1
|
Kuneš J, Zicha J. Research on Experimental Hypertension in Prague (1966-2009). Physiol Res 2024; 73:S49-S66. [PMID: 39016152 PMCID: PMC11412355 DOI: 10.33549/physiolres.935425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 09/04/2024] Open
Abstract
The study of ontogenetic aspects of water and electrolyte metabolism performed in the Institute of Physiology (Czechoslovak Academy of Sciences) led to the research on the increased susceptibility of immature rats to salt-dependent forms of hypertension since 1966. Hemodynamic studies in developing rats paved the way to the evaluation of hemodynamic mechanisms during the development of genetic hypertension in SHR. A particular attention was focused on altered renal function and kidney damage in both salt and genetic hypertension with a special respect to renin-angiotensin system. Renal damage associated with hypertension progression was in the center of interest of several research groups in Prague. The alterations in ion transport, cell calcium handling and membrane structure as well as their relationship to abnormal lipid metabolism were studied in a close cooperation with laboratories in Munich, Glasgow, Montreal and Paris. The role of NO and oxidative stress in various forms of hypertension was a subject of a joint research with our Slovak colleagues focused mainly on NO-deficient hypertension elicited by chronic L-NAME administration. Finally, we adopted a method enabling us to evaluate the balance of vasoconstrictor and vasodilator mechanisms in BP maintenance. Using this method we demonstrated sympathetic hyperactivity and relative NO deficiency in rats with either salt-dependent or genetic hypertension. At the end of the first decennium of this century we were ready to modify our traditional approach towards modern trends in the research of experimental hypertension. Keywords: Salt-dependent hypertension o Genetic hypertension o Body fluids o Hemodynamics o Ion transport o Cell membrane structure and function o Renal function o Renin-angiotensin systems.
Collapse
Affiliation(s)
- J Kuneš
- Laboratory of Experimental Hypertension, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.
| | | |
Collapse
|
2
|
De Souza Gonçalves B, Toledo MM, Colodette NM, Chaves ALF, Muniz LV, Ribeiro RIMDA, Dos Santos HB, Cortes VF, Soares JMA, Barbosa LA, de Lima Santos H. Evaluation of the Erythrocyte Membrane in Head and Neck Cancer Patients. J Membr Biol 2020; 253:617-629. [PMID: 33089392 DOI: 10.1007/s00232-020-00147-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/10/2020] [Indexed: 11/28/2022]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous and complex disease, both from a clinical and molecular point of view. The prolonged use of alcohol and tobacco, along with the release of tumor secretions can modulate blood cells, such as erythrocytes. Here, this study was conducted with 24 patients diagnosed with HNSCC and an equal number of healthy individuals are matched by age and gender. The levels of lipid peroxidation were measured using the individual plasma, while for lipid concentrations, identification and quantification Na, K-ATPase activity and osmotic fragility, the red blood cell concentrate were used. The release of TBARS was significantly higher in patients with HNSCC. The lipid profile assays demonstrated a rearrangement of the erythrocyte membrane due to a decrease in total phospholipids and phosphatidylethanolamine followed by an increase in total cholesterol and phosphatidylcholine. Na, K-ATPase activity also increased. Erythrocytes were more fragile in patients with HNSCC than in health individuals. Therefore, the membrane of erythrocytes were rearranged and Na, K-ATPase function altered in the HNSCC patients. Our findings suggests that the alcohol, tobacco and tumor secretion modulate in a specific manner that the erythrocytes membranes of these patients making this system a potential tool for HNSCC biomarker of tumor progression.
Collapse
Affiliation(s)
- Bruno De Souza Gonçalves
- Laboratório de Bioquímica Celular, Federal University of São João del Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Divinopolis, MG, 35501-296, Brazil
| | - Marina Marques Toledo
- Laboratório de Bioquímica Celular, Federal University of São João del Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Divinopolis, MG, 35501-296, Brazil
| | - Natalie Mounteer Colodette
- Laboratório de Bioquímica Celular, Federal University of São João del Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Divinopolis, MG, 35501-296, Brazil
| | - Aline Lauda Freitas Chaves
- Study Group On Head and Neck Cancer, Federal University of São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil
| | - Luciana Vieira Muniz
- Study Group On Head and Neck Cancer, Federal University of São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil
| | - Rosy Iara Maciel De A Ribeiro
- Laboratório de Patologia Experimental, Federal University of São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Hélio Batista Dos Santos
- Laboratório de Processamento de Tecidos, Federal University of São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Vanessa F Cortes
- Laboratório de Bioquímica Celular, Federal University of São João del Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Divinopolis, MG, 35501-296, Brazil
| | - João Marcos Arantes Soares
- Study Group On Head and Neck Cancer, Federal University of São João del Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil.,Faculdade de Medicina, Federal University of São João del Rei, Campus Centro-Oeste Dona Lindu, Divinopolis, Minas Gerais, Brazil
| | - Leandro A Barbosa
- Laboratório de Bioquímica Celular, Federal University of São João del Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Divinopolis, MG, 35501-296, Brazil.
| | - Hérica de Lima Santos
- Laboratório de Bioquímica Celular, Federal University of São João del Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho, 400, Divinopolis, MG, 35501-296, Brazil.
| |
Collapse
|
3
|
Renó CO, Barbosa AR, de Carvalho SS, Pinheiro MB, Rios DR, Cortes VF, Barbosa LA, Santos HL. Oxidative stress assessment in sickle cell anemia patients treated with hydroxyurea. Ann Hematol 2020; 99:937-945. [PMID: 32166377 DOI: 10.1007/s00277-020-03987-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 03/01/2020] [Indexed: 12/27/2022]
Abstract
Hydroxyurea (HU) is used as a therapy in sickle cell anemia (SCA). Many studies have established that HU improves patient quality of life by reducing symptoms. However, the effect of HU on erythrocytes is not well-described. We evaluated several parameters related to oxidative stress and total lipid content of erythrocytes in patients with SCA. The patient cohort consisted of 7 SCA patients treated with HU, 17 untreated SCA patients, and 15 healthy subjects. Erythrocytes from patients with SCA displayed increased oxidative stress relative to the control group, including higher thiobarbituric acid reactive substances (TBARS), Fe3+ content, and osmotic fragility, and decreased total cholesterol. We observed that treatment of SCA patients with HU increased Fe3+ content and activity of glutathione peroxidase, and decreased glutathione reductase activity, glutathione levels, total cholesterol, and phospholipid content comaperaded to patients untreated with HU. Thus, HU alters biochemical characteristics of erythrocytes; future studies will determine whether they are beneficial or not.
Collapse
Affiliation(s)
- Cristiane O Renó
- Laboratório de Bioquímica Celular, Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho 400, Divinópolis, 35501-296, Brazil
| | - Amanda Rodrigues Barbosa
- Laboratório de Hematologia Clínica, Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho 400, Divinópolis, 35501-296, Brazil
| | - Sara Santos de Carvalho
- Laboratório de Hematologia Clínica, Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho 400, Divinópolis, 35501-296, Brazil
| | - Melina B Pinheiro
- Laboratório de Análises Clínicas, Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho 400, Divinópolis, 35501-296, Brazil
| | - Danyelle Romana Rios
- Laboratório de Hematologia Clínica, Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho 400, Divinópolis, 35501-296, Brazil
| | - Vanessa F Cortes
- Laboratório de Bioquímica Celular, Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho 400, Divinópolis, 35501-296, Brazil
| | - Leandro A Barbosa
- Laboratório de Bioquímica Celular, Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho 400, Divinópolis, 35501-296, Brazil
| | - Hérica L Santos
- Laboratório de Bioquímica Celular, Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, Av Sebastião Gonçalves Coelho 400, Divinópolis, 35501-296, Brazil.
| |
Collapse
|
4
|
Repetti RL, Meth J, Sonubi O, Flores D, Satlin LM, Rohatgi R. Cellular cholesterol modifies flow-mediated gene expression. Am J Physiol Renal Physiol 2019; 317:F815-F824. [PMID: 31364378 DOI: 10.1152/ajprenal.00196.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Downregulation of heme oxygenase-1 (HO-1), cyclooxygenase-2 (COX2), and nitric oxide synthase-2 (NOS2) in the kidneys of Dahl rodents causes salt sensitivity, while restoring their expression aids in Na+ excretion and blood pressure reduction. Loading cholesterol into collecting duct (CD) cells represses fluid shear stress (FSS)-mediated COX2 activity. Thus, we hypothesized that cholesterol represses flow-responsive genes necessary to effectuate Na+ excretion. To this end, CD cells were used to test whether FSS induces these genes and if cholesterol loading represses them. Mice fed either 0% or 1% cholesterol diet were injected with saline, urine volume and electrolytes were measured, and renal gene expression determined. FSS-exposed CD cells demonstrated increases in HO-1 mRNA by 350-fold, COX2 by 25-fold, and NOS2 by 8-fold in sheared cells compared with static cells (P < 0.01). Immunoblot analysis of sheared cells showed increases in HO-1, COX2, and NOS2 protein, whereas conditioned media contained more HO-1 and PGE2 than static cells. Cholesterol loading repressed the sheared mediated protein abundance of HO-1 and NOS2 as well as HO-1 and PGE2 concentrations in media. In cholesterol-fed mice, urine volume was less at 6 h after injection of isotonic saline (P < 0.05). Urinary Na+ concentration, urinary K+ concentration, and osmolality were greater, whereas Na+ excretion was less, at the 6-h urine collection time point in cholesterol-fed versus control mice (P < 0.05). Renal cortical and medullary HO-1 (P < 0.05) and NOS2 (P < 0.05) mRNA were repressed in cholesterol-fed compared with control mice. Cholesterol acts to repress flow induced natriuretic gene expression, and this effect, in vivo, may contribute to renal Na+ avidity.
Collapse
Affiliation(s)
- Robert L Repetti
- Northport Veterans Affairs Medical Center, Northport, New York.,Stony Brook University School of Medicine, Stony Brook, New York
| | - Jennifer Meth
- Northport Veterans Affairs Medical Center, Northport, New York
| | - Oluwatoni Sonubi
- Northport Veterans Affairs Medical Center, Northport, New York.,Stony Brook University School of Medicine, Stony Brook, New York
| | - Daniel Flores
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lisa M Satlin
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rajeev Rohatgi
- Northport Veterans Affairs Medical Center, Northport, New York.,Stony Brook University School of Medicine, Stony Brook, New York
| |
Collapse
|
5
|
Vokurková M, Rauchová H, Dobešová Z, Loukotová J, Nováková O, Kuneš J, Zicha J. The influence of erythrocyte maturity on ion transport and membrane lipid composition in the rat. Physiol Res 2016; 65:91-9. [PMID: 26988297 DOI: 10.33549/physiolres.933326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Significant relationships between ion transport and membrane lipid composition (cholesterol, total phospholipids and sphingomyelins) were found in erythrocytes of salt hypertensive Dahl rats. In these animals mean cellular hemoglobin content correlated negatively with Na(+)-K(+) pump activity and Na(+) leak but positively with Na(+)-K(+) cotransport activity. Immature erythrocytes exhibit lower mean cellular hemoglobin content (MCHC) than mature ones. The aim of the present study was to find a relationship between erythrocyte maturity, membrane lipid composition and ion transport activity in Wistar rats aged three months which were subjected to repeated hemorrhage (blood loss 2 ml/day for 6 days) to enrich circulating erythrocytes with immature forms. Immature and mature erythrocyte fractions in control and hemorrhaged rats were separated by repeated centrifugation. Hemorrhaged rats had increased number of reticulocytes but reduced hematocrit and MCHC compared to control rats. Immature erythrocytes of hemorrhaged rats differed from mature ones of control animals by elevated Na(+)-K(+) pump activity, reduced Na(+)-K(+) cotransport activity and increased Rb(+) leak. These ion transport changes in immature erythrocytes were accompanied by higher concentration of total phospholipids in their cell membranes. Membrane phospholipid content correlated positively with Na(+)-K(+) pump activity and cation leaks but negatively with Na(+)-K(+) cotransport activity. Moreover, they were also negatively related with MCHC which correlated negatively with Na(+)-K(+) pump activity and Rb(+) leak but positively with Na(+)-K(+) cotransport activity. Thus certain abnormalities of erythrocyte ion transport and membrane lipid composition detected in hypertensive animals might be caused by higher incidence of immature cells.
Collapse
Affiliation(s)
- M Vokurková
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
6
|
Yoon MS, Won KJ, Kim DY, Hwang DI, Yoon SW, Jung SH, Lee KP, Jung D, Choi WS, Kim B, Lee HM. Diminished Lipid Raft SNAP23 Increases Blood Pressure by Inhibiting the Membrane Fluidity of Vascular Smooth-Muscle Cells. J Vasc Res 2016; 52:321-33. [PMID: 26930561 DOI: 10.1159/000443888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/10/2016] [Indexed: 11/19/2022] Open
Abstract
Synaptosomal-associated protein 23 (SNAP23) is involved in microvesicle trafficking and exocytosis in various cell types, but its functional role in blood pressure (BP) regulation has not yet been defined. Here, we found that lipid raft SNAP23 expression was much lower in vascular smooth-muscle cells (VSMCs) from spontaneously hypertensive rats (SHR) than in those from normotensive Wistar-Kyoto (WKY) rats. This led us to investigate the hypothesis that this lower expression may be linked to the spontaneous hypertension found in SHR. The expression level of lipid raft SNAP23 and the fluidity in the plasma membrane of VSMCs were lower in SHR than in WKY rats. Cholesterol content in the VSMC membrane was higher, but the secreted cholesterols found in VSMC-conditioned medium and in the blood serum were lower in SHR than in WKY rats. SNAP23 knockdown in WKY rat VSMCs reduced the membrane fluidity and increased the membrane cholesterol level. Systemic overexpression of SNAP23 in SHR resulted in an increase of cholesterol content in their serum, a decrease in cholesterol in their aorta and the reduction of their BP. Our findings suggest that the low expression of the lipid raft SNAP23 in VSMCs might be a potential cause for the characteristic hypertension of SHR.
Collapse
Affiliation(s)
- Mi So Yoon
- Department of Cosmetic Science, College of Life and Health Sciences, Hoseo University, Asan, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Sousa L, Garcia IJP, Costa TGF, Silva LND, Renó CO, Oliveira ES, Tilelli CQ, Santos LL, Cortes VF, Santos HL, Barbosa LA. Effects of Iron Overload on the Activity of Na,K-ATPase and Lipid Profile of the Human Erythrocyte Membrane. PLoS One 2015. [PMID: 26197432 PMCID: PMC4510300 DOI: 10.1371/journal.pone.0132852] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Iron is an essential chemical element for human life. However, in some pathological conditions, such as hereditary hemochromatosis type 1 (HH1), iron overload induces the production of reactive oxygen species that may lead to lipid peroxidation and a change in the plasma-membrane lipid profile. In this study, we investigated whether iron overload interferes with the Na,K-ATPase activity of the plasma membrane by studying erythrocytes that were obtained from the whole blood of patients suffering from iron overload. Additionally, we treated erythrocytes of normal subjects with 0.8 mM H2O2 and 1 μM FeCl3 for 24 h. We then analyzed the lipid profile, lipid peroxidation and Na,K-ATPase activity of plasma membranes derived from these cells. Iron overload was more frequent in men (87.5%) than in women and was associated with an increase (446%) in lipid peroxidation, as indicated by the amount of the thiobarbituric acid reactive substances (TBARS) and an increase (327%) in the Na,K-ATPase activity in the plasma membrane of erythrocytes. Erythrocytes treated with 1 μM FeCl3 for 24 h showed an increase (132%) in the Na,K-ATPase activity but no change in the TBARS levels. Iron treatment also decreased the cholesterol and phospholipid content of the erythrocyte membranes and similar decreases were observed in iron overload patients. In contrast, erythrocytes treated with 0.8 mM H2O2 for 24 h showed no change in the measured parameters. These results indicate that erythrocytes from patients with iron overload exhibit higher Na,K-ATPase activity compared with normal subjects and that this effect is specifically associated with altered iron levels.
Collapse
Affiliation(s)
- Leilismara Sousa
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Av Sebastião Gonçalves Coelho 400, 35501–296, Divinópolis, Brazil
| | - Israel J. P. Garcia
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Av Sebastião Gonçalves Coelho 400, 35501–296, Divinópolis, Brazil
| | - Tamara G. F. Costa
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Av Sebastião Gonçalves Coelho 400, 35501–296, Divinópolis, Brazil
| | - Lilian N. D. Silva
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Av Sebastião Gonçalves Coelho 400, 35501–296, Divinópolis, Brazil
| | - Cristiane O. Renó
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Av Sebastião Gonçalves Coelho 400, 35501–296, Divinópolis, Brazil
| | - Eneida S. Oliveira
- Laboratório de Biologia Molecular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Av Sebastião Gonçalves Coelho 400, 35501–296, Divinópolis, Brazil
| | - Cristiane Q. Tilelli
- Laboratório de Estudos em Neurociências das Epilepsias e Comorbidades, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Av Sebastião Gonçalves Coelho 400, 35501–296, Divinópolis, Brazil
| | - Luciana L. Santos
- Laboratório de Biologia Molecular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Av Sebastião Gonçalves Coelho 400, 35501–296, Divinópolis, Brazil
| | - Vanessa F. Cortes
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Av Sebastião Gonçalves Coelho 400, 35501–296, Divinópolis, Brazil
| | - Herica L. Santos
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Av Sebastião Gonçalves Coelho 400, 35501–296, Divinópolis, Brazil
| | - Leandro A. Barbosa
- Laboratório de Bioquímica Celular, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Av Sebastião Gonçalves Coelho 400, 35501–296, Divinópolis, Brazil
- * E-mail:
| |
Collapse
|
8
|
Maia GAS, Renó CDO, Medina JM, Silveira ABD, Mignaco JA, Atella GC, Cortes VF, Barbosa LA, Santos HDL. The effect of gamma radiation on the lipid profile of irradiated red blood cells. Ann Hematol 2013; 93:753-60. [PMID: 24218190 DOI: 10.1007/s00277-013-1944-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/22/2013] [Indexed: 01/10/2023]
Abstract
An investigation into the effects of irradiation and of the storage time on aging and quality are a relevant issue to ensure the safety and the efficiency of irradiation in the prevention of transfusion-associated graft-versus-host disease (TA-GVHD). In this work, the biochemical properties and alterations presented by erythrocyte membranes, up to 28-days post-irradiation, with a dose of 25 Gy, were studied as a function of storage and post-irradiation time. There was a considerable variation in the total of phospholipid content, when comparing the control and irradiated samples, mostly from the third day onwards; and at the same time, the effect occurred as a function on the storage time of blood bags. The levels of total cholesterol decreased 3-9 days after irradiation. TBARS levels were increased after irradiation and 7 days of storage, but no increment of catalase activity was observed after the irradiation. Furthermore, the protein profile was maintained throughout the irradiation and storage time, until the 21st day, with the presence of a protein fragmentation band of around 28 kDa on the 28th day. In conclusion, although gamma irradiation is the main agent for the prevention of TA-GVHD, a better understanding of the physical and biochemical properties of erythrocytes are necessary to better assess their viability, and to be able to issue more secure recommendations on the shelf life of blood bags, and the safe use of the irradiated red cells therein.
Collapse
Affiliation(s)
- Grazielle Aparecida Silva Maia
- Faculdade de Bioquímica, Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de São João del Rei, Campus Centro-Oeste Dona Lindú, Av Sebastião Gonçalves Coelho, 400, Bairro Chanadour, CEP, 35501-296, Divinópolis, Minas Gerais, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zicha J, Dobešová Z, Vokurková M, Rauchová H, Hojná S, Kadlecová M, Behuliak M, Vaněčková I, Kuneš J. Age-dependent salt hypertension in Dahl rats: fifty years of research. Physiol Res 2013; 61:S35-S87. [PMID: 22827876 DOI: 10.33549/physiolres.932363] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Fifty years ago, Lewis K. Dahl has presented a new model of salt hypertension - salt-sensitive and salt-resistant Dahl rats. Twenty years later, John P. Rapp has published the first and so far the only comprehensive review on this rat model covering numerous aspects of pathophysiology and genetics of salt hypertension. When we summarized 25 years of our own research on Dahl/Rapp rats, we have realized the need to outline principal abnormalities of this model, to show their interactions at different levels of the organism and to highlight the ontogenetic aspects of salt hypertension development. Our attention was focused on some cellular aspects (cell membrane function, ion transport, cell calcium handling), intra- and extrarenal factors affecting renal function and/or renal injury, local and systemic effects of renin-angiotensin-aldosterone system, endothelial and smooth muscle changes responsible for abnormal vascular contraction or relaxation, altered balance between various vasoconstrictor and vasodilator systems in blood pressure maintenance as well as on the central nervous and peripheral mechanisms involved in the regulation of circulatory homeostasis. We also searched for the age-dependent impact of environmental and pharmacological interventions, which modify the development of high blood pressure and/or organ damage, if they influence the salt-sensitive organism in particular critical periods of development (developmental windows). Thus, severe self-sustaining salt hypertension in young Dahl rats is characterized by pronounced dysbalance between augmented sympathetic hyperactivity and relative nitric oxide deficiency, attenuated baroreflex as well as by a major increase of residual blood pressure indicating profound remodeling of resistance vessels. Salt hypertension development in young but not in adult Dahl rats can be attenuated by preventive increase of potassium or calcium intake. On the contrary, moderate salt hypertension in adult Dahl rats is attenuated by superoxide scavenging or endothelin-A receptor blockade which do not affect salt hypertension development in young animals.
Collapse
Affiliation(s)
- J Zicha
- Centre for Cardiovascular Research, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Amaiden MR, Santander VS, Monesterolo NE, Campetelli AN, Rivelli JF, Previtali G, Arce CA, Casale CH. Tubulin pools in human erythrocytes: altered distribution in hypertensive patients affects Na+, K+-ATPase activity. Cell Mol Life Sci 2011; 68:1755-68. [PMID: 20953891 PMCID: PMC11114553 DOI: 10.1007/s00018-010-0549-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 08/24/2010] [Accepted: 09/15/2010] [Indexed: 12/26/2022]
Abstract
The presence of tubulin in human erythrocytes was demonstrated using five different antibodies. Tubulin was distributed among three operationally distinguishable pools: membrane, sedimentable structure and soluble fraction. It is known that in erythrocytes from hypertensive subjects (HS), the Na(+), K(+)-ATPase (NKA) activity is partially inhibited as compared with erythrocytes from normal subjects (NS). In erythrocytes from HS the membrane tubulin pool is increased by ~150%. NKA was found to be forming a complex with acetylated tubulin that results in inhibition of enzymes. This complex was also increased in erythrocytes from HS. Treatment of erythrocytes from HS with nocodazol caused a decrease of acetylated tubulin in the membrane and stimulation of NKA activity, whereas taxol treatment on erythrocytes from NS had the opposite effect. These results suggest that, in erythrocytes from HS, tubulin was translocated to the membrane, where it associated with NKA with the consequent enzyme inhibition.
Collapse
Affiliation(s)
- Marina R. Amaiden
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800 Córdoba Argentina
| | - Verónica S. Santander
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800 Córdoba Argentina
| | - Noelia E. Monesterolo
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800 Córdoba Argentina
| | - Alexis N. Campetelli
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800 Córdoba Argentina
| | - Juan F. Rivelli
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800 Córdoba Argentina
| | - Gabriela Previtali
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800 Córdoba Argentina
| | - Carlos A. Arce
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), UNC-CONICET, Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - César H. Casale
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, 5800 Córdoba Argentina
| |
Collapse
|
11
|
Savcioglu F, Ozsoy O, Hacioglu G, Kucukatay V, Yargicoglu P, Agar A. The effect of sodium metabisulfite on visual evoked potentials in rats with hypercholesterolemia. Toxicol Mech Methods 2011; 21:479-86. [DOI: 10.3109/15376516.2011.568981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|