1
|
Herradón E, González C, González A, Uranga JA, López-Miranda V. Cardiovascular Toxicity Induced by Chronic Vincristine Treatment. Front Pharmacol 2021; 12:692970. [PMID: 34366848 PMCID: PMC8333869 DOI: 10.3389/fphar.2021.692970] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/23/2021] [Indexed: 12/30/2022] Open
Abstract
Vincristine is an effective anticancer agent for treating leukemias, lymphomas, and other solid tumors. Vincristine's better-known severe side effects include bone marrow depression, hyponatremia, peripheral neuropathy, and gastrointestinal distress. In recent years, cardiovascular damage also has been described during vincristine treatments. However, the vascular toxicity induced by vincristine is little studied. The aim of the present is to evaluate whether these alterations remain after the suspension of chemotherapy treatment (sequelae) and the possible mechanisms involved in this vascular damage. Adult male Wistar rats were used. The animals were divided into four treatment groups: two groups of saline (0.9% NaCl; saline, sequelae saline) and two groups of vincristine (100 μg/kg; vincristine, sequelae vincristine). Saline or vincristine was administered intraperitoneally in two cycles of 5 days each, leaving a rest period between cycles of 2 days. The final cumulative vincristine dose administered was 1 mg/kg. Sequelae groups correspond to 2 weeks after stopping treatment with the antitumor agent. At the end of the different experimental protocols, cardiac and vascular functions were analyzed. Alterations in the expression of different proteins in the cardiovascular tissues were also investigated. Chronic treatment with vincristine did not produce significant changes in basal cardiac function but provoked significant endothelial dysfunction in the aorta and a significant decrease in the mesenteric contractile function. These cardiovascular functional alterations disappeared 2 weeks after the suspension of chemotherapy treatment. Vincristine treatment caused a significant increase in the expression of tumor necrosis factor-alpha (TNFα), endothelial and inducible nitric oxide synthases (eNOS and iNOS), and connexin 43 in cardiac tissue. In the aorta, the chronic treatment with vincristine caused a slight non-significant increase in TNFα expression, a significant increase in eNOS and iNOS, and a significant decrease in connexin 43. After 2 weeks of vincristine treatment (sequelae group), the expression of TNFα increased and eNOS and iNOS expressions disappeared, but a significant decrease in the expression of connexin 43 was still observed in the aorta. In mesenteric arteries, similar data to those found in the aorta were observed. In conclusion, chronic treatment with vincristine causes functional alterations in the vascular function of both conductance and resistance vessels and changes in the expressions of TNFα, eNOS, iNOS, and connexin 43 in cardiovascular tissues, implicating direct toxicity during its treatment. These functional alterations are transitory and disappear after the suspension of its treatment.
Collapse
Affiliation(s)
- Esperanza Herradón
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada al Instituto de Química Medica (IQM) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Spain.,High Performance Research Group in Experimental Pharmacology (Pharmakom-URJC), URJC, Alcorcón, Spain
| | - Cristina González
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada al Instituto de Química Medica (IQM) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Antonio González
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada al Instituto de Química Medica (IQM) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Spain.,High Performance Research Group in Experimental Pharmacology (Pharmakom-URJC), URJC, Alcorcón, Spain
| | - Jose Antonio Uranga
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), URJC, Alcorcón, Spain
| | - Visitación López-Miranda
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Spain.,Unidad Asociada al Instituto de Química Medica (IQM) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Spain.,High Performance Research Group in Experimental Pharmacology (Pharmakom-URJC), URJC, Alcorcón, Spain
| |
Collapse
|
2
|
Herradón E, González C, Uranga JA, Abalo R, Martín MI, López-Miranda V. Characterization of Cardiovascular Alterations Induced by Different Chronic Cisplatin Treatments. Front Pharmacol 2017; 8:196. [PMID: 28533750 PMCID: PMC5420557 DOI: 10.3389/fphar.2017.00196] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 03/24/2017] [Indexed: 01/17/2023] Open
Abstract
In the last years, many clinical studies have revealed that some cisplatin-treated cancer survivors have a significantly increased risk of cardiovascular events, being cisplatin-induced cardiovascular toxicity an increasing concern. The aim of the present work was to evaluate the cardiovascular alterations induced by different chronic cisplatin treatments, and to identify some of the mechanisms involved. Direct blood pressure, basal cardiac (left ventricle and coronary arteries) and vascular (aortic and mesenteric) functions were evaluated in chronic (5 weeks) saline- or cisplatin-treated male Wistar rats. Three different doses of cisplatin were tested (1, 2, and 3 mg/kg/week). Alterations in cardiac and vascular tissues were also investigated by immunohistochemistry, Western Blot, and or quantitative RT-PCR analysis. Cisplatin treatment provoked a significant modification of arterial blood pressure, heart rate, and basal cardiac function at the maximum dose tested. However, vascular endothelial dysfunction occurred at lower doses. The expression of collagen fibers and conexin-43 were increased in cardiac tissue in cisplatin-treated rats with doses of 2 and 3 mg/kg/week. The expression of endothelial nitric oxide synthase was also modified in cardiac and vascular tissues after cisplatin treatment. In conclusion, chronic cisplatin treatment provokes cardiac and vascular toxicity in a dose-dependent manner. Besides, vascular endothelial dysfunction occurs at lower doses than cardiac and systemic cardiovascular toxicity. Moreover, some structural changes in cardiac and vascular tissues are also patent even before any systemic cardiovascular alterations.
Collapse
Affiliation(s)
- Esperanza Herradón
- Área de Histología Humana y Anatomía Patológica, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan CarlosAlcorcón, Spain.,Unidad Asociada ICDCi del Instituto de Química Médica, Consejo Superior de Investigaciones CientíficasMadrid, Spain.,Grupo Interdisciplinar de Investigación en Dolor iCDol, Universidad Rey Juan Carlos-Banco de SantanderAlcorcón, Spain
| | - Cristina González
- Área de Histología Humana y Anatomía Patológica, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan CarlosAlcorcón, Spain.,Unidad Asociada ICDCi del Instituto de Química Médica, Consejo Superior de Investigaciones CientíficasMadrid, Spain.,Grupo Interdisciplinar de Investigación en Dolor iCDol, Universidad Rey Juan Carlos-Banco de SantanderAlcorcón, Spain
| | - José A Uranga
- Grupo Interdisciplinar de Investigación en Dolor iCDol, Universidad Rey Juan Carlos-Banco de SantanderAlcorcón, Spain.,Área de Histología Humana y Anatomía Patológica, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan CarlosAlcorcón, Spain
| | - Raquel Abalo
- Área de Histología Humana y Anatomía Patológica, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan CarlosAlcorcón, Spain.,Unidad Asociada ICDCi del Instituto de Química Médica, Consejo Superior de Investigaciones CientíficasMadrid, Spain.,Grupo Interdisciplinar de Investigación en Dolor iCDol, Universidad Rey Juan Carlos-Banco de SantanderAlcorcón, Spain
| | - Ma I Martín
- Área de Histología Humana y Anatomía Patológica, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan CarlosAlcorcón, Spain.,Unidad Asociada ICDCi del Instituto de Química Médica, Consejo Superior de Investigaciones CientíficasMadrid, Spain.,Grupo Interdisciplinar de Investigación en Dolor iCDol, Universidad Rey Juan Carlos-Banco de SantanderAlcorcón, Spain
| | - Visitacion López-Miranda
- Área de Histología Humana y Anatomía Patológica, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan CarlosAlcorcón, Spain.,Unidad Asociada ICDCi del Instituto de Química Médica, Consejo Superior de Investigaciones CientíficasMadrid, Spain.,Grupo Interdisciplinar de Investigación en Dolor iCDol, Universidad Rey Juan Carlos-Banco de SantanderAlcorcón, Spain
| |
Collapse
|
3
|
Paniagua N, Girón R, Goicoechea C, López‐Miranda V, Vela J, Merlos M, Martín Fontelles M. Blockade of sigma 1 receptors alleviates sensory signs of diabetic neuropathy in rats. Eur J Pain 2017; 21:61-72. [PMID: 27341510 PMCID: PMC5215451 DOI: 10.1002/ejp.897] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND E-52862 (S1RA, 4-[2-[[5-methyl-1-(2-naphthalenyl)-1H-pyrazol-3-yl]oxy]ethyl]-morpholine), a novel selective sigma 1 receptor (σ1R) antagonist, has demonstrated efficacy in nociceptive and neuropathic pain models. Our aim was to test if σ1R blockade with E-52862 may modify the signs of neuropathy in Zucker diabetic fatty (ZDF) rats, a type 2 diabetes model. METHODS Mechanical and thermal response thresholds were tested on 7-, 13-, 14- and 15-week-old ZDF rats treated with saline or with E-52862 acutely administered on week 13, followed by sub-chronic administration (14 days). Axonal peripheral activity (skin-saphenous nerve preparation) and isolated aorta or mesenteric bed reactivity were analysed in 15-week-old ZDF rats treated with saline or E-52862 and in LEAN rats. RESULTS Zucker diabetic fatty rats showed significantly decreased thermal withdrawal latency and threshold to mechanical stimulation on week 13 compared to week 7 (prediabetes) and with LEAN animals; single-dose and sub-chronic E-52862 administration restored both parameters to those recorded on week 7. Regarding axonal peripheral activity, E-52862 treatment increased the mean mechanical threshold (77.3 ± 21 mN vs. 19.6 ± 1.5 mN, saline group) and reduced the response evoked by mechanical increasing stimulation (86.4 ± 36.5 vs. 352.8 ± 41.4 spikes) or by repeated mechanical supra-threshold steps (39.4 ± 1.4 vs. 83.5 ± 0.9). E-52862 treatment also restored contractile response to phenylephrine in aorta and mesenteric bed. CONCLUSIONS E-52862 administration reverses neuropathic (behavioural and electrophysiological) and vascular signs in the ZDF rat. SIGNIFICANCE Blockade of σ1R avoids the development of diabetic neuropathy in rats, and may represent a potentially useful therapeutic approach to peripheral neuropathies in diabetic patients. WHAT DOES THIS STUDY ADD?: This study presents evidences for the potential usefulness of sigma receptor blockade on diabetic neuropathy in rats. The methodology includes behavioural evidences, electrophysiological data and vascular-isolated models.
Collapse
Affiliation(s)
- N. Paniagua
- Farmacología y NutriciónFacultad de Ciencias de la SaludUniversidad Rey Juan CarlosUnidad Asociada CSIC‐IQMAlcorcónSpain
| | - R. Girón
- Farmacología y NutriciónFacultad de Ciencias de la SaludUniversidad Rey Juan CarlosUnidad Asociada CSIC‐IQMAlcorcónSpain
| | - C. Goicoechea
- Farmacología y NutriciónFacultad de Ciencias de la SaludUniversidad Rey Juan CarlosUnidad Asociada CSIC‐IQMAlcorcónSpain
| | - V. López‐Miranda
- Farmacología y NutriciónFacultad de Ciencias de la SaludUniversidad Rey Juan CarlosUnidad Asociada CSIC‐IQMAlcorcónSpain
| | - J.M. Vela
- Drug Discovery & Preclinical ResearchEsteveBarcelonaSpain
| | - M. Merlos
- Drug Discovery & Preclinical ResearchEsteveBarcelonaSpain
| | - M.I. Martín Fontelles
- Farmacología y NutriciónFacultad de Ciencias de la SaludUniversidad Rey Juan CarlosUnidad Asociada CSIC‐IQMAlcorcónSpain
| |
Collapse
|
4
|
López-Miranda V, Soto-Montenegro ML, Uranga-Ocio JA, Vera G, Herradón E, González C, Blas C, Martínez-Villaluenga M, López-Pérez AE, Desco M, Abalo R. Effects of chronic dietary exposure to monosodium glutamate on feeding behavior, adiposity, gastrointestinal motility, and cardiovascular function in healthy adult rats. Neurogastroenterol Motil 2015; 27:1559-70. [PMID: 26303145 DOI: 10.1111/nmo.12653] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/15/2015] [Indexed: 01/29/2023]
Abstract
BACKGROUND Monosodium glutamate (MSG) is a flavor-enhancer widely used as a food additive. However, its safe dietary concentration and its toxicity, including its possible implication in the recent metabolic syndrome pandemia, is still a controversial issue. Therefore, a deep knowledge of its effects upon regular dietary use is needed. Our aim was to evaluate the effects of chronic exposure to MSG on feeding behavior, abdominal fat, gastrointestinal motility, and cardiovascular function in rats. METHODS Two groups of adult male Wistar rats were used: control and treated with MSG (4 g/L in drinking water) for 6 weeks. Different functional parameters were determined and the histological structure was analyzed in tissues of interest. KEY RESULTS Compared to control animals, chronic MSG increased water intake but did not modify food ingestion or body weight gain. Neither the abdominal fat volume nor the fat fraction, measured by magnetic resonance imaging, was modified by MSG. Monosodium glutamate did not alter general gastrointestinal motility, but significantly increased the colonic response to mechanical stimulation. It slightly reduced endothelium-dependent relaxation in aorta, without significantly modifying any other cardiovascular parameters. No significant histological alterations were detected in salivary glands, intestinal wall, aorta, heart, and kidney. CONCLUSIONS & INFERENCES Chronic treatment with MSG in the adult rat increased water intake. This supports its potential to improve acceptance of low-fat regimens and to increase hydration in the elderly and sportspeople, often at risk of dehydration. Changes in colonic contractility and cardiovascular function could have some long-term repercussions warranting further research.
Collapse
Affiliation(s)
- V López-Miranda
- Área de Farmacología y Nutrición y Unidad Asociada al Instituto de Química Médica(IQM) y al Centro de Investigación de Alimentos (CIAL) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - M L Soto-Montenegro
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,CIBER de Salud Mental (CIBERSAM), Madrid, Spain
| | - J A Uranga-Ocio
- Área de Histología y Anatomía Patológica y Unidad Asociada al Centro de Investigación de Alimentos (CIAL), Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - G Vera
- Área de Farmacología y Nutrición y Unidad Asociada al Instituto de Química Médica(IQM) y al Centro de Investigación de Alimentos (CIAL) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - E Herradón
- Área de Farmacología y Nutrición y Unidad Asociada al Instituto de Química Médica(IQM) y al Centro de Investigación de Alimentos (CIAL) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - C González
- Área de Farmacología y Nutrición y Unidad Asociada al Instituto de Química Médica(IQM) y al Centro de Investigación de Alimentos (CIAL) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - C Blas
- Área de Farmacología y Nutrición y Unidad Asociada al Instituto de Química Médica(IQM) y al Centro de Investigación de Alimentos (CIAL) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - M Martínez-Villaluenga
- Área de Farmacología y Nutrición y Unidad Asociada al Instituto de Química Médica(IQM) y al Centro de Investigación de Alimentos (CIAL) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - A E López-Pérez
- Unidad del Dolor, Servicio de Anestesiología, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - M Desco
- Dept. Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
| | - R Abalo
- Área de Farmacología y Nutrición y Unidad Asociada al Instituto de Química Médica(IQM) y al Centro de Investigación de Alimentos (CIAL) del Consejo Superior de Investigaciones Científicas (CSIC), Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| |
Collapse
|
5
|
Badavi M, Abedi HA, Sarkaki AR, Dianat M. Co-administration of Grape Seed Extract and Exercise Training Improves Endothelial Dysfunction of Coronary Vascular Bed of STZ-Induced Diabetic Rats. IRANIAN RED CRESCENT MEDICAL JOURNAL 2013; 15:e7624. [PMID: 24693368 PMCID: PMC3950780 DOI: 10.5812/ircmj.7624] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 02/02/2013] [Accepted: 07/15/2013] [Indexed: 02/07/2023]
Abstract
Background One of the known complications of diabetes mellitus is vascular dysfunction. Inability of the coronary vascular response to cardiac hyperactivity might cause a higher incidence of ischemic heart disease in diabetic subjects. It has been indicated that regular exercise training and antioxidants could prevent diabetic cardiovascular problems enhanced by vascular damage. Objectives The aim of this study was to determine the effects of grape seed extract (as antioxidant), with and without exercise training on coronary vascular function in streptozotocin induced diabetic rats. Materials and Methods Fifty male Wistar rats weighing 200 – 232 grams were randomly divided into five groups of 10 rats each: sedentary control, sedentary diabetic, trained diabetic, grape seed extract (200 mg/kg) treated sedentary diabetic and, grape seed extract treated trained diabetic. Diabetes was induced by one intraperitoneal injection of streptozotocin. After eight weeks, coronary vascular responses to vasoactive agents were determined. Results The endothelium dependent vasorelaxation to acetylcholine was reduced significantly in diabetic animals; exercise training or grape seed extract administration partially improves this response. However, exercise training in combination with grape seed extract restores endothelial function completely. The endothelium independent vasorelaxation to sodium nitroprusside was improved by combination of exercise training and grape seed extract. On the other hand, the basal perfusion pressure and vasoconstrictive response to phenylephrine did not change significantly. Conclusions The data indicated that co-administration of grape seed extract and exercise training had more significant effects than exercise training or grape seed extract alone; this may constitute a convenient and inexpensive therapeutic approach to diabetic vascular complications.
Collapse
Affiliation(s)
- Mohammad Badavi
- Physiology Research Center, Physiology Department, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| | - Hassan Ali Abedi
- Physiology Department, Faculty of Medicine, Jahrom University of Medical Sciences, Jahrom, IR Iran
- Corresponding Author: Hassan Ali Abedi, Physiology Department, Faculty of Medicine, Jahrom University of Medical Sciences, Jahrom, IR Iran. Tel: +98-7913340405, Fax: +98-7914440072, E-mail:
| | - Ali Reza Sarkaki
- Physiology Research Center, Physiology Department, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| | - Mahin Dianat
- Physiology Research Center, Physiology Department, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, IR Iran
| |
Collapse
|
6
|
Capellini VK, Baldo CF, Celotto AC, Batalhão ME, Cárnio EC, Rodrigues AJ, Evora PRB. Oxidative stress is not associated with vascular dysfunction in a model of alloxan-induced diabetic rats. ACTA ACUST UNITED AC 2011; 54:530-9. [PMID: 20857057 DOI: 10.1590/s0004-27302010000600004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 07/06/2010] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To verify if an experimental model of alloxan-diabetic rats promotes oxidative stress, reduces nitric oxide bioavailability and causes vascular dysfunction, and to evaluate the effect of N-acetylcysteine (NAC) on these parameters. METHODS Alloxan-diabetic rats were treated or not with NAC for four weeks. Plasmatic levels of malondialdehyde (MDA) and nitrite/nitrate (NOx), the endothelial and inducible nitric oxide synthase (eNOS and iNOS) immunostaining and the vascular reactivity of aorta were compared among diabetic (D), treated diabetic (TD) and control (C) rats. RESULTS MDA levels increased in D and TD. NOx levels did not differ among groups. Endothelial eNOS immunostaining reduced and adventitial iNOS increased in D and TD. The responsiveness of rings to acetylcholine, sodium nitroprusside, and phenylephrine did not differ among groups. CONCLUSIONS NAC had no effect on the evaluated parameters and this experimental model did not promote vascular dysfunction despite the development of oxidative stress.
Collapse
Affiliation(s)
- Verena Kise Capellini
- Departamento de Cirurgia e Anatomia, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
7
|
Mita M, Kuramoto T, Ito K, Toguchi-Senrui N, Hishinuma S, Walsh MP, Shoji M. Impairment of α1-adrenoceptor-mediated contractile activity in caudal arterial smooth muscle from type 2 diabetic Goto-Kakizaki rats. Clin Exp Pharmacol Physiol 2009; 37:350-7. [PMID: 19793102 DOI: 10.1111/j.1440-1681.2009.05308.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. In the present study, we compared the responsiveness of de-endothelialized caudal artery smooth muscle strips, isolated from Type 2 diabetic Goto-Kakizaki (GK) and normal Wistar rats, to alpha(1)-adrenoceptor stimulation (cirazoline) and membrane depolarization (K(+)). 2. The contractile and myosin 20 kDa light chain (LC(20)) phosphorylation responses to 0.3 micromol/L cirazoline of caudal artery strips isolated from 12-week-old GK rats were significantly reduced compared with those of age-matched Wistar rats, whereas the contractile and LC(20) phosphorylation responses to 60 mmol/L K(+) were unaltered. 3. Stimulation of fura 2-AM-loaded strips from GK rats with 0.3 micromol/L cirazoline induced a significantly smaller rise in [Ca(2+)](i) (by approximately 20%) compared with that in strips from Wistar rats, whereas comparable Ca(2+) transients were evoked by K(+) in both. 4. Using quantitative polymerase chain reaction, no significant differences were detected in the mRNA expression of alpha(1A)-, alpha(1B)- and alpha(1D)-adrenoceptor subtypes between GK and Wistar rats. 5. Cirazoline (1 micromol/L)- and caffeine (20 mmol/L)-induced contractions in the absence of extracellular Ca(2+) were unaltered in GK rats, suggesting that the release of Ca(2+) from the sarcoplasmic reticulum in response to cirazoline does not differ between GK and Wistar rats. 6. The results of the present study suggest that Ca(2+) entry from the extracellular space via alpha(1)-adrenoceptor-activated, Ca(2+)-permeable channels, but not via membrane depolarization and voltage-gated L-type Ca(2+) channels, is impaired in caudal artery smooth muscle of GK rats.
Collapse
Affiliation(s)
- Mitsuo Mita
- Department of Pharmacodynamics, Meiji Pharmaceutical University, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
8
|
Tirapelli CR, Leone AFC, Yogi A, Tostes RC, Lanchote VL, Uyemura SA, Resstel LBM, Corrêa FMA, Padovan CM, de Oliveira AM, Coelho EB. Ethanol consumption increases blood pressure and alters the responsiveness of the mesenteric vasculature in rats. J Pharm Pharmacol 2008; 60:331-41. [PMID: 18284813 DOI: 10.1211/jpp.60.3.0008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Chronic ethanol consumption and hypertension are related. In the current study we investigated whether changes in reactivity of the mesenteric arterial bed could account for the increased blood pressure associated with chronic ethanol intake. Changes in reactivity to phenylephrine and acetylcholine were investigated in the perfused mesenteric bed from rats treated with ethanol for 2 or 6 weeks and their age-matched controls. Mild hypertension was observed in chronically ethanol-treated rats. Treatment of rats for 6 weeks induced an increase in the contractile response of endothelium-intact mesenteric bed to phenylephrine, but not denuded rat mesenteric bed. The phenylephrine-induced increase in perfusion pressure was not altered after 2 weeks' treatment with ethanol. Moreover, acetylcholine-induced endothelium-dependent relaxation was reduced by ethanol treatment for 6 weeks, but not 2 weeks. Pre-treatment with indometacin, a cyclooxygenase inhibitor, reduced the maximum effect induced by phenylephrine (Emax) in endothelium-intact mesenteric bed from both control and ethanol-treated rats. No differences in the Emax values for phenylephrine were observed between groups in the presence of indometacin. L-NNA, a nitric oxide (NO) synthase (NOS) inhibitor, increased the Emax for phenylephrine in endothelium-intact mesenteric bed from control rats but not from ethanol-treated rats. Levels of endothelial NOS (eNOS) mRNA were not altered by chronic ethanol consumption. However, chronic ethanol intake strongly reduced eNOS protein levels in the mesenteric bed. This study shows that chronic ethanol consumption increases blood pressure and alters the reactivity of the mesenteric bed. Moreover, the increased vascular response to phenylephrine observed in the mesenteric bed is maintained by two mechanisms: an increased release of endothelial-derived vasoconstrictor prostanoids and a reduced modulatory action of endothelial NO, which seems to be associated with reduced post-transcriptional expression of eNOS.
Collapse
Affiliation(s)
- Carlos R Tirapelli
- Department of Psychiatric Nursing and Human Sciences, College of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Evaluation of dynamic response and biomechanical properties of isolated blood vessels. ACTA ACUST UNITED AC 2008; 70:966-72. [PMID: 18281096 DOI: 10.1016/j.jprot.2007.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 06/24/2007] [Accepted: 12/31/2007] [Indexed: 02/05/2023]
Abstract
In this study we present the experimental and mathematical model for a precise assessment of isolated blood vessels dynamic response under a sudden change of blood pressure. Only the end points within the time interval of the considered dynamic response of the blood vessel, or so-called "alternate steady states" of the processes, were usually considered in various studies. These studies do not provide an insight how the process variables change between these alternate steady states. Isolated blood vessels (rat abdominal aorta) were used to determine how the process dynamics can be described in detailed quantitative terms by mathematical parameters. The experimental model and mathematical procedures presented in this study describe precisely (at a high sensitivity level) the time history of the pressure and the diameter change in between alternate steady states, when an abrupt change of blood pressure occurs at the vessel outlet. Also, the experimental model and mathematical procedures were used to determine changes in the stress-strain law, caused by the action of L-arginine. The presented experimental design and mathematical model can be used for assessment of isolated blood vessel dynamic responses under different stimuli, such as drug effects, electrostimulation etc.
Collapse
|
10
|
Tirapelli CR, Leone AFC, Coelho EB, Resstel LBM, Corrêa FMA, Lanchote VL, Uyemura SA, Padovan CM, de Oliveira AM. Effect of ethanol consumption on blood pressure and rat mesenteric arterial bed, aorta and carotid responsiveness. J Pharm Pharmacol 2007; 59:985-93. [PMID: 17637194 DOI: 10.1211/jpp.59.7.0011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study investigates whether chronic ethanol consumption increases blood pressure and alters vascular reactivity in different tissues. Changes in reactivity to phenylephrine and acetylcholine were investigated in the aorta, carotid artery and mesenteric arterial bed (MAB) isolated from rats pretreated with ethanol for 2 or 6 weeks. Mild hypertension was observed in chronically ethanol-treated rats, which was due to rises in both systolic and diastolic pressures. Chronic ethanol consumption increased the contractile response to phenylephrine of endothelium-intact and denuded rat aortic rings from rats pretreated with ethanol for 2 or 6 weeks. Conversely, no differences were found in acetylcholine-induced relaxation. Neither phenylephrine-induced contraction nor acetylcholine-induced relaxation were altered in the rat carotid. Six weeks' ethanol consumption enhanced the contractile response to phenylephrine of endothelium-intact, but not denuded rat MAB. On the other hand, 2 weeks' ethanol consumption did not affect phenylephrine-induced increase in perfusion pressure. Moreover, acetylcholine-induced endothelium-dependent relaxation in the MAB was reduced after treatment with ethanol for 6 weeks but not after 2 weeks. In conclusion, ethanol affects both blood pressure and vessel reactivity, but the effect on vascular reactivity may take longer to become apparent in MAB than in the aorta, and was not evident in the carotid. Moreover, we provide evidence that the effect of ethanol depends on the agonist and blood vessel studied.
Collapse
Affiliation(s)
- Carlos R Tirapelli
- Department of Psychiatry Nursing and Human Sciences, College of Nursing of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Shi Y, Ku DD, Man RYK, Vanhoutte PM. Augmented endothelium-derived hyperpolarizing factor-mediated relaxations attenuate endothelial dysfunction in femoral and mesenteric, but not in carotid arteries from type I diabetic rats. J Pharmacol Exp Ther 2006; 318:276-81. [PMID: 16565165 DOI: 10.1124/jpet.105.099739] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Individual vascular beds exhibit differences in vascular reactivity. The present study investigates the effects of streptozotocin-induced type I diabetes on endothelium-dependent responses of rat carotid, femoral, and mesenteric arteries. Rings with and without endothelium, suspended in organ chambers for isometric tension recording, were contracted with phenylephrine and exposed to increasing concentrations of acetylcholine. In carotid and femoral arteries, acetylcholine produced concentration- and endothelium-dependent relaxations that were abolished by Nomega-nitro-L-arginine methyl ester (L-NAME; specific nitric-oxide synthase inhibitor) and were impaired slightly in preparations from streptozotocin-treated rats (STZ-rats). This impairment could be prevented by L-arginine. In femoral arteries incubated with L-NAME, acetylcholine caused endothelium-dependent contractions that were abolished by 3-[(6-amino-(4-chlorobenzensulfonyl)-2-methyl-5,6,7,8-tetrahydronapht]-1-yl) propionic acid (S18886) (antagonist of thromboxane A2/prostaglandins H2-receptors) and reversed to relaxation by indomethacin (inhibitor of cyclooxygenase). The latter relaxation was inhibited by charybdotoxin plus apamin, suggesting a role of endothelium-dependent hyperpolarizing factor (EDHF). This EDHF-mediated component was augmented slightly in arteries from STZ-rats. In mesenteric arteries, relaxations to acetylcholine were only partially inhibited by L-NAME, and the L-NAME-resistant component was abolished by charybdotoxin plus apamin. In the mesenteric arteries from STZ-rats, L-NAME-sensitive relaxations to acetylcholine were reduced and the EDHF-component was augmented. These findings demonstrate a marked heterogeneity in endothelium-dependent responses in rat arteries and their differential adaptation in the course of type I diabetes. In particular, the EDHF-mediated component not only compensates for the reduced bioavailability of nitric oxide in the femoral and mesenteric artery but also counteracts the augmented endothelium-dependent contractions in the former.
Collapse
Affiliation(s)
- Yi Shi
- Department of Pharmacology, 2/F, Laboratory Block, Faculty of Medicine Bldg. 21, Sassoon Rd., Pokfulam, University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|