1
|
Xu H, Wang X, Zhu F, Guo S, Chao Z, Cao C, Lu Z, Zhu H, Wang M, Zhu F, Yang J, Zeng R, Yao Y. Comprehensive Pan-Cancer Analysis of Connexin 43 as a Potential Biomarker and Therapeutic Target in Human Kidney Renal Clear Cell Carcinoma (KIRC). MEDICINA (KAUNAS, LITHUANIA) 2024; 60:780. [PMID: 38792963 PMCID: PMC11123162 DOI: 10.3390/medicina60050780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024]
Abstract
Background and Objectives: Connexin 43 (Cx43) is involved in the transfer of small signaling molecules between neighboring cells, thereby exerting a major influence on the initiation and progression of tumorigenesis. However, there is a lack of systematic research on Cx43 expression and its predictive role in clinical diagnosis and prognosis in pan-cancer. Materials and Methods: Several biological databases were used to evaluate the expression levels of GJA1 (encoding Cx43) and its diagnostic and prognostic significance in pan-cancer. We targeted kidney renal clear cell carcinoma (KIRC) and investigated the relationship between GJA1 expression and different clinical features of KIRC patients. Then, we performed cell-based experiments to partially confirm our results and predicted several proteins that were functionally related to Cx43. Results: The expression of GJA1 has a high level of accuracy in predicting KIRC. High GJA1 expression was remarkably correlated with a favorable prognosis, and this expression was reduced in groups with poor clinical features in KIRC. Cell experiments confirmed the inhibitory effects of increased GJA1 expression on the migratory capacity of human renal cancer (RCC) cell lines, and protein-protein interaction (PPI) analysis predicted that CDH1 and CTNNB1 were closely related to Cx43. Conclusions: GJA1 could be a promising independent favorable prognostic factor for KIRC, and upregulation of GJA1 expression could inhibit the migratory capacity of renal cancer cells.
Collapse
Affiliation(s)
- Huzi Xu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; (H.X.); (X.W.); (S.G.); (C.C.); (H.Z.); (M.W.); (F.Z.); (J.Y.)
| | - Xiuru Wang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; (H.X.); (X.W.); (S.G.); (C.C.); (H.Z.); (M.W.); (F.Z.); (J.Y.)
| | - Fan Zhu
- Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Shuiming Guo
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; (H.X.); (X.W.); (S.G.); (C.C.); (H.Z.); (M.W.); (F.Z.); (J.Y.)
| | - Zheng Chao
- Division of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China;
| | - Chujin Cao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; (H.X.); (X.W.); (S.G.); (C.C.); (H.Z.); (M.W.); (F.Z.); (J.Y.)
| | - Zhihui Lu
- Division of Nursing, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China;
| | - Han Zhu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; (H.X.); (X.W.); (S.G.); (C.C.); (H.Z.); (M.W.); (F.Z.); (J.Y.)
| | - Meng Wang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; (H.X.); (X.W.); (S.G.); (C.C.); (H.Z.); (M.W.); (F.Z.); (J.Y.)
| | - Fengming Zhu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; (H.X.); (X.W.); (S.G.); (C.C.); (H.Z.); (M.W.); (F.Z.); (J.Y.)
| | - Juan Yang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; (H.X.); (X.W.); (S.G.); (C.C.); (H.Z.); (M.W.); (F.Z.); (J.Y.)
| | - Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; (H.X.); (X.W.); (S.G.); (C.C.); (H.Z.); (M.W.); (F.Z.); (J.Y.)
| | - Ying Yao
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China; (H.X.); (X.W.); (S.G.); (C.C.); (H.Z.); (M.W.); (F.Z.); (J.Y.)
- Division of Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| |
Collapse
|
2
|
Regulation of connexins genes expression contributes to reestablishes tissue homeostasis in a renovascular hypertension model. Heliyon 2020; 6:e05406. [PMID: 33163681 PMCID: PMC7609588 DOI: 10.1016/j.heliyon.2020.e05406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/22/2020] [Accepted: 10/28/2020] [Indexed: 11/24/2022] Open
Abstract
Connexins (Cx) are essential for cardiovascular regulation and maintenance of cardio-renal response involving the natriuretic peptide family. Changes in the expression of connexins promote intercellular communication dysfunction and may induce hypertension, atherosclerosis, and several other vascular diseases. This study analyzed the expression of the genes involved in the renin-angiotensin system (RAS) and the relation of the connexins gene expression with the renovascular hypertension 2K1C in different tissues. The insertion of a silver clip induced renovascular hypertension 2K1C into the left renal artery. Biochemical measurements were made using commercial kits. Gene expression was evaluated in the liver, heart, and kidneys by RT-PCR. The genes investigated were LDLr, Hmgcr, Agt, Ren, Ace, Agtr1a, Anp, Bnp, Npr1, Cx26, Cx32, Cx37, Cx40 and Cx43. All genes involved in the RAS presented increased transcriptional levels in the 2K1C group, except hepatic Agt. The natriuretic peptides (Anp; Bnp) and the receptor genes (Npr1) appeared to increase in the heart, however, Npr1 decreased in the kidneys. In hepatic tissue, hypertension promoted increased expression of Cx32, Cx37, and Cx40 genes however, Cx26 and Cx43 genes were not influenced. Expression was upregulated for Cx37 and Cx43 in cardiac tissue in the 2K1C group, but Cx40 did not demonstrate any difference between groups. The stenotic kidney showed an upregulated expression for Cx37 vs Sham and contralateral kidney, although Cx40 and Cx43 were downregulated. Hypertension did not modify the transcriptional expression of Cx26 and Cx32. Therefore, this study indicated that RAS and cardiac response were regulated transcriptionally by renovascular hypertension 2K1C. Moreover, the results of connexin gene expression demonstrated differential transcriptional regulation in different tissues studied and suggest a relationship between cardiac and renal physiological changes as an adaptive mechanism to the hypertensive state.
Collapse
|
3
|
Mammadzada P, Corredoira PM, André H. The role of hypoxia-inducible factors in neovascular age-related macular degeneration: a gene therapy perspective. Cell Mol Life Sci 2020; 77:819-833. [PMID: 31893312 PMCID: PMC7058677 DOI: 10.1007/s00018-019-03422-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022]
Abstract
Understanding the mechanisms that underlie age-related macular degeneration (AMD) has led to the identification of key molecules. Hypoxia-inducible transcription factors (HIFs) have been associated with choroidal neovascularization and the progression of AMD into the neovascular clinical phenotype (nAMD). HIFs regulate the expression of multiple growth factors and cytokines involved in angiogenesis and inflammation, hallmarks of nAMD. This knowledge has propelled the development of a new group of therapeutic strategies focused on gene therapy. The present review provides an update on current gene therapies in ocular angiogenesis, particularly nAMD, from both basic and clinical perspectives.
Collapse
Affiliation(s)
- Parviz Mammadzada
- Division of Eye and Vision, Department of Clinical Neuroscience, Karolinska Institutet, St. Erik Eye Hospital, Stockholm, Sweden
| | - Pablo M Corredoira
- Division of Eye and Vision, Department of Clinical Neuroscience, Karolinska Institutet, St. Erik Eye Hospital, Stockholm, Sweden
| | - Helder André
- Division of Eye and Vision, Department of Clinical Neuroscience, Karolinska Institutet, St. Erik Eye Hospital, Stockholm, Sweden.
| |
Collapse
|
4
|
Wu JI, Wang LH. Emerging roles of gap junction proteins connexins in cancer metastasis, chemoresistance and clinical application. J Biomed Sci 2019; 26:8. [PMID: 30642339 PMCID: PMC6332853 DOI: 10.1186/s12929-019-0497-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023] Open
Abstract
Connexin, a four-pass transmembrane protein, contributes to assembly of gap junctions among neighboring cells and thus facilitates gap junctional intercellular communication (GJIC). Traditionally, the roles of connexins were thought to mediate formation of hemichannels and GJIC assembly for transportation of ions and small molecules. Many studies have observed loss of GJIC, due to reduced expression or altered cytoplasmic localization of connexins, in primary tumor cells. Connexins are generally considered tumor-suppressive. However, recent studies of clinical samples suggested a different role of connexins in that expression levels and membrane localization of connexins, including Connexin 43 (Cx43, GJA1) and Connexin 26 (Cx26, GJB2), were found to be enhanced in metastatic lesions of cancer patients. Cx43- and Cx26-mediated GJIC was found to promote cancer cell migration and adhesion to the pulmonary endothelium. Regulatory circuits involved in the induction of connexins and their functional effects have also been reported in various types of cancer. Connexins expressed in stromal cells were correlated with metastasis and were implicated in regulating metastatic behaviors of cancer cells. Recent studies have revealed that connexins can contribute to cellular phenotypes via multiple ways, namely 1) GJIC, 2) C-terminal tail-mediated signaling, and 3) cell-cell adhesion during gap junction formation. Both expression levels and the subcellular localization could participate determining the functional roles of connexins in cancer. Compounds targeting connexins were thus tested as potential therapeutics intervening metastasis or chemoresistance. This review focuses on the recent findings in the correlation between the expression of connexins and patients’ prognosis, their roles in metastasis and chemoresistance, as well as the implications and concerns of using connexin-targeting drugs as anti-metastatic therapeutics. Overall, connexins may serve as biomarkers for cancer prognosis and as therapeutic targets for intervening metastasis and chemoresistance.
Collapse
Affiliation(s)
- Jun-I Wu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, Taiwan.,Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Lu-Hai Wang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, Taiwan. .,Department of Life Sciences, National Central University, Taoyuan, Taiwan. .,Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan. .,Chinese Medical Research Center, China Medical University, Taichung, Taiwan.
| |
Collapse
|
5
|
Kang L, Fan B, Sun P, Huang W, Jin M, Wang Q, Gao Z. An effective tumor-targeting strategy utilizing hypoxia-sensitive siRNA delivery system for improved anti-tumor outcome. Acta Biomater 2016; 44:341-54. [PMID: 27545812 DOI: 10.1016/j.actbio.2016.08.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/30/2016] [Accepted: 08/17/2016] [Indexed: 12/12/2022]
Abstract
UNLABELLED Hypoxia is a feature of most solid tumors, targeting hypoxia is considered as the best validated yet not extensively exploited strategy in cancer therapy. Here, we reported a novel tumor-targeting strategy using a hypoxia-sensitive siRNA delivery system. In the study, 2-nitroimidazole (NI), a hydrophobic component that can be converted to hydrophilic 2-aminoimidazole (AI) through bioreduction under hypoxic conditions, was conjugated to the alkylated polyethyleneimine (bPEI1.8k-C6) to form amphiphilic bPEI1.8k-C6-NI polycations. bPEI1.8k-C6-NI could self-assemble into micelle-like aggregations in aqueous, which contributed to the improved stability of the bPEI1.8k-C6-NI/siRNA polyplexes, resulted in increased cellular uptake. After being transported into the hypoxic tumor cells, the selective nitro-to-amino reduction would cause structural change and elicit a relatively loose structure to facilitate the siRNA dissociation in the cytoplasm, for enhanced gene silencing efficiency ultimately. Therefore, the conflict between the extracellular stability and the intracellular siRNA release ability of the polyplexes was solved by introducing the hypoxia-responsive unit. Consequently, the survivin-targeted siRNA loaded polyplexes shown remarkable anti-tumor effect not only in hypoxic cells, but also in tumor spheroids and tumor-bearing mice, indicating that the hypoxia-sensitive siRNA delivery system had great potential for tumor-targeted therapy. STATEMENT OF SIGNIFICANCE Hypoxia is one of the most remarkable features of most solid tumors, and targeting hypoxia is considered as the best validated strategy in cancer therapy. However, in the past decades, there were few reports about using this strategy in the drug delivery system, especially in siRNA delivery system. Therefore, we constructed a hypoxia-sensitive siRNA delivery system utilizing a hypoxia-responsive unit, 2-nitroimidazole, by which the unavoidable conflict between improved extracellular stability and promoted intracellular siRNA release in the same delivery system could be effectively solved, resulting in enhanced siRNA silencing efficiency in tumor cells. To our knowledge, the described work is the first demonstration of a siRNA delivery system using a hypoxia trigger for regulation of siRNA release, which represents a new strategy for tumor-targeted therapy, and it is expected that this meaningful strategy must be widely applied in the future.
Collapse
Affiliation(s)
- Lin Kang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Bo Fan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ping Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qiming Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
6
|
Shanmugam MK, Rajendran P, Li F, Kim C, Sikka S, Siveen KS, Kumar AP, Ahn KS, Sethi G. Abrogation of STAT3 signaling cascade by zerumbone inhibits proliferation and induces apoptosis in renal cell carcinoma xenograft mouse model. Mol Carcinog 2014; 54:971-85. [PMID: 24797723 DOI: 10.1002/mc.22166] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/19/2014] [Accepted: 03/31/2014] [Indexed: 11/10/2022]
Abstract
Persistent activation of signal transducer and activator of transcription 3 (STAT3) is one of the characteristic features of renal cell carcinoma (RCC) and often linked to its deregulated proliferation, survival, and angiogenesis. In the present report, we investigated whether zerumbone, a sesquiterpene, exerts its anticancer effect through modulation of STAT3 activation pathway. The pharmacological effect of zerumbone on STAT3 activation, associated protein kinases and phosphatase, and apoptosis was investigated using both RCC cell lines and xenograft mouse model. We observed that zerumbone suppressed STAT3 activation in a dose- and time-dependent manner in RCC cells. The suppression was mediated through the inhibition of activation of upstream kinases c-Src, Janus-activated kinase 1, and Janus-activated kinase 2. Pervanadate treatment reversed zerumbone-induced downregulation of STAT3, suggesting the involvement of a tyrosine phosphatase. Indeed, we found that zerumbone induced the expression of tyrosine phosphatase SHP-1 that correlated with its ability to inhibit STAT3 activation. Interestingly, deletion of SHP-1 gene by siRNA abolished the ability of zerumbone to inhibit STAT3 activation. The inhibition of STAT3 activation by zerumbone also caused the suppression of the gene products involved in proliferation, survival, and angiogenesis. Finally, when administered i.p., zerumbone inhibited STAT3 activation in tumor tissues and the growth of human RCC xenograft tumors in athymic nu/nu mice without any side effects. Overall, our results suggest for the first time that zerumbone is a novel blocker of STAT3 signaling cascade and thus has an enormous potential for the treatment of RCC and other solid tumors.
Collapse
Affiliation(s)
- Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Peramaiyan Rajendran
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Feng Li
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chulwon Kim
- Department of Oriental Pathology, College of Oriental Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sakshi Sikka
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cancer Science Institute of Singapore, Centre for Translational Medicine, Singapore, Singapore
| | - Kodappully Sivaraman Siveen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cancer Science Institute of Singapore, Centre for Translational Medicine, Singapore, Singapore.,Faculty of Health Sciences, School of Biomedical Sciences, Curtin University, Western Australia, Australia.,Department of Biological Sciences, University of North Texas, Denton, Texas
| | - Kwang Seok Ahn
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cancer Science Institute of Singapore, Centre for Translational Medicine, Singapore, Singapore
| |
Collapse
|
7
|
Defamie N, Chepied A, Mesnil M. Connexins, gap junctions and tissue invasion. FEBS Lett 2014; 588:1331-8. [PMID: 24457198 DOI: 10.1016/j.febslet.2014.01.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 12/14/2022]
Abstract
Formation of metastases negatively impacts the survival prognosis of cancer patients. Globally, if the various steps involved in their formation are relatively well identified, the molecular mechanisms responsible for the emergence of invasive cancer cells are still incompletely resolved. Elucidating what are the mechanisms that allow cancer cells to evade from the tumor is a crucial point since it is the first step of the metastatic potential of a solid tumor. In order to be invasive, cancer cells have to undergo transformations such as down-regulation of cell-cell adhesions, modification of cell-matrix adhesions and acquisition of proteolytic properties. These transformations are accompanied by the capacity to "activate" stromal cells, which may favor the motility of the invasive cells through the extracellular matrix. Since modulation of gap junctional intercellular communication is known to be involved in cancer, we were interested to consider whether these different transformations necessary for the acquisition of invasive phenotype are related with gap junctions and their structural proteins, the connexins. In this review, emerging roles of connexins and gap junctions in the process of tissue invasion are proposed.
Collapse
Affiliation(s)
- Norah Defamie
- Team IP2C, STIM laboratory, University of Poitiers, CNRS ERL 7368, 1 rue Georges Bonnet, B36, 86073 Poitiers Cedex9, France.
| | - Amandine Chepied
- Team IP2C, STIM laboratory, University of Poitiers, CNRS ERL 7368, 1 rue Georges Bonnet, B36, 86073 Poitiers Cedex9, France.
| | - Marc Mesnil
- Team IP2C, STIM laboratory, University of Poitiers, CNRS ERL 7368, 1 rue Georges Bonnet, B36, 86073 Poitiers Cedex9, France.
| |
Collapse
|
8
|
Teimoori-Toolabi L, Azadmanesh K, Amanzadeh A, Zeinali S. Selective suicide gene therapy of colon cancer exploiting the urokinase plasminogen activator receptor promoter. BioDrugs 2010; 24:131-46. [PMID: 20199127 DOI: 10.2165/11530840-000000000-00000] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Colon cancer is the third and fourth most prevalent cancer among Iranian men and women, respectively. Suicide gene therapy is one of the alternative therapeutic modalities for cancer. The application of specific promoters for therapeutic genes should decrease the adverse effects of this modality. The combined aims of this study were to design a specific suicide gene therapy construct for colon cancer and study its effect in distinct representatives of transformed and nontransformed cells. The KRAS oncogene signaling pathway is one of the most important signaling pathways activated in colon cancer; therefore, we inserted the urokinase plasminogen activator receptor (uPAR; PLAUR gene) promoter as one of the upregulated promoters by this pathway upstream of a suicide gene (thymidine kinase [TK]) and a reporter gene (beta-galactosidase, beta-gal [LacZ]). This promoter is a natural combination of different motifs responsive to the RAS signaling pathway, such as the transcription factors AP1 (FOS/JUN), SP1, SP3, and AP2alpha, and nuclear factor kappa B (NFkappaB). The reporter plasmid under the control of the uPAR promoter (PUCUPARLacZ) had the ability to express beta-gal in colon cancer cells (human colon adenocarcinoma [SW480] and human colorectal carcinoma [HCT116] cell lines), while it could not express beta-gal in nontransformed human umbilical vein endothelial cells (HUVEC) and normal colon cells. After confirming the ability of pUCUPARTK (suicide plasmid) to express TK in SW480 and HCT116 cells by real-time PCR, cytotoxicity assays showed that pUCUPARTK decreased the viability of these cells in the presence of ganciclovir 20 and 40 microg/mL (and higher), respectively. Although M30 CytoDEATH antibody could not detect a significant rate of apoptosis induced by ganciclovir in pUCUPARTK-transfected HCT116 cells, the percentage of stained cells was marked in comparison with untreated cells. While this antibody could detect apoptosis in HCT116 cell line transfected with positive control plasmid, it could not detect apoptosis in SW480 cells transfected with the same positive control. This discrepancy could be attributed to the different mechanisms of TK/ganciclovir-induced apoptosis in tumor protein p53 (TP53)-expressing (HCT116) and -deficient (SW480) cells. Annexin-propidium iodide staining could detect apoptosis in treated, pUCUPARTK-transfected SW480 and HCT116 cells. This study showed that the uPAR promoter can be considered as a suitable candidate for specific suicide gene therapy of colon cancer and probably other cancers in which the RAS signaling pathway is involved in their carcinogenesis process.
Collapse
Affiliation(s)
- Ladan Teimoori-Toolabi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | | | | |
Collapse
|
9
|
Sato H, Iwata H, Takano Y, Yamada R, Okuzawa H, Nagashima Y, Yamaura K, Ueno K, Yano T. Enhanced Effect of Connexin 43 on Cisplatin-Induced Cytotoxicity in Mesothelioma Cells. J Pharmacol Sci 2009; 110:466-75. [DOI: 10.1254/jphs.08327fp] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
10
|
Sato H, Hagiwara H, Senba H, Fukumoto K, Nagashima Y, Yamasaki H, Ueno K, Yano T. The inhibitory effect of connexin 32 gene on metastasis in renal cell carcinoma. Mol Carcinog 2008; 47:403-9. [PMID: 18058801 DOI: 10.1002/mc.20396] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have previously reported that connexin (Cx) 32 gene, a member of gap junctions, was specifically downregulated in human renal cell carcinoma (RCC) and it acts as a tumor suppressor against RCC. Because there is no standard therapy for advanced RCC, we investigated the anti-metastatic effect of Cx32 to seek a possibility of new RCC therapy. In this study, we used human metastatic RCC cell (Caki-1), and established Cx32-expressed cell clone (Caki-1T) or only mock-transfected cell clone (Caki-1W). For experimental production of metastases, the cells were injected into the lateral tail vein of SCID mice. Seventy days after inoculation, metastatic colonies were observed in Caki-1W inoculated group, though none of them were in Caki-1T inoculated group. The plasma VEGF concentration was significantly lower in Caki-1T group compared to Caki-1W group. To investigate where Cx32 effects on, we also tried in vitro analysis and found that the malignant phenotypes involving metastasis steps were significantly decreased in Caki-1T under hypoxia, a mimic condition of internal tumor environment. After hypoxia treatment, the protein level of HIF-2alpha, which plays main role for hypoxia adaptation, was observed to increase in Caki-1W, whereas no expression was observed in Caki-1T. We investigated the activation of Src, which is required for stabilization of HIF-2alpha, is suppressed in Caki-1T compared to Caki-1W. These results suggest that Cx32 inhibits hypoxia adaptation governed by HIF-2alpha, and this may help to reduce the metastasis of RCC cells.
Collapse
Affiliation(s)
- Hiromi Sato
- Project for Complementary Factors, National Institute of Health and Nutrition, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Campbell L, Jasani B, Edwards K, Gumbleton M, Griffiths DFR. Combined expression of caveolin-1 and an activated AKT/mTOR pathway predicts reduced disease-free survival in clinically confined renal cell carcinoma. Br J Cancer 2008; 98:931-40. [PMID: 18283322 PMCID: PMC2266860 DOI: 10.1038/sj.bjc.6604243] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We previously reported that tumour-associated caveolin-1 is a potential biomarker in renal cell carcinoma (RCC), whose overexpression predicts metastasis following surgical resection for clinically confined disease. Much attention has recently focused on the AKT/mTOR pathway in a number of malignancies, including RCC. Since caveolin-1 and the AKT/mTOR signalling cascade are independently shown to be important regulators of tumour angiogenesis, we hypothesised that caveolin-1 interacts with the AKT/mTOR pathway to drive disease progression and metastasis in RCC. The aims of this study were to determine (i) the expression status of the activated AKT/mTOR pathway components (phosphorylated forms) in RCC and (ii) their prognostic value when combined with caveolin-1. Immunohistochemistry for caveolin-1, pAKT, pmTOR, pS6 and p4E-BP1 was performed on tissue microarrays from 174 clinically confined RCCs. Significantly decreased mean disease-free survival was observed when caveolin-1 was coexpressed with either pAKT (2.95 vs 6.14 years), pmTOR (3.17 vs 6.28 years), pS6 (1.45 vs 6.62 years) or p4E-BP1 (2.07 vs 6.09 years) than when neither or any one single biomarker was expressed alone. On multivariate analysis, the covariate of ‘caveolin-1/AKT’ (neither alone were influential covariates) was a significant influential indicator of poor disease-free survival with a hazard ratio of 2.13 (95% CI: 1.15–3.92), higher than that for vascular invasion. Tumours that coexpressed caveolin-1 and activated mTOR components were more likely to be larger, higher grade and to show vascular invasion. Our results provide the first clinical evidence that caveolin-1 cooperates with an activated AKT/mTOR pathway in cancer and may play an important role in disease progression. We conclude that evaluation of the ‘caveolin-1/AKT/mTOR axis’ in primary kidney tumours will identify subsets of RCC patients who require greater postoperative surveillance and more intensive treatment.
Collapse
Affiliation(s)
- L Campbell
- Experimental Cancer Therapeutics, School Of Pharmacy, Department of Pathology, Cardiff University, Cardiff CF10 3XF, UK
| | | | | | | | | |
Collapse
|
12
|
Takeno S, Ohnishi J, Komatsu T, Masaki T, Sen K, Ikeda M. Anaerobic growth and potential for amino acid production by nitrate respiration in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2007; 75:1173-82. [PMID: 17380327 DOI: 10.1007/s00253-007-0926-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 03/01/2007] [Accepted: 03/04/2007] [Indexed: 11/28/2022]
Abstract
Oxygen limitation is a crucial problem in amino acid fermentation by Corynebacterium glutamicum. Toward this subject, our study was initiated by analysis of the oxygen-requiring properties of C. glutamicum, generally regarded as a strict aerobe. This organism formed colonies on agar plates up to relatively low oxygen concentrations (0.5% O(2)), while no visible colonies were formed in the absence of O(2). However, in the presence of nitrate (NO3-), the organism exhibited limited growth anaerobically with production of nitrite (NO2-), indicating that C. glutamicum can use nitrate as a final electron acceptor. Assays of cell extracts from aerobic and hypoxic cultures yielded comparable nitrate reductase activities, irrespective of nitrate levels. Genome analysis revealed a narK2GHJI cluster potentially relevant to nitrate reductase and transport. Disruptions of narG and narJ abolished the nitrate-dependent anaerobic growth with the loss of nitrate reductase activity. Disruption of the putative nitrate/nitrite antiporter gene narK2 did not affect the enzyme activity but impaired the anaerobic growth. These indicate that this locus is responsible for nitrate respiration. Agar piece assays using L-lysine- and L-arginine-producing strains showed that production of both amino acids occurred anaerobically by nitrate respiration, indicating the potential of C. glutamicum for anaerobic amino acid production.
Collapse
Affiliation(s)
- Seiki Takeno
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Saito T, Sato H, Virgona N, Hagiwara H, Kashiwagi K, Suzuki K, Asano R, Yano T. Negative growth control of osteosarcoma cell by Bowman-Birk protease inhibitor from soybean; involvement of connexin 43. Cancer Lett 2007; 253:249-57. [PMID: 17343982 DOI: 10.1016/j.canlet.2007.01.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 01/30/2007] [Accepted: 01/30/2007] [Indexed: 12/20/2022]
Abstract
Bowman-Birk protease inhibitor (BBI) from soybean acts as a potential chemopreventive agent in several types of tumors. However, the mechanism is still unclear. The present study was undertaken to estimate a mechanism of BBI-dependent negative growth control of human osteosarcoma cell (U2OS cell). BBI had negative growth control of the cells via induction of connexin (Cx) 43, a tumor suppressor gene in U2OS cells. This negative growth control by BBI was abrogated under down-regulation of Cx43 induced by a Cx43 antisense nucleotide treatment. It was also found that the BBI-dependent induction of Cx43 was due to elevation of Cx43 mRNA and stabilization of Cx43 protein. Especially, BBI-dependent inhibition of chymotrypsin-like activity in proteasome contributed to stabilization of Cx43 protein. These results suggest that a major negative growth effect of BBI is based on the restoration of Cx43 expression in U2OS cells.
Collapse
Affiliation(s)
- Teruyoshi Saito
- Project for Complementary Factors, National Institute of Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Sato H, Hagiwara H, Ohde Y, Senba H, Virgona N, Yano T. Regulation of renal cell carcinoma cell proliferation, invasion and metastasis by connexin 32 gene. J Membr Biol 2007; 216:17-21. [PMID: 17565422 DOI: 10.1007/s00232-007-9020-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 04/04/2007] [Indexed: 12/27/2022]
Abstract
Gap junctions composed of connexin (Cx), a large protein family with a number of subtypes, are a main apparatus to maintain cellular homeostasis in many organs. Gap junctional intercellular communication (GJIC) is actively involved in all aspects of the cellular life cycle, ranging from cell growth to cell death. It is also known that the Cx gene acts as a tumor-suppressor due to the maintenance of cellular homeostasis via GJIC. In addition to this function, recent data show that the GJIC-independent function of Cx gene contributes to the tumor-suppressive effect of the gene with specificity to certain cells. With respect to the tumor-suppressive effects, Cx genes acts as tumor-suppressors in primary cancers, but the effects are still conflicting in invasive and metastatic cancers. We have previously reported that Cx32 is specifically downregulated in human renal cell carcinoma (RCC) cell lines as well as cancerous regions when compared to normal regions in kidneys. In recent studies, we have also reported that Cx32 suppresses growth, invasion and metastasis of RCC cells. In this minireview, we refer to a new aspect of Cx32-dependent functions against cell proliferation, invasion and metastasis in RCC cells, especially in a GJIC-independent manner.
Collapse
Affiliation(s)
- H Sato
- Project for Complementary Factors, National Institute of Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Fujimoto E, Yano T, Ueno K. [Connexin32 as a tumor suppressor gene in renal cell carcinoma]. Nihon Yakurigaku Zasshi 2007; 129:105-9. [PMID: 17299236 DOI: 10.1254/fpj.129.105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Yano T, Fujimoto E, Hagiwara H, Sato H, Yamasaki H, Negishi E, Ueno K. Connexin 32 as an anti-invasive and anti-metastatic gene in renal cell carcinoma. Biol Pharm Bull 2006; 29:1991-4. [PMID: 17015938 DOI: 10.1248/bpb.29.1991] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cellular homeostasis in many organs is maintained via gap junctions composed of connexin (Cx), a large protein family with a number of isoforms. In fact, gap junctional intercellular communication (GJIC) is actively involved in all aspects of the cellular life cycle, ranging from cell growth to cell death. It has been well known that Cx gene acts as a tumor suppressor gene due to the maintenance of cellular homeostasis via GJIC. On the other hand, recent data show that GJIC-independent function for Cx gene contributes to tumor-suppressive effect of the gene with cell certain specificity. However, the mechanistic aspect of the GJIC-independent function remains largely unknown. In this review, we briefly summarize the tumor-suppressive effects of Cx genes, refer to a new aspect of Cx32 as an anti-invasive and anti-metastatic gene against renal cell carcinoma in a GJIC-independent function and establishment of a new cancer therapy based on the new function of Cx32.
Collapse
Affiliation(s)
- Tomohiro Yano
- Project for Complementary Factors, National Institute of Health and Nutrition, Toyama, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|