1
|
Kilanowska A, Szkudelski T. Effects of inhibition of phosphodiesterase 3B in pancreatic islets on insulin secretion: a potential link with some stimulatory pathways. Arch Physiol Biochem 2021; 127:250-257. [PMID: 31240952 DOI: 10.1080/13813455.2019.1628071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Elevated intracellular cAMP concentrations potentiate insulin secretion from pancreatic β cells. Phosphodiesterase 3B (PDE3B) is highly expressed in these cells and plays a role in the regulation of insulin secretion. MATERIALS AND METHODS In this study, effects of amrinone, an inhibitor of PDE3B on insulin release from isolated pancreatic islets, were determined. RESULTS Exposure of islets to amrinone for 15, 30 and 90 min markedly increased secretion induced by 6.7 mM glucose. Amrinone enhanced also secretion stimulated by 6.7 mM glucose and DB-cAMP, an activator of PKA. It was also demonstrated that amrinone potentiated insulin secretion induced by 6.7 mM glucose in the combination with PMA (activator of PKC) or acetylcholine. However, the insulin-secretory response to glucose and glibenclamide was unchanged by amrinone. CONCLUSIONS These results indicate that amrinone is capable of increasing insulin secretion; however, its action is restricted.
Collapse
Affiliation(s)
- Agnieszka Kilanowska
- Department of Anatomy and Histology, University of Zielona Gora, Zielona Gora, Poland
| | - Tomasz Szkudelski
- Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Poznan, Poland
| |
Collapse
|
2
|
Di Paola R, Caporarello N, Marucci A, Dimatteo C, Iadicicco C, Del Guerra S, Prudente S, Sudano D, Miele C, Parrino C, Piro S, Beguinot F, Marchetti P, Trischitta V, Frittitta L. ENPP1 affects insulin action and secretion: evidences from in vitro studies. PLoS One 2011; 6:e19462. [PMID: 21573217 PMCID: PMC3088669 DOI: 10.1371/journal.pone.0019462] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 03/30/2011] [Indexed: 12/20/2022] Open
Abstract
The aim of this study was to deeper investigate the mechanisms through which ENPP1, a negative modulator of insulin receptor (IR) activation, plays a role on insulin signaling, insulin secretion and eventually glucose metabolism. ENPP1 cDNA (carrying either K121 or Q121 variant) was transfected in HepG2 liver-, L6 skeletal muscle- and INS1E beta-cells. Insulin-induced IR-autophosphorylation (HepG2, L6, INS1E), Akt-Ser(473), ERK1/2-Thr(202)/Tyr(204) and GSK3-beta Ser(9) phosphorylation (HepG2, L6), PEPCK mRNA levels (HepG2) and 2-deoxy-D-glucose uptake (L6) was studied. GLUT 4 mRNA (L6), insulin secretion and caspase-3 activation (INS1E) were also investigated. Insulin-induced IR-autophosphorylation was decreased in HepG2-K, L6-K, INS1E-K (20%, 52% and 11% reduction vs. untransfected cells) and twice as much in HepG2-Q, L6-Q, INS1E-Q (44%, 92% and 30%). Similar data were obtained with Akt-Ser(473), ERK1/2-Thr(202)/Tyr(204) and GSK3-beta Ser(9) in HepG2 and L6. Insulin-induced reduction of PEPCK mRNA was progressively lower in untransfected, HepG2-K and HepG2-Q cells (65%, 54%, 23%). Insulin-induced glucose uptake in untransfected L6 (60% increase over basal), was totally abolished in L6-K and L6-Q cells. GLUT 4 mRNA was slightly reduced in L6-K and twice as much in L6-Q (13% and 25% reduction vs. untransfected cells). Glucose-induced insulin secretion was 60% reduced in INS1E-K and almost abolished in INS1E-Q. Serum deficiency activated caspase-3 by two, three and four folds in untransfected INS1E, INS1E-K and INS1E-Q. Glyburide-induced insulin secretion was reduced by 50% in isolated human islets from homozygous QQ donors as compared to those from KK and KQ individuals. Our data clearly indicate that ENPP1, especially when the Q121 variant is operating, affects insulin signaling and glucose metabolism in skeletal muscle- and liver-cells and both function and survival of insulin secreting beta-cells, thus representing a strong pathogenic factor predisposing to insulin resistance, defective insulin secretion and glucose metabolism abnormalities.
Collapse
Affiliation(s)
- Rosa Di Paola
- Research Unit of Diabetes and Endocrine
Diseases, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni
Rotondo, Italy
| | - Nunzia Caporarello
- Unit of Endocrinology, Department of Clinical
and Molecular Biomedicine, University of Catania Medical School, Garibaldi
Hospital, Catania, Italy
| | - Antonella Marucci
- Research Unit of Diabetes and Endocrine
Diseases, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni
Rotondo, Italy
| | - Claudia Dimatteo
- Research Unit of Diabetes and Endocrine
Diseases, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni
Rotondo, Italy
| | - Claudia Iadicicco
- Dipartimento di Biologia e Patologia Cellulare
e Molecolare and Istituto di Endocrinologia ed Oncologia Sperimentale del CNR,
Università degli Studi di Napoli Federico II, Naples, Italy
| | - Silvia Del Guerra
- Department of Endocrinology and Metabolism,
University of Pisa, Pisa, Italy
| | - Sabrina Prudente
- IRCCS “Casa Sollievo della Sofferenza,
Mendel Laboratory”, San Giovanni Rotondo, Italy
| | - Dora Sudano
- Unit of Endocrinology, Department of Clinical
and Molecular Biomedicine, University of Catania Medical School, Garibaldi
Hospital, Catania, Italy
| | - Claudia Miele
- Dipartimento di Biologia e Patologia Cellulare
e Molecolare and Istituto di Endocrinologia ed Oncologia Sperimentale del CNR,
Università degli Studi di Napoli Federico II, Naples, Italy
| | - Cristina Parrino
- Unit of Endocrinology, Department of Clinical
and Molecular Biomedicine, University of Catania Medical School, Garibaldi
Hospital, Catania, Italy
| | - Salvatore Piro
- Unit of Internal Medicine, Department of
Clinical and Molecular Biomedicine, University of Catania Medical School,
Garibaldi Hospital, Catania, Italy
| | - Francesco Beguinot
- Dipartimento di Biologia e Patologia Cellulare
e Molecolare and Istituto di Endocrinologia ed Oncologia Sperimentale del CNR,
Università degli Studi di Napoli Federico II, Naples, Italy
| | - Piero Marchetti
- Department of Endocrinology and Metabolism,
University of Pisa, Pisa, Italy
| | - Vincenzo Trischitta
- Research Unit of Diabetes and Endocrine
Diseases, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni
Rotondo, Italy
- IRCCS “Casa Sollievo della Sofferenza,
Mendel Laboratory”, San Giovanni Rotondo, Italy
- Department of Experimental Medicine, Sapienza
University, Rome, Italy
| | - Lucia Frittitta
- Unit of Endocrinology, Department of Clinical
and Molecular Biomedicine, University of Catania Medical School, Garibaldi
Hospital, Catania, Italy
| |
Collapse
|