1
|
Yan Z, Zhong L, Zhu W, Chung SK, Hou P. Chinese herbal medicine for the treatment of cardiovascular diseases ─ targeting cardiac ion channels. Pharmacol Res 2023; 192:106765. [PMID: 37075871 DOI: 10.1016/j.phrs.2023.106765] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality, imposing an increasing global health burden. Cardiac ion channels (voltage-gated NaV, CaV, KVs, and others) synergistically shape the cardiac action potential (AP) and control the heartbeat. Dysfunction of these channels, due to genetic mutations, transcriptional or post-translational modifications, may disturb the AP and lead to arrhythmia, a major risk for CVD patients. Although there are five classes of anti-arrhythmic drugs available, they can have varying levels of efficacies and side effects on patients, possibly due to the complex pathogenesis of arrhythmias. As an alternative treatment option, Chinese herbal remedies have shown promise in regulating cardiac ion channels and providing anti-arrhythmic effects. In this review, we first discuss the role of cardiac ion channels in maintaining normal heart function and the pathogenesis of CVD, then summarize the classification of Chinese herbal compounds, and elaborate detailed mechanisms of their efficacy in regulating cardiac ion channels and in alleviating arrhythmia and CVD. We also address current limitations and opportunities for developing new anti-CVD drugs based on Chinese herbal medicines.
Collapse
Affiliation(s)
- Zhenzhen Yan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Ling Zhong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Wandi Zhu
- Cardiovascular Medicine Division and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sookja Kim Chung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China; Faculty of Medicine & Faculty of Innovation Engineering at Macau University of Science and Technology, Taipa, Macao SAR, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Panpan Hou
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China; Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China.
| |
Collapse
|
2
|
Silva H, Martins FG. Cardiovascular Activity of Ginkgo biloba-An Insight from Healthy Subjects. BIOLOGY 2022; 12:15. [PMID: 36671707 PMCID: PMC9855530 DOI: 10.3390/biology12010015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Ginkgo biloba is the oldest living tree species in the world. Despite less than encouraging clinical results, extracts from its leaves are among the most used herbal preparations in the prevention and treatment of cardiovascular diseases. Most data on the efficacy of Ginkgo biloba on cardiovascular disease is from clinical studies, with few results from healthy subjects. This paper aims to provide a comprehensive review of the mechanisms underlying the known beneficial cardiovascular activities of Ginkgo biloba. It displays myocardial suppressant and vasorelaxant activities ex vivo, potentiating endothelial-dependent and -independent pathways. It improves perfusion in different vascular beds, namely ocular, cochlear, cutaneous, cerebral, and coronary. Although scarce, evidence suggests that Ginkgo biloba displays a heterogeneous effect on tissue perfusion which is dependent on the individual elimination pathways. It displays an acceptable safety profile, with most reported adverse reactions constituting rare occurrences. Collectively, Ginkgo biloba positively impacts cardiovascular physiology, improving hemodynamics and organ perfusion. In the future, better controlled clinical studies should be performed in order to identify the target populations who may benefit the most from pharmacotherapeutic interventions involving Ginkgo biloba.
Collapse
Affiliation(s)
- Henrique Silva
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Department of Pharmacy, Pharmacology and Health Technologies, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
- Biophysics and Biomedical Engineering Institute (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Filipe Gazalho Martins
- Department of Pharmacy, Pharmacology and Health Technologies, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| |
Collapse
|
3
|
Soltani D, Azizi B, Rahimi R, Talasaz AH, Rezaeizadeh H, Vasheghani-Farahani A. Mechanism-based targeting of cardiac arrhythmias by phytochemicals and medicinal herbs: A comprehensive review of preclinical and clinical evidence. Front Cardiovasc Med 2022; 9:990063. [PMID: 36247473 PMCID: PMC9559844 DOI: 10.3389/fcvm.2022.990063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiac arrhythmias, characterized by an irregular heartbeat, are associated with high mortality and morbidity. Because of the narrow therapeutic window of antiarrhythmic drugs (AADs), the management of arrhythmia is still challenging. Therefore, searching for new safe, and effective therapeutic options is unavoidable. In this study, the antiarrhythmic effects of medicinal plants and their active constituents were systematically reviewed to introduce some possible candidates for mechanism-based targeting of cardiac arrhythmias. PubMed, Embase, and Cochrane library were searched from inception to June 2021 to find the plant extracts, phytochemicals, and multi-component herbal preparations with antiarrhythmic activities. From 7337 identified results, 57 original studies consisting of 49 preclinical and eight clinical studies were finally included. Three plant extracts, eight multi-component herbal preparations, and 26 phytochemicals were found to have antiarrhythmic effects mostly mediated by affecting K+ channels, followed by modulating Ca2+ channels, upstream target pathways, Na v channels, gap junction channels, and autonomic receptors. The most investigated medicinal plants were Rhodiola crenulata and Vitis vinifera. Resveratrol, Oxymatrine, and Curcumin were the most studied phytochemicals found to have multiple mechanisms of antiarrhythmic action. This review emphasized the importance of research on the cardioprotective effect of medicinal plants and their bioactive compounds to guide the future development of new AADs. The most prevalent limitation of the studies was their unqualified methodology. Thus, future well-designed experimental and clinical studies are necessary to provide more reliable evidence.
Collapse
Affiliation(s)
- Danesh Soltani
- Cardiac Primary Prevention Research Center (CPPRC), Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bayan Azizi
- Cardiac Primary Prevention Research Center (CPPRC), Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Evidence-Based Evaluation of Cost-Effectiveness and Clinical Outcomes, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Azita H. Talasaz
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Hossein Rezaeizadeh
- Department of Persian Medicine, School of Traditional Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Vasheghani-Farahani
- Cardiac Primary Prevention Research Center (CPPRC), Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Kodirov SA. Probability that there is a mammalian counterpart of cardiac clock in insects. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21867. [PMID: 35106839 PMCID: PMC9250754 DOI: 10.1002/arch.21867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/25/2021] [Indexed: 05/05/2023]
Abstract
Whether or not the hyperpolarization-activated cyclic nucleotide-gated nonselective cation channel (HCN or funny current If ) is involved in pacemaking - recurrent heartbeat, it is attributed to electrical activities in all excitable cells, including those of invertebrates. In latter group of animals prevailingly the electrical signals and function of heart in terms of chrono- and inotropy are elucidated. Although in simpler models including insects experimental outcomes are reproducible and robust, involvement of "cardiac clock" mechanism in pacemaking is not conclusive. In this assay, the mechanisms of heartbeat are synthesized by focused comparisons between insect and mammalian hearts.
Collapse
Affiliation(s)
- Sodikdjon A. Kodirov
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
- Department of Biological Sciences, University of Texas at Brownsville, Brownsville, Texas, USA
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
5
|
Depuydt AS, Peigneur S, Tytgat J. Review: HCN Channels in the Heart. Curr Cardiol Rev 2022; 18:e040222200836. [PMID: 35125083 PMCID: PMC9893134 DOI: 10.2174/1573403x18666220204142436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/13/2021] [Accepted: 12/23/2021] [Indexed: 11/22/2022] Open
Abstract
Pacemaker cells are the basis of rhythm in the heart. Cardiovascular diseases, and in particular, arrhythmias are a leading cause of hospital admissions and have been implicated as a cause of sudden death. The prevalence of people with arrhythmias will increase in the next years due to an increase in the ageing population and risk factors. The current therapies are limited, have a lot of side effects, and thus, are not ideal. Pacemaker channels, also called hyperpolarizationactivated cyclic nucleotide-gated (HCN) channels, are the molecular correlate of the hyperpolarization- activated current, called Ih (from hyperpolarization) or If (from funny), that contribute crucially to the pacemaker activity in cardiac nodal cells and impulse generation and transmission in neurons. HCN channels have emerged as interesting targets for the development of drugs, in particular, to lower the heart rate. Nonetheless, their pharmacology is still rather poorly explored in comparison to many other voltage-gated ion channels or ligand-gated ion channels. Ivabradine is the first and currently the only clinically approved compound that specifically targets HCN channels. The therapeutic indication of ivabradine is the symptomatic treatment of chronic stable angina pectoris in patients with coronary artery disease with a normal sinus rhythm. Several other pharmacological agents have been shown to exert an effect on heart rate, although this effect is not always desired. This review is focused on the pacemaking process taking place in the heart and summarizes the current knowledge on HCN channels.
Collapse
Affiliation(s)
- Anne-Sophie Depuydt
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N2, PO Box 922, Herestraat 49, 3000Leuven, Belgium
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N2, PO Box 922, Herestraat 49, 3000Leuven, Belgium
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N2, PO Box 922, Herestraat 49, 3000Leuven, Belgium
| |
Collapse
|
6
|
Chen H, Chen Y, Yang J, Wu P, Wang X, Huang C. Effect of Ginkgo biloba extract on pacemaker channels encoded by HCN gene. Herz 2020; 46:255-261. [PMID: 32435840 DOI: 10.1007/s00059-020-04933-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/19/2020] [Accepted: 04/25/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND In the present study, the electropharmacological activity of traditional Chinese medicine, Ginkgo biloba extract (GBE), on human hyperpolarization-activated nucleotide-gated (HCN) channels and the underlying "funny" currents was investigated. METHODS Standard two-electrode voltage-clamp recordings were employed to examine the properties of cloned HCN subunit currents expressed in Xenopus oocytes under controlled conditions and GBE administration. RESULTS We found that GBE irreversibly inhibited the HCN2 and HCN4 channel currents in a concentration-dependent fashion and that the HCN4 current was more sensitive to GBE compared with HCN2. In addition, GBE inhibition of the current amplitudes of HCN2 and HCN4 currents was accompanied by a decrease in the activation and deactivation kinetics. CONCLUSION The results of this study contribute toward illustrating the antiarrhythmic mechanism of GBE, which might be useful for the treatment of arrhythmia.
Collapse
Affiliation(s)
- Hui Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, 430060, Wuhan, Hubei Province, China
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology, 430060, Wuhan, China
| | - Yongjun Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, 430060, Wuhan, Hubei Province, China
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology, 430060, Wuhan, China
| | - Jing Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, 430060, Wuhan, Hubei Province, China
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology, 430060, Wuhan, China
| | - Pan Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, 430060, Wuhan, Hubei Province, China
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology, 430060, Wuhan, China
| | - Xin Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, 430060, Wuhan, Hubei Province, China
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China
- Hubei Key Laboratory of Cardiology, 430060, Wuhan, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, 430060, Wuhan, Hubei Province, China.
- Cardiovascular Research Institute, Wuhan University, 430060, Wuhan, China.
- Hubei Key Laboratory of Cardiology, 430060, Wuhan, China.
| |
Collapse
|
7
|
The Role of Biologically Active Ingredients from Natural Drug Treatments for Arrhythmias in Different Mechanisms. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4615727. [PMID: 28497050 PMCID: PMC5405360 DOI: 10.1155/2017/4615727] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 02/09/2017] [Indexed: 12/13/2022]
Abstract
Arrhythmia is a disease that is caused by abnormal electrical activity in the heart rate or rhythm. It is the major cause of cardiovascular morbidity and mortality. Although several antiarrhythmic drugs have been used in clinic for decades, their application is often limited by their adverse effects. As a result, natural drugs, which have fewer side effects, are now being used to treat arrhythmias. We searched for all articles on the role of biologically active ingredients from natural drug treatments for arrhythmias in different mechanisms in PubMed. This study reviews 19 natural drug therapies, with 18 active ingredient therapies, such as alkaloids, flavonoids, saponins, quinones, and terpenes, and two kinds of traditional Chinese medicine compound (Wenxin-Keli and Shensongyangxin), all of which have been studied and reported as having antiarrhythmic effects. The primary focus is the proposed antiarrhythmic mechanism of each natural drug agent. Conclusion. We stress persistent vigilance on the part of the provider in discussing the use of natural drug agents to provide a solid theoretical foundation for further research on antiarrhythmia drugs.
Collapse
|
8
|
Satoh H. Pharmacological effectiveness of the active phytochemicals contained in foods and herbs. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2014; 3:196-200. [PMID: 26401373 PMCID: PMC4576811 DOI: 10.5455/jice.20140917122310] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 09/17/2014] [Indexed: 01/08/2023]
Abstract
Food ingestions generally regulate many physiological functions to maintain a healthy life. Furthermore, herbal medicine is prescribed for the prevention and the treatment of various diseases. There are not a few herbal medicine-derived drugs (phytochemicals) clinically using now. The phytochemicals such as digitalis, curare, morphine, quinidine, atropine, and so on are so much important drugs for clinical treatments. Herbal medicine and foods are composed of many constituents. The pharmacological actions that contain phytochemicals are exerted each by each mediated through different receptors, ionic channels, and cellular signal transductions. Thus, they produce multiple pharmacological and pathophysiological functions mediated by the complex interactions with lots of the ingredients.
Collapse
Affiliation(s)
- Hiroyasu Satoh
- Health Life Science, Shitennoji University, Habikino, Osaka, Japan
| |
Collapse
|
9
|
Influence of ethanol extract of Ginkgo biloba leaves on the isolated rat heart work and mitochondria functions. J Cardiovasc Pharmacol 2012; 59:450-7. [PMID: 22240914 DOI: 10.1097/fjc.0b013e318249171d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this study, we attempted to elucidate whether the effects of ethanol extract of Ginkgo biloba leaves (GBE) observed previously on isolated rat heart mitochondria may be realized in situ (in case of isolated heart perfused under normal conditions and under ischemia-reperfusion). We found that GBE at low concentrations (0.01, 0.05, and 0.1 μL/mL) does not affect the heart rate and parameters of electrocardiogram (ECG) but produces a small increase in the coronary flow. Higher concentration of GBE (0.2 and 0.3 μL/mL) diminished the heart rate, decreased the coronary flow, and tended to enhance the parameters of ECG. The contractility of isolated rat heart and mitochondrial nicotinamide adenine dinucleotide reduced form fluorescence decreased in a GBE concentration-dependent manner. Mitochondria isolated from hearts pre-perfused with GBE (0.05 μL/mL) for 20 minutes before nonflow global ischemia-reperfusion (45 min/15 min) showed higher respiratory rates with pyruvate + malate in state 2 and state 3, higher respiratory control index, and diminished H₂O₂ generation compared with untreated group. Higher GBE concentration, 0.4 μL/mL, had no effect on H2O2 generation and did not prevent the ischemia-reperfusion-induced decrease of pyruvate + malate oxidation in state 3 but even enhanced it. However, in the case of nonischemic perfusions, this GBE concentration had no significant effect on these parameters of respiratory functions of isolated heart mitochondria.
Collapse
|
10
|
Gao Z, Chen B, Joiner MLA, Wu Y, Guan X, Koval OM, Chaudhary AK, Cunha SR, Mohler PJ, Martins JB, Song LS, Anderson ME. I(f) and SR Ca(2+) release both contribute to pacemaker activity in canine sinoatrial node cells. J Mol Cell Cardiol 2010; 49:33-40. [PMID: 20380837 PMCID: PMC2883640 DOI: 10.1016/j.yjmcc.2010.03.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 03/04/2010] [Accepted: 03/29/2010] [Indexed: 01/01/2023]
Abstract
Increasing evidence suggests that cardiac pacemaking is the result of two sinoatrial node (SAN) cell mechanisms: a 'voltage clock' and a Ca(2+) dependent process, or 'Ca(2+) clock.' The voltage clock initiates action potentials (APs) by SAN cell membrane potential depolarization from inward currents, of which the pacemaker current (I(f)) is thought to be particularly important. A Ca(2+) dependent process triggers APs when sarcoplasmic reticulum (SR) Ca(2+) release activates inward current carried by the forward mode of the electrogenic Na(+)/Ca(2+) exchanger (NCX). However, these mechanisms have mostly been defined in rodents or rabbits, but are unexplored in single SAN cells from larger animals. Here, we used patch-clamp and confocal microscope techniques to explore the roles of the voltage and Ca(2+) clock mechanisms in canine SAN pacemaker cells. We found that ZD7288, a selective I(f) antagonist, significantly reduced basal automaticity and induced irregular, arrhythmia-like activity in canine SAN cells. In addition, ZD7288 impaired but did not eliminate the SAN cell rate acceleration by isoproterenol. In contrast, ryanodine significantly reduced the SAN cell acceleration by isoproterenol, while ryanodine reduction of basal automaticity was modest ( approximately 14%) and did not reach statistical significance. Importantly, pretreatment with ryanodine eliminated SR Ca(2+) release, but did not affect basal or isoproterenol-enhanced I(f). Taken together, these results indicate that voltage and Ca(2+) dependent automaticity mechanisms coexist in canine SAN cells, and suggest that I(f) and SR Ca(2+) release cooperate to determine baseline and catecholamine-dependent automaticity in isolated dog SAN cells.
Collapse
Affiliation(s)
- Zhan Gao
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Biyi Chen
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Mei-ling A. Joiner
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Yuejin Wu
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Xiaoqun Guan
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Olha M. Koval
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Ashok K. Chaudhary
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Shane R. Cunha
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Peter J. Mohler
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
- Departments of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | - James B. Martins
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Long-Sheng Song
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Mark E. Anderson
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA
- Departments of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
11
|
Tada Y, Kagota S, Kubota Y, Nejime N, Nakamura K, Kunitomo M, Shinozuka K. Long-Term Feeding of Ginkgo biloba Extract Impairs Peripheral Circulation and Hepatic Function in Aged Spontaneously Hypertensive Rats. Biol Pharm Bull 2008; 31:68-72. [DOI: 10.1248/bpb.31.68] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yukari Tada
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - Satomi Kagota
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - Yoko Kubota
- Department of Biopharmaceutics, Nihon Pharmaceutical University
| | - Namie Nejime
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - Kazuki Nakamura
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - Masaru Kunitomo
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| | - Kazumasa Shinozuka
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| |
Collapse
|
12
|
Kubota Y, Kagota S, Tada Y, Nejime N, Nakamura K, Kunitomo M, Umegaki K, Shinozuka K. GINKGO BILOBA EXTRACT CAUSES DECREASE IN HEART RATE IN AGED SPONTANEOUSLY HYPERTENSIVE RATS. Clin Exp Pharmacol Physiol 2007. [DOI: 10.1111/j.1440-1681.2007.04776.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Howarth FC, Al-Sharhan R, Al-Hammadi A, Qureshi MA. Effects of streptozotocin-induced diabetes on action potentials in the sinoatrial node compared with other regions of the rat heart. Mol Cell Biochem 2006; 300:39-46. [PMID: 17541508 DOI: 10.1007/s11010-006-9366-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Accepted: 10/25/2006] [Indexed: 10/23/2022]
Abstract
In vivo biotelemetry studies have demonstrated that heart rate (HR) is progressively and rapidly reduced after administration of streptozotocin (STZ) and that the reduction in HR can be partially normalized with insulin replacement. Reductions in HR have also been reported in isolated perfused heart and superfused right atrial preparations suggesting that intrinsic defects in the heart are at least partly responsible for the bradycardia. The regional effects of STZ-induced diabetes mellitus (DM) on action potentials (APs) in the sinoatrial node (SAN), right and left atria and ventricles have been compared in the spontaneously beating Langendorff perfused rat heart 10-12 weeks after treatment. HR was significantly reduced in STZ-induced diabetic rat heart (174 +/- 9 BPM) compared to controls (241 +/- 12 BPM). The duration of AP repolarization at 50% and 70% from peak AP was significantly prolonged in SAN, right atrium and right ventricle from STZ-induced diabetic rat compared to age-matched controls. In the SAN AP duration (APD) at 50% and 70% were 51.7 +/- 2.2 and 59.5 +/- 2.3 ms in diabetic rat heart compared to 45.2 +/- 1.7 and 50.0 +/- 1.6 ms in controls, respectively. In contrast APD at 50% and 70% were not significantly altered in the left atrium and left ventricle. Regional defects in the expression and/or electrophysiology of SAN ion channels, and in particular those involved in AP repolarization, might underlie heart rhythm disturbances in the STZ-induced DM rat.
Collapse
Affiliation(s)
- F C Howarth
- Department of Physiology, Faculty of Medicine & Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates.
| | | | | | | |
Collapse
|