1
|
Corbet AK, Bikorimana E, Boyd RI, Shokry D, Kries K, Gupta A, Paton A, Sun Z, Fazal Z, Freemantle SJ, Nelson ER, Spinella MJ, Singh R. G0S2 promotes antiestrogenic and pro-migratory responses in ER+ and ER- breast cancer cells. Transl Oncol 2023; 33:101676. [PMID: 37086619 DOI: 10.1016/j.tranon.2023.101676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/24/2023] Open
Abstract
G0/G1 switch gene 2 (G0S2) is known to inhibit lipolysis by inhibiting adipose triglyceride lipase (ATGL). In this report, we dissect the role of G0S2 in ER+ versus ER- breast cancer. Overexpression of G0S2 in ER- cells increased cell proliferation, while G0S2 overexpression in ER+ cells decreased cell proliferation. Transcriptome analysis revealed that G0S2 mediated distinct but overlapping transcriptional responses in ER- and ER+ cells. G0S2 reduced genes associated with an epithelial phenotype, especially in ER- cells, including CDH1, ELF3, STEAP4 and TACSTD2, suggesting promotion of the epithelial-mesenchymal transition (EMT). G0S2 also repressed estrogen signaling and estrogen receptor target gene signatures, especially in ER+ cells, including TFF1 and TFF3. In addition, G0S2 overexpression increased cell migration in ER- cells and increased estrogen deprivation sensitivity in ER+ cells. Interestingly, two genes downstream of ATGL in fat utilization and very important in steroid hormone biosynthesis, HMGCS1 and HMGCS2, were downregulated in G0S2 overexpressing ER+ cells. In addition, HSD17B11, a gene that converts estradiol to its less estrogenic derivative, estrone, was highly upregulated in G0S2 overexpressing ER+ cells, suggesting G0S2 overexpression has a negative effect on estradiol production and maintenance. High expression of G0S2 and HSD17B11 was associated with improved relapse-free survival in breast cancer patients while high expression of HMGSC1 was associated with poor survival. Finally, we deleted G0S2 in breast cancer-prone MMTV-PyMT mice. Our data indicates a complex role for G0S2 in breast cancer, dependent on ER status, that may be partially mediated by suppression of the estrogen signaling pathway.
Collapse
Affiliation(s)
- Andrea K Corbet
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Emmanuel Bikorimana
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Raya I Boyd
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Doha Shokry
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kelly Kries
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ayush Gupta
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Anneliese Paton
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zhengyang Sun
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zeeshan Fazal
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sarah J Freemantle
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carle Illinois College of Medicine University of Illinois Urbana-Champaign, Urbana IL 61801, USA; Carl R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People Theme, University of Illinois Urbana-Champaign, Urbana IL 61801, USA; Cancer Center of Illinois, University of Illinois Urbana-Champaign, Urbana IL 61801, USA
| | - Michael J Spinella
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA; Carle Illinois College of Medicine University of Illinois Urbana-Champaign, Urbana IL 61801, USA; Carl R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People Theme, University of Illinois Urbana-Champaign, Urbana IL 61801, USA; Cancer Center of Illinois, University of Illinois Urbana-Champaign, Urbana IL 61801, USA.
| | - Ratnakar Singh
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
2
|
Lipolytic inhibitor G0S2 modulates glioma stem-like cell radiation response. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:147. [PMID: 30953555 PMCID: PMC6451284 DOI: 10.1186/s13046-019-1151-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Ionizing radiation (IR) therapy is the standard first-line treatment for newly diagnosed patients with glioblastoma (GBM), the most common and malignant primary brain tumor. However, the effects of IR are limited due to the aberrant radioresistance of GBM. METHODS Transcriptome analysis was performed using RNA-seq in radioresistant patient-derived glioma stem-like cells (GSCs). Survival of glioma patient and mice bearing-brain tumors was analyzed by Kaplan-Meier survival analysis. Lipid droplet and γ-H2AX foci-positive cells were evaluated using immunofluorescence staining. RESULTS Lipolytic inhibitor G0/G1 switch gene 2 (G0S2) is upregulated in radioresistant GSCs and elevated in clinical GBM. GBM patients with high G0S2 expression had significantly shorter overall survival compared with those with low expression of G0S2. Using genetic approaches targeting G0S2 in glioma cells and GSCs, we found that knockdown of G0S2 promoted lipid droplet turnover, inhibited GSC radioresistance, and extended survival of xenograft tumor mice with or without IR. In contrast, overexpression of G0S2 promoted glioma cell radiation resistance. Mechanistically, high expression of G0S2 reduced lipid droplet turnover and thereby attenuated E3 ligase RNF168-mediated 53BP1 ubiquitination through activated the mechanistic target of rapamycin (mTOR)-ribosomal S6 kinase (S6K) signaling and increased 53BP1 protein stability in response to IR, leading to enhanced DNA repair and glioma radioresistance. CONCLUSIONS Our findings uncover a new function for lipolytic inhibitor G0S2 as an important regulator for GSC radioresistance, suggesting G0S2 as a potential therapeutic target for treating gliomas.
Collapse
|