1
|
Leigh SJ, Uhlig F, Wilmes L, Sanchez-Diaz P, Gheorghe CE, Goodson MS, Kelley-Loughnane N, Hyland NP, Cryan JF, Clarke G. The impact of acute and chronic stress on gastrointestinal physiology and function: a microbiota-gut-brain axis perspective. J Physiol 2023; 601:4491-4538. [PMID: 37756251 DOI: 10.1113/jp281951] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The physiological consequences of stress often manifest in the gastrointestinal tract. Traumatic or chronic stress is associated with widespread maladaptive changes throughout the gut, although comparatively little is known about the effects of acute stress. Furthermore, these stress-induced changes in the gut may increase susceptibility to gastrointestinal disorders and infection, and impact critical features of the neural and behavioural consequences of the stress response by impairing gut-brain axis communication. Understanding the mechanisms behind changes in enteric nervous system circuitry, visceral sensitivity, gut barrier function, permeability, and the gut microbiota following stress is an important research objective with pathophysiological implications in both neurogastroenterology and psychiatry. Moreover, the gut microbiota has emerged as a key aspect of physiology sensitive to the effects of stress. In this review, we focus on different aspects of the gastrointestinal tract including gut barrier function as well as the immune, humoral and neuronal elements involved in gut-brain communication. Furthermore, we discuss the evidence for a role of stress in gastrointestinal disorders. Existing gaps in the current literature are highlighted, and possible avenues for future research with an integrated physiological perspective have been suggested. A more complete understanding of the spatial and temporal dynamics of the integrated host and microbial response to different kinds of stressors in the gastrointestinal tract will enable full exploitation of the diagnostic and therapeutic potential in the fast-evolving field of host-microbiome interactions.
Collapse
Affiliation(s)
- Sarah-Jane Leigh
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Friederike Uhlig
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - Lars Wilmes
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Paula Sanchez-Diaz
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Cassandra E Gheorghe
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Michael S Goodson
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Nancy Kelley-Loughnane
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Niall P Hyland
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Manthari RK, Tikka C, Ommati MM, Niu R, Sun Z, Wang J, Zhang J, Wang J. Arsenic-Induced Autophagy in the Developing Mouse Cerebellum: Involvement of the Blood-Brain Barrier's Tight-Junction Proteins and the PI3K-Akt-mTOR Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8602-8614. [PMID: 30032600 DOI: 10.1021/acs.jafc.8b02654] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study was designed to determine whether the tight-junction (TJ) proteins of the blood-brain barrier (BBB) and the PI3K-Akt-mTOR signaling pathway are involved during arsenic (As)-induced autophagy in developing mouse cerebella after exposure to different As concentrations (0, 0.15, 1.5, and 15 mg/L As(III)) during gestational and lactational periods. The dosage was continually given to the pups until postnatal day (PND) 42. Studies conducted at different developmental age points, like PND21, 28, 35, and 42, showed that exposure to As led to a significant decrease in the mRNA-expression levels of TJ proteins (occludin, claudin, ZO-1, and ZO-2), PI3K, Akt, mTOR, and p62, with concomitant increases in Beclin1, LC3I, LC3II, Atg5, and Atg12. Also, As significantly downregulated occludin and mTOR protein-expression levels with concomitant upregulation of Beclin1, LC3, and Atg12 at all the developmental age points. However, no significant alterations were observed in low- and medium-dose-exposed groups at PND42. Histopathological analysis revealed the irregular arrangement of the Purkinje cell layer in the As-exposed mice. Ultrastructural analysis by transmission electron microscopy (TEM) revealed the occurrence of autophagosomes and vacuolated axons in the cerebella of the mice exposed to high doses of As at PND21 and 42, respectively. Finally, we conclude that developmental As exposure significantly alters TJ proteins, resulting an increase in BBB permeability, facilitating the ability of As to cross the BBB and induce autophagy, which might be partly the result of inhibition of the PI3K-Akt-mTOR signaling pathway, in an age-dependent manner (i.e., PND21 mice were found to be more vulnerable to As-induced neurotoxicity), which could be due to the immature BBB allowing As to cross through it. However, the effect was not significant in PND42, which could be due to the developed BBB.
Collapse
Affiliation(s)
- Ram Kumar Manthari
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , Shanxi 030801 , China
| | - Chiranjeevi Tikka
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , Shanxi 030801 , China
| | - Mohammad Mehdi Ommati
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , Shanxi 030801 , China
- Department of Animal Science, College of Agriculture , Shiraz University , Shiraz 71441-65186 , Iran
| | - Ruiyan Niu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , Shanxi 030801 , China
| | - Zilong Sun
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , Shanxi 030801 , China
| | - Jinming Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , Shanxi 030801 , China
| | - Jianhai Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , Shanxi 030801 , China
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine , Shanxi Agricultural University , Taigu , Shanxi 030801 , China
| |
Collapse
|
3
|
Vanhaecke T, Aubert P, Grohard PA, Durand T, Hulin P, Paul-Gilloteaux P, Fournier A, Docagne F, Ligneul A, Fressange-Mazda C, Naveilhan P, Boudin H, Le Ruyet P, Neunlist M. L. fermentum CECT 5716 prevents stress-induced intestinal barrier dysfunction in newborn rats. Neurogastroenterol Motil 2017; 29. [PMID: 28370715 DOI: 10.1111/nmo.13069] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/21/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Intestinal epithelial barrier (IEB) dysfunction plays a critical role in various intestinal disorders affecting infants and children, including the development of food allergies and colitis. Recent studies highlighted the role of probiotics in regulating IEB functions and behavior in adults, but their effects in the newborn remain largely unknown. We therefore characterized in rat pups, the impact of Lactobacillus fermentum CECT 5716 (L. fermentum) on stress-induced IEB dysfunction, systemic immune response and exploratory behavior. METHODS Newborn rats received daily by gavage either L. fermentum or water. Intestinal permeability to fluorescein sulfonic acid (FSA) and horseradish peroxidase (HRP) was measured following maternal separation (MS) and water avoidance stress (WAS). Immunohistochemical, transcriptomic, and Western blot analysis of zonula occludens-1 (ZO-1) distribution and expression were performed. Anxiety-like and exploratory behavior was assessed using the elevated plus maze test. Cytokine secretion of activated splenocytes was also evaluated. KEY RESULTS L. fermentum prevented MS and WAS-induced IEB dysfunction in vivo. L. fermentum reduced permeability to both FSA and HRP in the small intestine but not in the colon. L. fermentum increased expression of ZO-1 and prevented WAS-induced ZO-1 disorganization in ileal epithelial cells. L. fermentum also significantly reduced stress-induced increase in plasma corticosteronemia. In activated splenocytes, L. fermentum enhanced IFNγ secretion while it prevented IL-4 secretion. Finally, L. fermentum increased exploratory behavior. CONCLUSIONS & INFERENCES These results suggest that L. fermentum could provide a novel tool for the prevention and/or treatment of gastrointestinal disorders associated with altered IEB functions in the newborn.
Collapse
Affiliation(s)
- T Vanhaecke
- INSERM U1235, Nantes, France.,Université de Nantes, Nantes, France.,Institut des Maladies de l'Appareil Digestif, Nantes, France.,Lactalis Recherche et Développement, Retiers, France
| | - P Aubert
- INSERM U1235, Nantes, France.,Université de Nantes, Nantes, France.,Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - P-A Grohard
- INSERM U1235, Nantes, France.,Université de Nantes, Nantes, France.,Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - T Durand
- INSERM U1235, Nantes, France.,Université de Nantes, Nantes, France.,Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - P Hulin
- Université de Nantes, Nantes, France.,MicroPICell - Cellular and Tissular Imaging Core Facility of Nantes, SFR Santé F. Bonamy-FED 4203/Inserm UMS016/CNRS UMS3556, Nantes, France
| | - P Paul-Gilloteaux
- Université de Nantes, Nantes, France.,MicroPICell - Cellular and Tissular Imaging Core Facility of Nantes, SFR Santé F. Bonamy-FED 4203/Inserm UMS016/CNRS UMS3556, Nantes, France
| | - A Fournier
- Normandie Univ, UNICAEN, INSERM, Physiopathology and Imaging of Neurological Disorders (PhIND), Centre Cyceron, Caen, France
| | - F Docagne
- Normandie Univ, UNICAEN, INSERM, Physiopathology and Imaging of Neurological Disorders (PhIND), Centre Cyceron, Caen, France
| | - A Ligneul
- Lactalis Recherche et Développement, Retiers, France
| | | | - P Naveilhan
- INSERM U1235, Nantes, France.,Université de Nantes, Nantes, France.,Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - H Boudin
- INSERM U1235, Nantes, France.,Université de Nantes, Nantes, France.,Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - P Le Ruyet
- Lactalis Recherche et Développement, Retiers, France
| | - M Neunlist
- INSERM U1235, Nantes, France.,Université de Nantes, Nantes, France.,Institut des Maladies de l'Appareil Digestif, Nantes, France
| |
Collapse
|
4
|
Zhu H, Pi D, Leng W, Wang X, Hu CAA, Hou Y, Xiong J, Wang C, Qin Q, Liu Y. Asparagine preserves intestinal barrier function from LPS-induced injury and regulates CRF/CRFR signaling pathway. Innate Immun 2017; 23:546-556. [PMID: 28728455 DOI: 10.1177/1753425917721631] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Stress causes intestinal inflammation and barrier dysfunction. Corticotrophin-releasing factor (CRF)/CRF receptor (CRFR) signaling pathway has been shown to be important for stress-induced intestinal mucosal alteration. L-Asparagine (ASN) is a powerful stimulator of ornithine decarboxylase and cell proliferation in a variety of cell types, including colonic cells. In the present study, we investigated whether dietary ASN supplementation could alleviate the damage of intestinal barrier function caused by LPS through modulation of CRF/CRFR signaling pathway. Twenty-four weaned pigs were randomly divided into one of four treatments: (1) non-challenged control; (2) Escherichia coli LPS challenged control; (3) LPS + 0.5% ASN; (4) LPS + 1.0% ASN. LPS stress induced villous atrophy, intestinal morphology disruption and decreased claudin-1 expression. ASN supplementation increased intestinal claudin-1 protein expression and alleviated villous atrophy and intestinal morphology impairment caused by LPS stress. In addition, ASN supplementation increased the number of intestinal intraepithelial lymphocytes and reversed the elevations of intestinal mast cell number and neutrophil number induced by LPS stress. Moreover, ASN decreased the mRNA expression of intestinal CRF, glucocorticoid receptors and tryptase. These results indicate that ASN attenuates intestinal barrier dysfunction induced by LPS stress, and regulates CRF/CRFR1 signaling pathway and mast cell activation.
Collapse
Affiliation(s)
- Huiling Zhu
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Dingan Pi
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Weibo Leng
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Xiuying Wang
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Chien-An Andy Hu
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China.,2 Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Yongqing Hou
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Jianglin Xiong
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Chunwei Wang
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Qin Qin
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Yulan Liu
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
5
|
Rodiño-Janeiro BK, Alonso-Cotoner C, Pigrau M, Lobo B, Vicario M, Santos J. Role of Corticotropin-releasing Factor in Gastrointestinal Permeability. J Neurogastroenterol Motil 2015; 21:33-50. [PMID: 25537677 PMCID: PMC4288093 DOI: 10.5056/jnm14084] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/06/2014] [Accepted: 10/07/2014] [Indexed: 12/11/2022] Open
Abstract
The interface between the intestinal lumen and the mucosa is the location where the majority of ingested immunogenic particles face the scrutiny of the vast gastrointestinal immune system. Upon regular physiological conditions, the intestinal micro-flora and the epithelial barrier are well prepared to process daily a huge amount of food-derived antigens and non-immunogenic particles. Similarly, they are ready to prevent environmental toxins and microbial antigens to penetrate further and interact with the mucosal-associated immune system. These functions promote the development of proper immune responses and oral tolerance and prevent disease and inflammation. Brain-gut axis structures participate in the processing and execution of response signals to external and internal stimuli. The brain-gut axis integrates local and distant regulatory networks and super-systems that serve key housekeeping physiological functions including the balanced functioning of the intestinal barrier. Disturbance of the brain-gut axis may induce intestinal barrier dysfunction, increasing the risk of uncontrolled immunological reactions, which may indeed trigger transient mucosal inflammation and gut disease. There is a large body of evidence indicating that stress, through the brain-gut axis, may cause intestinal barrier dysfunction, mainly via the systemic and peripheral release of corticotropin-releasing factor. In this review, we describe the role of stress and corticotropin-releasing factor in the regulation of gastrointestinal permeability, and discuss the link to both health and pathological conditions.
Collapse
Affiliation(s)
- Bruno K Rodiño-Janeiro
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Carmen Alonso-Cotoner
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Marc Pigrau
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Beatriz Lobo
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - María Vicario
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Javier Santos
- Neuro-Immuno-Gastroenterology Group, Digestive Diseases Research Unit, Gastroenterology Department, Hospital Universitari Vall d'Hebron, Vall d' Hebron Research Institute; and Department of Medicine, Universitat Autònoma de Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| |
Collapse
|
6
|
Wan C, Yin P, Xu X, Liu M, He S, Song S, Liu F, Xu J. Effect of simulated transport stress on the rat small intestine: A morphological and gene expression study. Res Vet Sci 2014; 96:355-64. [PMID: 24560020 DOI: 10.1016/j.rvsc.2014.01.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 12/26/2013] [Accepted: 01/26/2014] [Indexed: 02/08/2023]
Abstract
The present study investigated the effects of simulated transport stress on morphology and gene expression in the small intestine of laboratory rats. Sprague Dawley rats were subjected to 35°C and 0.1×g on a constant temperature shaker for physiological, biochemical, morphological and microarray analysis before and after treatment. The treatment induced obvious stress responses with significant decreases in body weight (P<0.01), increases in rectal temperature, serum corticosterone (CORT), serum glucose (GLU), creatine kinase (CK) and lactate dehydrogenase (LDH) levels (P<0.01), as well as expression of Hsp27/70/90 mRNA (P<0.05; P<0.01). The rat jejunum was severely damaged and apoptotic after mimicking transport stress, which may mainly be related to cell death, oxidation reduction and hormone imbalance determined by microarray analysis. The bioinformatics analysis from the present study would provide insight into the potential mechanisms underlying transport stress-induced injury in the rat small intestine.
Collapse
Affiliation(s)
- Changrong Wan
- CAU-BUA TCVM Teaching and Researching Team, College of Veterinary Medicine, China Agricultural University (CAU), Beijing 100193, PR China
| | - Peng Yin
- CAU-BUA TCVM Teaching and Researching Team, College of Veterinary Medicine, China Agricultural University (CAU), Beijing 100193, PR China
| | - Xiaolong Xu
- CAU-BUA TCVM Teaching and Researching Team, College of Veterinary Medicine, China Agricultural University (CAU), Beijing 100193, PR China
| | - Mingjiang Liu
- CAU-BUA TCVM Teaching and Researching Team, College of Veterinary Medicine, China Agricultural University (CAU), Beijing 100193, PR China
| | - Shasha He
- CAU-BUA TCVM Teaching and Researching Team, College of Veterinary Medicine, China Agricultural University (CAU), Beijing 100193, PR China
| | - Shixiu Song
- CAU-BUA TCVM Teaching and Researching Team, College of Veterinary Medicine, China Agricultural University (CAU), Beijing 100193, PR China
| | - Fenghua Liu
- College of Animal Science and Technology, Beijing University of Agriculture (BUA), Beijing 102206, PR China.
| | - Jianqin Xu
- CAU-BUA TCVM Teaching and Researching Team, College of Veterinary Medicine, China Agricultural University (CAU), Beijing 100193, PR China.
| |
Collapse
|
7
|
Dubreuil JD. Antibacterial and antidiarrheal activities of plant products against enterotoxinogenic Escherichia coli. Toxins (Basel) 2013; 5:2009-41. [PMID: 24212181 PMCID: PMC3847712 DOI: 10.3390/toxins5112009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/25/2013] [Accepted: 10/30/2013] [Indexed: 12/22/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) produces two types of enterotoxins: heat-labile (LT) and heat-stable (STa and STb). These molecules are involved in the induction of secretory diarrhea in animals including humans. This condition is currently treated using a fluid replacement therapy and antibiotics. This treatment is often not available to people in developing countries, and several die from the condition provoke by ETEC. Over the years, plants and plant extracts have been use as traditional medicine to treat various gastrointestinal ailments including diarrhea. Many of these plant products have been claimed to be active against diarrhea, however few have been extensively studied. The main objective of this review was to gather the scattered information on the antidiarrheal activities reported for various plant products on ETEC. This includes two major effects: (1) The inhibitory effect on bacterial growth or viability and (2) The interference with ETEC enterotoxins activity upon the intestinal epithelium. We will focus on plant products and extracts for which we have major indications of their biological activity against ETEC and their enterotoxins. Because Vibrio cholerae toxin (CT) is structurally, antigenically and mechanistically related to LT, it will also be discussed in this review.
Collapse
Affiliation(s)
- J Daniel Dubreuil
- Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Québec, Canada.
| |
Collapse
|
8
|
Foti Cuzzola V, Galuppo M, Iori R, De Nicola GR, Cassata G, Giacoppo S, Bramanti P, Mazzon E. Beneficial effects of (RS)-glucoraphanin on the tight junction dysfunction in a mouse model of restraint stress. Life Sci 2013; 93:288-305. [DOI: 10.1016/j.lfs.2013.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/30/2013] [Accepted: 07/01/2013] [Indexed: 01/30/2023]
|
9
|
Yu Y, Liu ZQ, Liu XY, Yang L, Geng XR, Yang G, Liu ZG, Zheng PY, Yang PC. Stress-Derived Corticotropin Releasing Factor Breaches Epithelial Endotoxin Tolerance. PLoS One 2013; 8:e65760. [PMID: 23840363 PMCID: PMC3686760 DOI: 10.1371/journal.pone.0065760] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 04/29/2013] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AND AIMS Loss of the endotoxin tolerance of intestinal epithelium contributes to a number of intestinal diseases. The etiology is not clear. Psychological stress is proposed to compromise the intestinal barrier function. The present study aims to elucidate the role of the stress-derived corticotropin releasing factor (CRF) in breaching the established intestinal epithelial endotoxin tolerance. METHODS Epithelial cells of HT-29, T84 and MDCK were exposed to lipopolysaccharide to induce the endotoxin tolerance; the cells were then stimulated with CRF. The epithelial barrier function was determined using as indicators of the endotoxin tolerant status. A water-avoid stress mouse model was employed to test the role of CRF in breaching the established endotoxin tolerance in the intestine. RESULTS The established endotoxin tolerance in the epithelial cell monolayers was broken down by a sequent exposure to CRF and LPS manifesting a marked drop of the transepithelial resistance (TER) and an increase in the permeability to a macromolecular tracer, horseradish peroxidase (HRP). The exposure to CRF also increased the expression of Cldn2 in the epithelial cells, which could be mimicked by over expression of TLR4 in epithelial cells. Over expression of Cldn2 resulted in low TER in epithelial monolayers and high permeability to HRP. After treating mice with the 10-day chronic stress, the intestinal epithelial barrier function was markedly compromised, which could be prevented by blocking either CRF, or TLR4, or Cldn2. CONCLUSIONS Psychological stress-derived CRF can breach the established endotoxin tolerance in the intestinal mucosa.
Collapse
Affiliation(s)
- Yong Yu
- Department of Gastroenterology, the Second Hospital, Zhengzhou University, Zhengzhou, China
| | - Zhi-Qiang Liu
- Department of Gastroenterology, the Second Hospital, Zhengzhou University, Zhengzhou, China
| | - Xiao-Yu Liu
- Allergy & Immunology Institute, Shenzhen University School of Medicine, Shenzhen, China
| | - Li Yang
- Department of Gastroenterology, the Second Hospital, Zhengzhou University, Zhengzhou, China
| | - Xiao-Rui Geng
- Longgang Central Hospital, ENT Hospital and Shenzhen ENT Institute, Shenzhen, China
| | - Gui Yang
- Longgang Central Hospital, ENT Hospital and Shenzhen ENT Institute, Shenzhen, China
| | - Zhi-Gang Liu
- Allergy & Immunology Institute, Shenzhen University School of Medicine, Shenzhen, China
| | - Peng-Yuan Zheng
- Department of Gastroenterology, the Second Hospital, Zhengzhou University, Zhengzhou, China
- * E-mail: (PYZ); (PCY)
| | - Ping-Chang Yang
- Allergy & Immunology Institute, Shenzhen University School of Medicine, Shenzhen, China
- * E-mail: (PYZ); (PCY)
| |
Collapse
|
10
|
Jorge E, Vergara P, Martin MT. Ileal inducible nitric oxide synthase mRNA expression in response to stress is modified in Sprague-Dawley rats exposed to a previous intestinal inflammation. Stress 2012; 15:62-73. [PMID: 21790346 DOI: 10.3109/10253890.2011.582655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The ability of stress to initiate or reactivate an inflammatory process seems to depend on an individual's susceptibility to stressful stimuli. The aim of this study was to establish whether previous inflammation alters the response to stress in Sprague-Dawley rats, a strain not especially susceptible to stressful stimuli. Stress exposure was performed in rats treated with indomethacin, to induce cyclic intestinal inflammation, during the inactive phase of inflammation. Both control and indomethacin-treated rats submitted to stress showed a decrease in body weight gain and blood leukocyte levels, as well as an increase in fecal pellet output. The increase in intestinal mucosal mast cell count induced by stress was similar in both groups of animals. Moreover, no differences were observed between control and indomethacin-treated rats in the degree of bacterial translocation and myeloperoxidase levels after stress exposure. Despite these similarities, differences between groups were observed in inducible nitric oxide synthase (iNOS) mRNA expression. Although ileal iNOS mRNA expression was inhibited in healthy rats submitted to stress, stress failed to modify this parameter in indomethacin-treated rats. As iNOS is another inflammatory marker, our results may allow the possibility that a previous intestinal inflammation could change the intestinal susceptibility to stress. Whether these differences in ileal iNOS expression can be indicative of a possible change in the predisposition to develop an intestinal inflammatory reaction in response to stress in Sprague-Dawley rats remains to be elucidated.
Collapse
Affiliation(s)
- E Jorge
- Cell Biology, Physiology and Immunology Department, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | |
Collapse
|
11
|
Jorge E, Fernández JA, Torres R, Vergara P, Martin MT. Functional changes induced by psychological stress are not enough to cause intestinal inflammation in Sprague-Dawley rats. Neurogastroenterol Motil 2010; 22:e241-50. [PMID: 20426801 DOI: 10.1111/j.1365-2982.2010.01507.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND It is well known that stress contributes to the perpetuation of several gastrointestinal diseases. However, its role as a trigger of the inflammatory process in absence of other putative contributing factors remains controversial. Our aim was to elucidate whether stress per se can induce a primary gut inflammation in non-predisposed rats. METHODS Male Sprague-Dawley rats were divided in sham and stress groups. Chronic stress was induced by subjecting animals 1 h day(-1) to wrap restraint or water avoidance stress alternatively for five consecutive days, as a model of ongoing life stress. KEY RESULTS Chronic stress induced a significant decrease in body weight gain without changes in food intake and an increase in frequency of defecation. Electromiografic (EMG) study showed that the duration of the migrating motor cycles (MMCs), but not its frequency, was shortened in stressed animals compared with non-stress conditions. Moreover, stressful stimulus caused mucosal mast cell hyperplasia and a decrease of iNOS mRNA expression. Bacterial translocation observed in stressed animals was not related to changes in epithelial barrier function and was not enough to induce intestinal inflammation. CONCLUSIONS & INFERENCES Decreased MMC duration, mast cell hyperplasia and decreased mRNA iNOS expression, but not altered epithelial barrier function, could be factors implicated in bacterial translocation-induced by chronic stress. However, these changes are not sufficient to induce intestinal inflammation in stress non-susceptible strain of rats.
Collapse
Affiliation(s)
- E Jorge
- Cell Biology, Physiology and Immunology Department, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | |
Collapse
|
12
|
|