan; (P.-S.W.); (P.-S.C.)
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan;
- Correspondence: or ; Tel.: +886-6-2664911 (ext. 2520)
| |
Collapse
|
3
|
Klimaszewska-Wiśniewska A, Grzanka D, Czajkowska P, Hałas-Wiśniewska M, Durślewicz J, Antosik P, Grzanka A, Gagat M. Cellular and molecular alterations induced by low‑dose fisetin in human chronic myeloid leukemia cells. Int J Oncol 2019; 55:1261-1274. [PMID: 31638196 PMCID: PMC6831210 DOI: 10.3892/ijo.2019.4889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/11/2019] [Indexed: 12/23/2022] Open
Abstract
The present study aimed to evaluate the cellular and molecular effects of low concentrations of the flavonoid, fisetin, on K562 human chronic myeloid leukemia cells, in the context of both potential anti-proliferative and anti-metastatic effects. Thiazolyl blue tetrazolium bromide assay, Trypan blue exclusion assay, Annexin V/propidium iodide test, cell cycle analysis, Transwell migration and invasion assays, the fluorescence staining of β-catenin and F-actin as well as reverse transcription-quantitative polymerase chain reaction were performed to achieve the research goal. Furthermore, the nature of the interaction between fisetin and arsenic trioxide in the K562 cells was analyzed according to the Chou-Talalay median-effect method. We found that low concentrations of fisetin had not only a negligible effect on the viability and apoptosis of the K562 cells, but also modulated the mRNA levels of selected metastatic-related markers, accompanied by an increase in the migratory and invasive properties of these cancer cells. Although some markers of cell death were significantly elevated in response to fisetin treatment, these were counterbalanced through anti-apoptotic and pro-survival signals. With decreasing concentrations of fisetin and arsenic trioxide, the antagonistic interactions between the 2 agents increased. On the whole, the findings of this study suggest that careful consideration should be taken when advising cancer patients to take fisetin as a dietary supplement and when considering fisetin as a potential candidate for the treatment of chronic myeloid leukemia. Further more detailed studies are required to confirm our findings.
Collapse
Affiliation(s)
- Anna Klimaszewska-Wiśniewska
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85‑092 Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85‑092 Bydgoszcz, Poland
| | - Paulina Czajkowska
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85‑092 Bydgoszcz, Poland
| | - Marta Hałas-Wiśniewska
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85‑092 Bydgoszcz, Poland
| | - Justyna Durślewicz
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85‑092 Bydgoszcz, Poland
| | - Paulina Antosik
- Department of Clinical Pathomorphology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85‑092 Bydgoszcz, Poland
| | - Alina Grzanka
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85‑092 Bydgoszcz, Poland
| | - Maciej Gagat
- Department of Histology and Embryology, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85‑092 Bydgoszcz, Poland
| |
Collapse
|
4
|
Abstract
Proline-rich tyrosine kinase 2 (Pyk2) plays essential roles in tumorigenesis and tumor progression. Pyk2 serves as a non-receptor tyrosine kinase regulating tumor cell survival, proliferation, migration, invasion, metastasis, and chemo-resistance, and is associated with poor prognosis and shortened survival in various cancer types. Thus, Pyk2 has been traditionally regarded as an oncogene and potential therapeutic target for cancers. However, a few studies have also demonstrated that Pyk2 exerts tumor-suppressive effects in some cancers, and anti-cancer treatment of Pyk2 inhibitors may only achieve marginal benefits in these cancers. Therefore, more detailed knowledge of the contradictory functions of Pyk2 is needed. In this review, we summarized the tissue distribution, expression, interactive molecules of Pyk2 in the signaling pathway, and roles of Pyk2 in cancers, and focused on regulation of the interconnectivity between Pyk2 and its downstream targets. The potential use of inhibitors of Pyk2 and its related pathways in cancer therapy is also discussed.
Collapse
Affiliation(s)
- Ting Shen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China (mainland).,Department of Gastroenterology, Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Qiang Guo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, China (mainland).,Department of Gastroenterology, Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| |
Collapse
|
5
|
Liu W, Ma K, Kwon SH, Garg R, Patta YR, Fujiwara T, Gurtner GC. The Abnormal Architecture of Healed Diabetic Ulcers Is the Result of FAK Degradation by Calpain 1. J Invest Dermatol 2017; 137:1155-1165. [PMID: 28082186 DOI: 10.1016/j.jid.2016.11.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 11/16/2016] [Accepted: 11/29/2016] [Indexed: 01/20/2023]
Abstract
Delayed wound healing is a major complication of diabetes occurring in approximately 15% of chronic diabetic patients. It not only significantly affects patients' quality of life but also poses a major economic burden to the health care system. Most efforts have been focused on accelerating wound reepithelialization and closure. However, even after healing the quality of healed tissue in diabetics is abnormal and recurrence is common (50-75%). Thus, understanding how diabetes alters the ultimate mechanical properties of healed wounds will be important to develop more effective approaches for this condition. Focal adhesion kinase is an intracellular protein kinase that plays critical roles in cell migration, focal adhesion formation, and is an important component of cellular mechanotransduction. We have found that focal adhesion kinase expression is downregulated under a high glucose condition both in vitro and in vivo. This is secondary to increased activity of calpain 1, the primary enzyme responsible for focal adhesion kinase degradation, which becomes induced in hyperglycemia. We demonstrate that selective inhibition of calpain 1 activation improves wound healing and normalizes the mechanical properties of diabetic skin, suggesting a new therapeutic approach to prevent diabetic wound recurrence.
Collapse
Affiliation(s)
- Wei Liu
- Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Kun Ma
- Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Sun Hyung Kwon
- Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Ravi Garg
- Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Yoda R Patta
- Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Toshihiro Fujiwara
- Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Geoffrey C Gurtner
- Department of Surgery, Stanford University School of Medicine, Stanford, California, USA.
| |
Collapse
|
6
|
Giralt A, Coura R, Girault JA. Pyk2 is essential for astrocytes mobility following brain lesion. Glia 2015; 64:620-34. [DOI: 10.1002/glia.22952] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/23/2015] [Accepted: 11/18/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Albert Giralt
- Inserm UMR-S839; Paris 75005 France
- Université Pierre et Marie Curie (UPMC, Paris 6), Sorbonne Universités; Paris 75005 France
- Institut du Fer à Moulin; Paris 75005 France
| | - Renata Coura
- Inserm UMR-S839; Paris 75005 France
- Université Pierre et Marie Curie (UPMC, Paris 6), Sorbonne Universités; Paris 75005 France
- Institut du Fer à Moulin; Paris 75005 France
| | - Jean-Antoine Girault
- Inserm UMR-S839; Paris 75005 France
- Université Pierre et Marie Curie (UPMC, Paris 6), Sorbonne Universités; Paris 75005 France
- Institut du Fer à Moulin; Paris 75005 France
| |
Collapse
|