1
|
Mattner F, Katsifis A, Bourdier T, Loc'h C, Berghofer P, Fookes C, Hung TT, Jackson T, Henderson D, Pham T, Lee BJ, Shepherd R, Greguric I, Wyatt N, Le T, Poon J, Power C, Fulham M. Synthesis and pharmacological evaluation of [ 18F]PBR316: a novel PET ligand targeting the translocator protein 18 kDa (TSPO) with low binding sensitivity to human single nucleotide polymorphism rs6971. RSC Med Chem 2021; 12:1207-1221. [PMID: 34355185 PMCID: PMC8292990 DOI: 10.1039/d1md00035g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/15/2021] [Indexed: 02/04/2023] Open
Abstract
Radiopharmaceuticals that target the translocator protein 18 kDa (TSPO) have been investigated with positron emission tomography (PET) to study neuroinflammation, neurodegeneration and cancer. We have developed the novel, achiral, 2-phenylimidazo[1,2-a]pyridine, PBR316 that targets the translocator protein 18 kDa (TSPO) that addresses some of the limitations inherent in current TSPO ligands; namely specificity in binding, blood brain barrier permeability, metabolism and insensitivity to TSPO binding in subjects as a result of rs6971 polymorphism. PBR316 has high nanomolar affinity (4.7-6.0 nM) for the TSPO, >5000 nM for the central benzodiazepine receptor (CBR) and low sensitivity to rs6971 polymorphism with a low affinity binders (LABs) to high affinity binders (HABs) ratio of 1.5. [18F]PBR316 was prepared in 20 ± 5% radiochemical yield, >99% radiochemical purity and a molar activity of 160-400 GBq μmol-1. Biodistribution in rats showed high uptake of [18F]PBR316 in organs known to express TSPO such as heart (3.9%) and adrenal glands (7.5% ID per g) at 1 h. [18F]PBR316 entered the brain and accumulated in TSPO-expressing regions with an olfactory bulb to brain ratio of 3 at 15 min and 7 at 4 h. Radioactivity was blocked by PK11195 and Ro 5-4864 but not Flumazenil. Metabolite analysis showed that radioactivity in adrenal glands and the brain was predominantly due to the intact radiotracer. PET-CT studies in mouse-bearing prostate tumour xenografts indicated biodistribution similar to rats with radioactivity in the tumour increasing with time. [18F]PBR316 shows in vitro binding that is insensitive to human polymorphism and has specific and selective in vivo binding to the TSPO. [18F]PBR316 is suitable for further biological and clinical studies.
Collapse
Affiliation(s)
- Filomena Mattner
- Department of Molecular Imaging, Royal Prince Alfred Hospital Camperdown NSW 2050 Australia
| | - Andrew Katsifis
- Department of Molecular Imaging, Royal Prince Alfred Hospital Camperdown NSW 2050 Australia
- School of Pharmacy, University of Sydney Sydney NSW 2006 Australia
| | - Thomas Bourdier
- Department of Molecular Imaging, Royal Prince Alfred Hospital Camperdown NSW 2050 Australia
| | - Christian Loc'h
- Australian Nuclear Science and Technology Organisation Lucas Heights NSW Australia
| | - Paula Berghofer
- Australian Nuclear Science and Technology Organisation Lucas Heights NSW Australia
| | - Christopher Fookes
- Australian Nuclear Science and Technology Organisation Lucas Heights NSW Australia
| | - Tzong-Tyng Hung
- Biological Resources Imaging Laboratory, University of New South Wales Sydney NSW Australia
| | - Timothy Jackson
- Australian Nuclear Science and Technology Organisation Lucas Heights NSW Australia
| | - David Henderson
- Department of Molecular Imaging, Royal Prince Alfred Hospital Camperdown NSW 2050 Australia
| | - Tien Pham
- Australian Nuclear Science and Technology Organisation Lucas Heights NSW Australia
| | - Brendan J Lee
- Biological Resources Imaging Laboratory, University of New South Wales Sydney NSW Australia
| | - Rachael Shepherd
- Australian Nuclear Science and Technology Organisation Lucas Heights NSW Australia
| | - Ivan Greguric
- Australian Nuclear Science and Technology Organisation Lucas Heights NSW Australia
| | - Naomi Wyatt
- Australian Nuclear Science and Technology Organisation Lucas Heights NSW Australia
| | - Thanh Le
- Department of Molecular Imaging, Royal Prince Alfred Hospital Camperdown NSW 2050 Australia
| | - Jackson Poon
- Department of Molecular Imaging, Royal Prince Alfred Hospital Camperdown NSW 2050 Australia
| | - Carl Power
- Biological Resources Imaging Laboratory, University of New South Wales Sydney NSW Australia
| | - Michael Fulham
- Department of Molecular Imaging, Royal Prince Alfred Hospital Camperdown NSW 2050 Australia
- Faculty of Engineering and Information Technologies, University of Sydney Sydney NSW 2006 Australia
| |
Collapse
|
2
|
Bhagat K, Singh JV, Pagare PP, Kumar N, Sharma A, Kaur G, Kinarivala N, Gandu S, Singh H, Sharma S, Bedi PMS. Rational approaches for the design of various GABA modulators and their clinical progression. Mol Divers 2021; 25:551-601. [PMID: 32170466 PMCID: PMC8422677 DOI: 10.1007/s11030-020-10068-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/28/2020] [Indexed: 12/20/2022]
Abstract
GABA (γ-amino butyric acid) is an important inhibitory neurotransmitter in the central nervous system. Attenuation of GABAergic neurotransmission plays an important role in the etiology of several neurological disorders including epilepsy, Alzheimer's disease, Huntington's chorea, migraine, Parkinson's disease, neuropathic pain, and depression. Increase in the GABAergic activity may be achieved through direct agonism at the GABAA receptors, inhibition of enzymatic breakdown of GABA, or by inhibition of the GABA transport proteins (GATs). These functionalities make GABA receptor modulators and GATs attractive drug targets in brain disorders associated with decreased GABA activity. There have been several reports of development of GABA modulators (GABA receptors, GABA transporters, and GABAergic enzyme inhibitors) in the past decade. Therefore, the focus of the present review is to provide an overview on various design strategies and synthetic approaches toward developing GABA modulators. Furthermore, mechanistic insights, structure-activity relationships, and molecular modeling inputs for the biologically active derivatives have also been discussed. Summary of the advances made over the past few years in the clinical translation and development of GABA receptor modulators is also provided. This compilation will be of great interest to the researchers working in the field of neuroscience. From the light of detailed literature, it can be concluded that numerous molecules have displayed significant results and their promising potential, clearly placing them ahead as potential future drug candidates.
Collapse
Affiliation(s)
- Kavita Bhagat
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, PB, 143005, India
| | - Jatinder V Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, PB, 143005, India
| | - Piyusha P Pagare
- Department of Medicinal Chemistry, School of Pharmacy and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, PB, 143005, India
| | - Anchal Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, PB, 143005, India
| | - Gurinder Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, PB, 143005, India
| | - Nihar Kinarivala
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Srinivasa Gandu
- Department of Cell Biology and Neuroscience, Cell and Development Biology Graduate Program, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Harbinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, PB, 143005, India.
| | - Sahil Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, PB, 143005, India.
- Program in Chemical Biology, Sloan Kettering Institute, New York, NY, 10065, USA.
| | - Preet Mohinder S Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, PB, 143005, India.
| |
Collapse
|
3
|
Jazvinšćak Jembrek M, Radovanović V, Vlainić J, Vuković L, Hanžić N. Neuroprotective effect of zolpidem against glutamate-induced toxicity is mediated via the PI3K/Akt pathway and inhibited by PK11195. Toxicology 2018; 406-407:58-69. [PMID: 29859204 DOI: 10.1016/j.tox.2018.05.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/27/2018] [Accepted: 05/29/2018] [Indexed: 11/30/2022]
Abstract
Excitotoxicity is a pathological process in which neuronal dysfunction and death are induced by excessive glutamate stimulation, the major fast excitatory neurotransmitter in the mammalian brain. Excitotoxicity-induced neurodegeneration is a contributing factor in ischemia-induced brain damage, traumatic brain injury, and various neurodegenerative diseases. It is triggered by calcium overload due to prolonged over-activation of ionotropic N-methyl-d-aspartate (NMDA) receptors. Enhanced Ca2+ release results in neuronal vulnerability through several intertwined mechanisms, including activation of proteolytic enzymes, increased production of reactive oxygen species (ROS), mitochondrial dysfunction and modulation of intracellular signalling pathways. We investigated the neuroprotective effect of hypnotic zolpidem, a drug that exerts its central effects at the GABAA receptor complex, against glutamate-induced toxicity in P19 neurons. Zolpidem prevented death of P19 neurons exposed to glutamate, and abolished the glutamate-induced increase in ROS production, p53 and Bax expression, and caspase-3/7 activity. Zolpidem effects were mediated by marked over-activation of Akt kinase. The pro-survival effect, as well as the pAkt induction, were prevented in the presence of wortmannin, an inhibitor of phosphatidylinositol-3-kinase (PI3K) that functions upstream of Akt. The beneficial effect of zolpidem on neuronal survival was not prevented by flumazenil, a GABAA receptor antagonist. PK11195, a drug that modulates the mitochondrial translocator protein 18 kDa (TSPO) and F0F1-ATPase, prevented the beneficial effect of zolpidem, indicating that the mechanism of zolpidem action involves preservation of mitochondrial function and integrity. Zolpidem effects were further mediated by prevention of glutamate-induced increase in the expression of the NR2B subunit of NMDA receptor. The obtained results suggest the promising therapeutic potential of zolpidem against excitotoxic insults and highlight the importance of mitochondria and the Akt pathway as valuable targets for therapeutic interventions in glutamate-mediated neuropathological conditions.
Collapse
Affiliation(s)
- Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenička cesta 54, Zagreb, Croatia; Department of Psychology, Catholic University of Croatia, Ilica 242, Zagreb, Croatia.
| | - Vedrana Radovanović
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Josipa Vlainić
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Lidija Vuković
- Division of Molecular Biology, Rudjer Boskovic Institute, Bijenička cesta 54, Zagreb, Croatia
| | - Nikolina Hanžić
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenička cesta 54, Zagreb, Croatia
| |
Collapse
|
4
|
Mattner F, Quinlivan M, Greguric I, Pham T, Liu X, Jackson T, Berghofer P, Fookes CJR, Dikic B, Gregoire MC, Dolle F, Katsifis A. Radiosynthesis, In Vivo Biological Evaluation, and Imaging of Brain Lesions with [123I]-CLINME, a New SPECT Tracer for the Translocator Protein. DISEASE MARKERS 2015; 2015:729698. [PMID: 26199457 PMCID: PMC4496498 DOI: 10.1155/2015/729698] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 06/10/2015] [Indexed: 11/17/2022]
Abstract
The high affinity translocator protein (TSPO) ligand 6-chloro-2-(4'-iodophenyl)-3-(N,N-methylethyl)imidazo[1,2-a]pyridine-3-acetamide (CLINME) was radiolabelled with iodine-123 and assessed for its sensitivity for the TSPO in rodents. Moreover neuroinflammatory changes on a unilateral excitotoxic lesion rat model were detected using SPECT imaging. [(123)I]-CLINME was prepared in 70-80% radiochemical yield. The uptake of [(123)I]-CLINME was evaluated in rats by biodistribution, competition, and metabolite studies. The unilateral excitotoxic lesion was performed by injection of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid unilaterally into the striatum. The striatum lesion was confirmed and correlated with TSPO expression in astrocytes and activated microglia by immunohistochemistry and autoradiography. In vivo studies with [(123)I]-CLINME indicated a biodistribution pattern consistent with TPSO distribution and the competition studies with PK11195 and Ro 5-4864 showed that [(123)I]-CLINME is selective for this site. The metabolite study showed that the extractable radioactivity was unchanged [(123)I]-CLINME in organs which expresses TSPO. SPECT/CT imaging on the unilateral excitotoxic lesion indicated that the mean ratio uptake in striatum (lesion:nonlesion) was 2.2. Moreover, TSPO changes observed by SPECT imaging were confirmed by immunofluorescence, immunochemistry, and autoradiography. These results indicated that [(123)I]-CLINME is a promising candidate for the quantification and visualization of TPSO expression in activated astroglia using SPECT.
Collapse
Affiliation(s)
- F. Mattner
- Life Sciences Division, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
- Department of Molecular Imaging, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - M. Quinlivan
- Life Sciences Division, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - I. Greguric
- Life Sciences Division, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - T. Pham
- Life Sciences Division, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - X. Liu
- Life Sciences Division, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - T. Jackson
- Life Sciences Division, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - P. Berghofer
- Life Sciences Division, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - C. J. R. Fookes
- Life Sciences Division, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - B. Dikic
- Life Sciences Division, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - M.-C. Gregoire
- Life Sciences Division, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - F. Dolle
- CEA, DSV/I2BM, Service Hospitalier Frédéric Joliot, 4 Place du Général Leclerc, 91401 Orsay, France
| | - A. Katsifis
- Life Sciences Division, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, NSW 2234, Australia
- Department of Molecular Imaging, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| |
Collapse
|
5
|
Liu G, Middleton RJ, Hatty CR, Kam WW, Chan R, Pham T, Harrison‐Brown M, Dodson E, Veale K, Banati RB. The 18 kDa translocator protein, microglia and neuroinflammation. Brain Pathol 2014; 24:631-53. [PMID: 25345894 PMCID: PMC8029074 DOI: 10.1111/bpa.12196] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 08/19/2014] [Indexed: 12/17/2022] Open
Abstract
The 18 kDa translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor, is expressed in the injured brain. It has become known as an imaging marker of "neuroinflammation" indicating active disease, and is best interpreted as a nondiagnostic biomarker and disease staging tool that refers to histopathology rather than disease etiology. The therapeutic potential of TSPO as a drug target is mostly based on the understanding that it is an outer mitochondrial membrane protein required for the translocation of cholesterol, which thus regulates the rate of steroid synthesis. This pivotal role together with the evolutionary conservation of TSPO has underpinned the belief that any loss or mutation of TSPO should be associated with significant physiological deficits or be outright incompatible with life. However, against prediction, full Tspo knockout mice are viable and across their lifespan do not show the phenotype expected if cholesterol transport and steroid synthesis were significantly impaired. Thus, the "translocation" function of TSPO remains to be better substantiated. Here, we discuss the literature before and after the introduction of the new nomenclature for TSPO and review some of the newer findings. In light of the controversy surrounding the function of TSPO, we emphasize the continued importance of identifying compounds with confirmed selectivity and suggest that TSPO expression is analyzed within specific disease contexts rather than merely equated with the reified concept of "neuroinflammation."
Collapse
Affiliation(s)
- Guo‐Jun Liu
- Life SciencesAustralian Nuclear Science and Technology OrganisationNSWAustralia
- Brain & Mind Research InstituteThe University of SydneyNSWAustralia
- Discipline of Medical Imaging & Radiation SciencesFaculty of Health SciencesThe University of SydneyNSWAustralia
| | - Ryan J. Middleton
- Life SciencesAustralian Nuclear Science and Technology OrganisationNSWAustralia
| | - Claire R. Hatty
- Brain & Mind Research InstituteThe University of SydneyNSWAustralia
- Discipline of Medical Imaging & Radiation SciencesFaculty of Health SciencesThe University of SydneyNSWAustralia
| | - Winnie Wai‐Ying Kam
- Life SciencesAustralian Nuclear Science and Technology OrganisationNSWAustralia
- Brain & Mind Research InstituteThe University of SydneyNSWAustralia
- Discipline of Medical Imaging & Radiation SciencesFaculty of Health SciencesThe University of SydneyNSWAustralia
| | - Ronald Chan
- Brain & Mind Research InstituteThe University of SydneyNSWAustralia
- Discipline of Medical Imaging & Radiation SciencesFaculty of Health SciencesThe University of SydneyNSWAustralia
| | - Tien Pham
- Life SciencesAustralian Nuclear Science and Technology OrganisationNSWAustralia
| | - Meredith Harrison‐Brown
- Life SciencesAustralian Nuclear Science and Technology OrganisationNSWAustralia
- Discipline of Medical Imaging & Radiation SciencesFaculty of Health SciencesThe University of SydneyNSWAustralia
| | - Eoin Dodson
- Life SciencesAustralian Nuclear Science and Technology OrganisationNSWAustralia
| | - Kelly Veale
- Discipline of Medical Imaging & Radiation SciencesFaculty of Health SciencesThe University of SydneyNSWAustralia
| | - Richard B. Banati
- Life SciencesAustralian Nuclear Science and Technology OrganisationNSWAustralia
- Brain & Mind Research InstituteThe University of SydneyNSWAustralia
- Discipline of Medical Imaging & Radiation SciencesFaculty of Health SciencesThe University of SydneyNSWAustralia
- National Imaging Facility and Ramaciotti Brain Imaging CentreSydneyNSWAustralia
| |
Collapse
|
6
|
Bourdier T, Henderson D, Fookes CJ, Lam P, Mattner F, Fulham M, Katsifis A. Synthesis of [11C]PBR170, a novel imidazopyridine, for imaging the translocator protein with PET. Appl Radiat Isot 2014; 90:46-52. [DOI: 10.1016/j.apradiso.2014.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 02/26/2014] [Accepted: 03/08/2014] [Indexed: 10/25/2022]
|
7
|
Rajanarendar E, Reddy KG, Krishna SR, Srinivas M. A Facile One-pot Synthesis of Highly Functionalized Isoxazolyl Imidazo[1,2-a] Pyridines Through CuI-Promoted Cyclization. J Heterocycl Chem 2014. [DOI: 10.1002/jhet.2146] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- E. Rajanarendar
- Department of chemistry; Kakatiya University; Warangal 506009 Andhra Pradesh India
| | - K. G. Reddy
- Department of chemistry; Kakatiya University; Warangal 506009 Andhra Pradesh India
| | - S. R. Krishna
- Department of chemistry; Kakatiya University; Warangal 506009 Andhra Pradesh India
| | - M. Srinivas
- Department of chemistry; Kakatiya University; Warangal 506009 Andhra Pradesh India
| |
Collapse
|
8
|
Herath A, Dahl R, Cosford NDP. Fully automated continuous flow synthesis of highly functionalized imidazo[1,2-a] heterocycles. Org Lett 2010; 12:412-5. [PMID: 20038130 PMCID: PMC2814065 DOI: 10.1021/ol902433a] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first continuous flow synthesis of imidazo[1,2-a]pyridine-2-carboxylic acids directly from 2-aminopyridines and bromopyruvic acid has been developed, representing a significant advance over the corresponding in-flask method. The process was applied to the multistep synthesis of imidazo[1,2-a]pyridine-2-carboxamides, including a Mur ligase inhibitor, using a two microreactor, multistep continuous flow process without isolation of intermediates.
Collapse
Affiliation(s)
- Ananda Herath
- Conrad Prebys Center for Chemical Genomics, Burnham Institute for
Medical Research 10901 North Torrey Pines Road, La Jolla, CA 92037
| | - Russell Dahl
- Conrad Prebys Center for Chemical Genomics, Burnham Institute for
Medical Research 10901 North Torrey Pines Road, La Jolla, CA 92037
| | - Nicholas D. P. Cosford
- Conrad Prebys Center for Chemical Genomics, Burnham Institute for
Medical Research 10901 North Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
9
|
Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers. Eur J Nucl Med Mol Imaging 2008; 35:2304-19. [DOI: 10.1007/s00259-008-0908-9] [Citation(s) in RCA: 324] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 07/17/2008] [Indexed: 12/22/2022]
|
10
|
In vitro and ex vivo autoradiography studies on peripheral-type benzodiazepine receptor binding using [11C]AC-5216 in normal and kainic acid-lesioned rats. Neurosci Lett 2007; 428:59-63. [DOI: 10.1016/j.neulet.2007.09.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 09/21/2007] [Accepted: 09/25/2007] [Indexed: 11/19/2022]
|
11
|
Parenty ADC, Song YF, Richmond CJ, Cronin L. A General and Efficient Five-Step One-Pot Procedure Leading to Nitrogen-Bridgehead Heterocycles Containing an Imidazole Ring. Org Lett 2007; 9:2253-6. [PMID: 17500559 DOI: 10.1021/ol070263z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A very simple annulation reaction was designed, allowing an imidazole moiety to be fused onto a range of pyridine-based derivatives. The methodology consists of an activation step via the formation of a pyridinium salt to increase the electrophilicity of the pyridine ring, followed by a cascade reaction triggered by a nucleophilic attack of the iminium moiety. Depending on the pyridinium salt, it is possible to obtain functionalized imidazole moieties.
Collapse
Affiliation(s)
- Alexis D C Parenty
- Chemistry Department, WestCHEM, University of Glasgow, Glasgow, United Kingdom
| | | | | | | |
Collapse
|
12
|
Zhang MR, Kumata K, Maeda J, Haradahira T, Noguchi J, Suhara T, Halldin C, Suzuki K. N-(5-Fluoro-2-phenoxyphenyl)-N-(2-[131I]iodo-5-methoxybenzyl)acetamide: A Potent Iodinated Radioligand for the Peripheral-type Benzodiazepine Receptor in Brain. J Med Chem 2007; 50:848-55. [PMID: 17300167 DOI: 10.1021/jm061127n] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To image the peripheral-type benzodiazepine receptor (PBR) in vivo, we previously developed two positron emission tomography (PET) ligands, N-(2-[11C],5-dimethoxybenzyl)-N-(5-fluoro-2-phenoxyphenyl)acetamide ([11C]1a) and its [18F]fluoroethyl analogue ([18F]1b), for the investigation of PBR in the living human brain. This time, using 1a as a leading compound, we designed two novel iodinated analogues, N-(5-fluoro-2-phenoxyphenyl)-N-(2-iodo-5-methoxybenzyl)acetamide (3a) and N-(2,5-dimethoxybenzyl)-N-(5-iodo-2-phenoxyphenyl)acetamide (3b) for the PBR imaging. Ligands 3 were synthesized by the iodination of tributystannyl precursors 10. Radiolabeling for 3 with 131I was carried out by the reaction of 10 with [131I]NaI using H2O2 as an oxidizing agent. In vitro competition experiments determined that 3a exhibited both high affinity and selectivity for PBR (IC50: 7.8 nM) vs CBR (>1 microM). Biodistribution study in mice determined that [131I]3a had a high radioactivity level (1.69% dose/g) in the brain, and its distribution pattern in the brain was consistent with the known distribution of PBR in rodents. Ex vivo autoradiography of the rat brain gave visual evidence that [131I]3a was a potent and specific radioligand for PBR.
Collapse
Affiliation(s)
- Ming-Rong Zhang
- Radiochemistry Section, Department of Molecular Probe, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | | | | | | | | | | | | | | |
Collapse
|