1
|
Mo D, Zeng Z, Lin M, Hu KL, Zhou P, Liu Y, Li R, Yang Y. Expression and Hormonal Regulation of Entpd3 at Various Estrous Cycle Stages in the Mouse Uterus. Reprod Sci 2025; 32:1033-1041. [PMID: 39567465 DOI: 10.1007/s43032-024-01750-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/09/2024] [Indexed: 11/22/2024]
Abstract
Ectonucleoside triphosphate diphosphohydrolase 3 (ENTPD3), a plasma membrane-bound metabolic enzyme, converts extracellular nucleotides into nucleosides. ENTPD3 is involved in various pathophysiological processes, including cellular adhesion, metabolism, activation, and migration. However, its specific function in the uterus remains unclear. This study aimed to investigate the expression pattern and localization of Entpd3 in the mouse uterus throughout the estrous cycle using immunohistochemistry (IHC), quantitative real-time PCR, and western blot analysis. The effect of sex steroid hormones on Entpd3 expression was also examined in ovariectomized (OVX) mice treated with 17β-estradiol (E2)/progesterone (P4) and estrogen receptor antagonist (Fulvestrant)/progesterone receptor antagonist (Mifepristone). Results demonstrated that elevated levels of Entpd3 mRNA and protein were noted during estrus and metestrus, with a decline in diestrus and proestrus. IHC revealed abundant ENTPD3 in the cytoplasm of glandular and luminal epithelial cells during estrus and metestrus. Additionally, treatment with E2 or P4 in OVX mice downregulated the expression of Entpd3 in the mouse uterus, which was rescued by Fulvestrant or Mifepristone. This study demonstrated that the expression of Entpd3 in the mouse uterus varied dynamically throughout the estrous cycle and was steroid-dependent, suggesting a potential role for Entpd3 in female mice's reproductive function.
Collapse
Affiliation(s)
- Dan Mo
- Guangxi Reproductive Medical Center, the First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, 530021, The People's Republic of China
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Huayuan North Road 49, Beijing, 100191, The People's Republic of China
| | - Zhonghong Zeng
- Guangxi Reproductive Medical Center, the First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, 530021, The People's Republic of China
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Huayuan North Road 49, Beijing, 100191, The People's Republic of China
| | - Mingmei Lin
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Huayuan North Road 49, Beijing, 100191, The People's Republic of China
| | - Kai-Lun Hu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Huayuan North Road 49, Beijing, 100191, The People's Republic of China
| | - Ping Zhou
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Huayuan North Road 49, Beijing, 100191, The People's Republic of China
| | - Yusong Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Huayuan North Road 49, Beijing, 100191, The People's Republic of China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Huayuan North Road 49, Beijing, 100191, The People's Republic of China.
| | - Yihua Yang
- Guangxi Reproductive Medical Center, the First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, 530021, The People's Republic of China.
| |
Collapse
|
2
|
Purinergic signaling in thyroid disease. Purinergic Signal 2023; 19:221-227. [PMID: 35347568 PMCID: PMC9984614 DOI: 10.1007/s11302-022-09858-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/07/2022] [Indexed: 10/18/2022] Open
Abstract
It is known that thyroid hormones play pivotal roles in a wide variety of pathological and physiological events. Thyroid diseases, mainly including hyperthyroidism, hypothyroidism, and thyroid cancer, are highly prevalent worldwide health problems and frequently associated with severe clinical manifestations. However, etiology of hyperthyroidism, hypothyroidism, and thyroid cancer is not fully understood. Purinergic signaling accounts for a complex network of receptors and extracellular enzymes responsible for the recognition and degradation of extracellular nucleotides and adenosine. It has been established that purinergic signaling modulates pathways in a wide range of physiopathological conditions including hypertension, diabetes, hepatic diseases, psychiatric and neurodegeneration, rheumatic immune diseases, and cancer. More recently, the purinergic system is found to exist in thyroid gland and play an important role in the pathophysiology of thyroid diseases. Therefore, throughout this review, we focus on elaborating the changes in purinergic receptors, extracellular enzymes, and extracellular nucleotides and adenosine in hyperthyroidism, hypothyroidism, and thyroid cancer. Profound understanding of the relationship between the purinergic signaling with thyroid diseases provides a promising research area for insights into the molecular basis of thyroid diseases and also develops new and exciting insights into the treatment of thyroid diseases, especially thyroid cancer.
Collapse
|
3
|
Missel A, Walenta L, Eubler K, Mundt N, Heikelä H, Pickl U, Trottmann M, Popper B, Poutanen M, Strauss L, Köhn FM, Kunz L, Spehr M, Mayerhofer A. Testicular adenosine acts as a pro-inflammatory molecule: role of testicular peritubular cells. Mol Hum Reprod 2021; 27:6276438. [PMID: 33993290 DOI: 10.1093/molehr/gaab037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular ATP has been described to be involved in inflammatory cytokine production by human testicular peritubular cells (HTPCs). The ectonucleotidases ENTPD1 and NT5E degrade ATP and have been reported in rodent testicular peritubular cells. We hypothesized that if a similar situation exists in human testis, ATP metabolites may contribute to cytokine production. Indeed, ENTPD1 and NT5E were found in situ and in vitro in HTPCs. Malachite green assays confirmed enzyme activities in HTPCs. Pharmacological inhibition of ENTPD1 (by POM-1) significantly reduced pro-inflammatory cytokines evoked by ATP treatment, suggesting that metabolites of ATP, including adenosine, are likely involved. We focused on adenosine and detected three of the four known adenosine receptors in HTPCs. One, A2B, was also found in situ in peritubular cells of human testicular sections. The A2B agonist BAY60-6583 significantly elevated levels of IL6 and CXCL8, a result also obtained with adenosine and its analogue NECA. Results of siRNA-mediated A2B down-regulation support a role of this receptor. In mouse peritubular cells, in contrast to HTPCs, all four of the known adenosine receptors were detected; when challenged with adenosine, cytokine expression levels significantly increased. Organotypic short-term testis cultures yielded comparable results and indicate an overall pro-inflammatory action of adenosine in the mouse testis. If transferable to the in vivo situation, our results may implicate that interference with the generation of ATP metabolites or interference with adenosine receptors could reduce inflammatory events in the testis. These novel insights may provide new avenues for treatment of sterile inflammation in male subfertility and infertility.
Collapse
Affiliation(s)
- Annika Missel
- Cell Biology-Anatomy III, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Lena Walenta
- Cell Biology-Anatomy III, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Katja Eubler
- Cell Biology-Anatomy III, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Nadine Mundt
- Institute of Biology II/Department of Chemosensation, RWTH Aachen University, Aachen, Germany.,Research Training Group 2416, MultiSenses-MultiScales, RWTH Aachen University, Aachen, Germany
| | - Hanna Heikelä
- Institute of Biomedicine, Research Center for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | | | | | - Bastian Popper
- Biomedical Center (BMC), Core Facility Animal Models, Faculty of Medicine, Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Matti Poutanen
- Institute of Biomedicine, Research Center for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Leena Strauss
- Institute of Biomedicine, Research Center for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | | | - Lars Kunz
- Division of Neurobiology, Department of Biology II, Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Marc Spehr
- Institute of Biology II/Department of Chemosensation, RWTH Aachen University, Aachen, Germany.,Research Training Group 2416, MultiSenses-MultiScales, RWTH Aachen University, Aachen, Germany
| | - Artur Mayerhofer
- Cell Biology-Anatomy III, Faculty of Medicine, Biomedical Center (BMC), Ludwig-Maximilians-University Munich, Martinsried, Germany
| |
Collapse
|
4
|
Burnstock G. Purinergic signalling in endocrine organs. Purinergic Signal 2014; 10:189-231. [PMID: 24265070 PMCID: PMC3944044 DOI: 10.1007/s11302-013-9396-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 01/08/2023] Open
Abstract
There is widespread involvement of purinergic signalling in endocrine biology. Pituitary cells express P1, P2X and P2Y receptor subtypes to mediate hormone release. Adenosine 5'-triphosphate (ATP) regulates insulin release in the pancreas and is involved in the secretion of thyroid hormones. ATP plays a major role in the synthesis, storage and release of catecholamines from the adrenal gland. In the ovary purinoceptors mediate gonadotrophin-induced progesterone secretion, while in the testes, both Sertoli and Leydig cells express purinoceptors that mediate secretion of oestradiol and testosterone, respectively. ATP released as a cotransmitter with noradrenaline is involved in activities of the pineal gland and in the neuroendocrine control of the thymus. In the hypothalamus, ATP and adenosine stimulate or modulate the release of luteinising hormone-releasing hormone, as well as arginine-vasopressin and oxytocin. Functionally active P2X and P2Y receptors have been identified on human placental syncytiotrophoblast cells and on neuroendocrine cells in the lung, skin, prostate and intestine. Adipocytes have been recognised recently to have endocrine function involving purinoceptors.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
5
|
Burnstock G. Purinergic signalling in the reproductive system in health and disease. Purinergic Signal 2014; 10:157-87. [PMID: 24271059 PMCID: PMC3944041 DOI: 10.1007/s11302-013-9399-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/16/2022] Open
Abstract
There are multiple roles for purinergic signalling in both male and female reproductive organs. ATP, released as a cotransmitter with noradrenaline from sympathetic nerves, contracts smooth muscle via P2X1 receptors in vas deferens, seminal vesicles, prostate and uterus, as well as in blood vessels. Male infertility occurs in P2X1 receptor knockout mice. Both short- and long-term trophic purinergic signalling occurs in reproductive organs. Purinergic signalling is involved in hormone secretion, penile erection, sperm motility and capacitation, and mucous production. Changes in purinoceptor expression occur in pathophysiological conditions, including pre-eclampsia, cancer and pain.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
6
|
Ramos CF, Zamoner A. Thyroid hormone and leptin in the testis. Front Endocrinol (Lausanne) 2014; 5:198. [PMID: 25505448 PMCID: PMC4243692 DOI: 10.3389/fendo.2014.00198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/10/2014] [Indexed: 12/18/2022] Open
Abstract
Leptin is primarily expressed in white adipose tissue; however, it is expressed in the hypothalamus and reproductive tissues as well. Leptin acts by activating the leptin receptors (Ob-Rs). Additionally, the regulation of several neuroendocrine and reproductive functions, including the inhibition of glucocorticoids and enhancement of thyroxine and sex hormone concentrations in human beings and mice are leptin functions. It has been suggested that thyroid hormones (TH) could directly regulate leptin expression. Additionally, hypothyroidism compromises the intracellular integration of leptin signaling specifically in the arcuate nucleus. Two TH receptor isoforms are expressed in the testis, TRa and TRb, with TRa being the predominant one that is present in all stages of development. The effects of TH involve the proliferation and differentiation of Sertoli and Leydig cells during development, spermatogenesis, and steroidogenesis. In this context, TH disorders are associated with sexual dysfunction. An endocrine and/or direct paracrine effect of leptin on the gonads inhibits testosterone production in Leydig cells. Further studies are necessary to clarify the effects of both hormones in the testis during hypothyroidism. The goal of this review is to highlight the current knowledge regarding leptin and TH in the testis.
Collapse
Affiliation(s)
- Cristiane Fonte Ramos
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Department of Anatomy, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Cristiane Fonte Ramos, Laboratório de Morfometria, Metabolismo e Doença Cardiovascular, Centro Biomédico, Instituto de Biologia, Universidade do Estado do Rio de Janeiro. Av 28 de Setembro 87 fds, Rio de Janeiro 20551-030, RJ, Brazil e-mail:
| | - Ariane Zamoner
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
7
|
Rapid responses to reverse T₃ hormone in immature rat Sertoli cells: calcium uptake and exocytosis mediated by integrin. PLoS One 2013; 8:e77176. [PMID: 24130850 PMCID: PMC3795021 DOI: 10.1371/journal.pone.0077176] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 08/31/2013] [Indexed: 11/19/2022] Open
Abstract
There is increasing experimental evidence of the nongenomic action of thyroid hormones mediated by receptors located in the plasma membrane or inside cells. The aim of this work was to characterize the reverse T₃ (rT₃) action on calcium uptake and its involvement in immature rat Sertoli cell secretion. The results presented herein show that very low concentrations of rT₃ are able to increase calcium uptake after 1 min of exposure. The implication of T-type voltage-dependent calcium channels and chloride channels in the effect of rT₃ was evidenced using flunarizine and 9-anthracene, respectively. Also, the rT₃-induced calcium uptake was blocked in the presence of the RGD peptide (an inhibitor of integrin-ligand interactions). Therefore, our findings suggest that calcium uptake stimulated by rT₃ may be mediated by integrin αvβ₃. In addition, it was demonstrated that calcium uptake stimulated by rT₃ is PKC and ERK-dependent. Furthermore, the outcomes indicate that rT₃ also stimulates cellular secretion since the cells manifested a loss of fluorescence after 4 min incubation, indicating an exocytic quinacrine release that seems to be mediated by the integrin receptor. These findings indicate that rT₃ modulates the calcium entry and cellular secretion, which might play a role in the regulation of a plethora of intracellular processes involved in male reproductive physiology.
Collapse
|
8
|
New approaches to thyroid hormones and purinergic signaling. J Thyroid Res 2013; 2013:434727. [PMID: 23956925 PMCID: PMC3730180 DOI: 10.1155/2013/434727] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/20/2013] [Indexed: 12/22/2022] Open
Abstract
It is known that thyroid hormones influence a wide variety of events at the molecular, cellular, and functional levels. Thyroid hormones (TH) play pivotal roles in growth, cell proliferation, differentiation, apoptosis, development, and metabolic homeostasis via thyroid hormone receptors (TRs) by controlling the expression of TR target genes. Most of these effects result in pathological and physiological events and are already well described in the literature. Even so, many recent studies have been devoted to bringing new information on problems in controlling the synthesis and release of these hormones and to elucidating mechanisms of the action of these hormones unconventionally. The purinergic system was recently linked to thyroid diseases, including enzymes, receptors, and enzyme products related to neurotransmitter release, nociception, behavior, and other vascular systems. Thus, throughout this text we intend to relate the relationship between the TH in physiological and pathological situations with the purinergic signaling.
Collapse
|
9
|
Wada H, Yumoto S, Iso H. Irreversible damage to auditory system functions caused by perinatal hypothyroidism in rats. Neurotoxicol Teratol 2013; 37:18-22. [PMID: 23422508 DOI: 10.1016/j.ntt.2013.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 02/07/2013] [Accepted: 02/08/2013] [Indexed: 11/18/2022]
Abstract
We examined the effect of perinatal hypothyroidism on auditory function in rats using a prepulse inhibition paradigm. Pregnant rats were treated with the antithyroid drug methimazole (1-methyl-2-mercaptoimidazole) from gestational day 15 to postnatal day 21 via drinking water at concentrations (w/v) of 0 (control), 0.002 (low dose), or 0.02% (high dose). Rats from methimazole-treated mothers were tested at ages 1, 6, and 12months using techniques to examine prepulse inhibition and startle response. The startle stimulus consisted of 40ms of white noise at 115dB, whereas the prepulse, which preceded the startle stimulus by 30ms, consisted of 20ms of white noise at 75, 85, or 95dB. When the prepulse intensity was 75 or 85dB, the high-dose group showed decreased prepulse inhibition percentages compared with the control and low-dose groups. The reduced percentages of prepulse inhibition did not return to control levels over the 12-month study period. In contrast, no differences in prepulse inhibition were observed among the three dose groups when prepulse intensity was 95dB. Moreover, the high-dose group displayed excessive reaction to auditory startle stimuli compared with the other groups. Reductions in plasma free thyroxine and body weight gain were observed in the high-dose group. We conclude that perinatal hypothyroidism results in irreversible damage to auditory function in rats.
Collapse
Affiliation(s)
- Hiromi Wada
- Graduate School of Letters, Hokkaido University, Kita 10 Nishi 7 Kita-Ku, Sapporo, Japan.
| | | | | |
Collapse
|
10
|
Tarulli GA, Stanton PG, Meachem SJ. Is the adult Sertoli cell terminally differentiated? Biol Reprod 2012; 87:13, 1-11. [PMID: 22492971 DOI: 10.1095/biolreprod.111.095091] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
New data have challenged the convention that the adult Sertoli cell population is fixed and unmodifiable. The Sertoli cell has two distinct functions: 1) formation of the seminiferous cords and 2) provision of nutritional and structural support to developing germ cells. For these to occur successfully, Sertoli cells must undergo many maturational changes between fetal and adult life, the main switches occurring around puberty, including the loss of proliferative activity and the formation of the blood-testis barrier. Follicle-stimulating hormone plays a key role in promoting Sertoli cell proliferation, while thyroid hormone inhibits proliferative activity in early postnatal life. Together these regulate the Sertoli-germ cell complement and sperm output in adulthood. By puberty, the Sertoli cell population is considered to be stable and unmodifiable by hormones. But there is mounting evidence that the size of the adult Sertoli cell population and its maturational status is modifiable by hormones and that Sertoli cells can gain proliferative ability in the spermatogenically disrupted hamster and human model. This new information demonstrates that the adult Sertoli cell population, at least in the settings of testicular regression in the hamster and impaired fertility in humans in vivo and from mice and men in vitro, is not a terminally differentiated population. Data from the hamster now show that the adult Sertoli cell population size is regulated by hormones. This creates exciting prospects for basic and clinical research in testis biology. The potential to replenish an adult Sertoli-germ cell complement to normal in a setting of infertility may now be realized.
Collapse
Affiliation(s)
- Gerard A Tarulli
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia
| | | | | |
Collapse
|
11
|
Membrane-initiated actions of thyroid hormones on the male reproductive system. Life Sci 2011; 89:507-14. [PMID: 21557952 DOI: 10.1016/j.lfs.2011.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 03/18/2011] [Accepted: 04/04/2011] [Indexed: 11/22/2022]
Abstract
The presence of specific nuclear receptors to thyroid hormones, described in prepubertal Sertoli cells, implies the existence of an early and critical influence of these hormones on testis development. Although the mechanism of action thyroid hormones has been classically established as a genomic action regulating testis development, our research group has demonstrated that these hormones exert several effects in Sertoli cells lacking nuclear receptor activation. These findings led to the identification of non-classical thyroid hormone binding elements in the plasma membrane of testicular cells. Through binding to these sites, thyroid hormones could exert nongenomic effects, including those on ion fluxes at the plasma membrane, on signal transduction via kinase pathways, on amino acid accumulation, on modulation of extracellular nucleotide levels and on vimentin cytoskeleton. The evidence of the participation of different K(+), Ca(2+) and Cl(-) channels in the mechanism of action of thyroid hormones, characterizes the plasma membrane as an important microenvironment able to coordinate strategic signal transduction pathways in rat testis. The physiological responses of the Sertoli cells to hormones are dependent on continuous cross-talking of different signal transduction pathways. Apparently, the choice of the signaling pathways to be activated after the interaction of the hormone with cell surface binding sites is directly related to the physiological action to be accomplished. Yet, the enormous complexity of the nongenomic actions of thyroid hormones implies that different specific binding sites located on the plasma membrane or in the cytosol are believed to initiate specific cell responses.
Collapse
|
12
|
Rapid stimulatory effect of thyroxine on plasma membrane transport systems: calcium uptake and neutral amino acid accumulation in immature rat testis. Int J Biochem Cell Biol 2010; 42:1046-51. [PMID: 20348014 DOI: 10.1016/j.biocel.2010.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 03/15/2010] [Accepted: 03/18/2010] [Indexed: 11/22/2022]
Abstract
Although the biological effects of thyroid hormones are mediated by nuclear receptors (genomic mechanisms), interactions with receptors associated with the plasma membrane (non-genomic mechanisms) of target cells are not clear. In this study we investigated the rapid stimulatory effect of thyroxine (T(4)) on (45)Ca(2+) uptake as well as ionic currents and intracellular messengers involved in the stimulatory action of T(4) in amino acid accumulation in immature rat testes. Results indicated that 10(-9)M or 10(-6)M T(4) was able to increase immediately (45)Ca(2+) uptake after 60s of hormone exposure. These results indicate for the first time that voltage-dependent Ca(2+) channels and ATP-dependent K(+) channels can be seen as a set-point in the stimulatory effect of T(4) on amino acid accumulation. Apamin-sensitive small-conductance Ca(2+)-activated K(+) channels (SK(Ca)) and chloride channels were shown to be partially involved in this mechanism. The amino acid accumulation triggered by the PKC pathway suggests a functional link between different ion channel activities and the stimulatory effect of T(4) on amino acid accumulation. In conclusion, we show in this study a rapid and stimulatory effect of T(4) on calcium uptake and on amino acid accumulation, both events initiated at the plasma membrane, which strongly characterizes a non-genomic effect of T(4) in immature rat testes.
Collapse
|
13
|
Martín-Satué M, Lavoie EG, Pelletier J, Fausther M, Csizmadia E, Guckelberger O, Robson SC, Sévigny J. Localization of plasma membrane bound NTPDases in the murine reproductive tract. Histochem Cell Biol 2009; 131:615-28. [PMID: 19125273 DOI: 10.1007/s00418-008-0551-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2008] [Indexed: 11/30/2022]
Abstract
Extracellular nucleotides might influence aspects of the biology of reproduction in that ATP affects smooth muscle contraction, participates in steroidogenesis and spermatogenesis, and also regulates transepithelial transport, as in oviducts. Activation of cellular nucleotide purinergic receptors is influenced by four plasma membrane-bound members of the ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) family, namely NTPDase1, NTPDase2, NTPDase3, and NTPDase8 that differ in their ecto-enzymatic properties. The purpose of this study was to characterize the expression profile of the membrane-bound NTPDases in the murine female and male reproductive tracts by immunological techniques (immunolabelling, Western blotting) and by enzymatic assays, in situ and on tissue homogenates. Other than the expected expression on vascular endothelial and smooth muscle cells, NTPDase1 was also detected in Sertoli cells and interstitial macrophages in testes, in ovarian granulosa cells, and in apical cells from epididymal epithelium. NTPDase2 was largely expressed by cells in the connective tissue; NTPDase3 in secretory epithelia, and finally, NTPDase8 was not detected in any of the tissues studied here. In addition, NTPDase6 was putatively detected in Golgi-phase acrosome vesicles of round spermatids. This descriptive study suggests close regulation of extracellular nucleotide levels in the genital tract by NTPDases that may impact specific biological functions.
Collapse
Affiliation(s)
- M Martín-Satué
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval, 2705 Blvd Laurier, Local T1-49, Quebec, QC, G1V 4G2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Zamoner A, Heimfarth L, Oliveira Loureiro S, Royer C, Mena Barreto Silva FR, Pessoa-Pureur R. Nongenomic actions of thyroxine modulate intermediate filament phosphorylation in cerebral cortex of rats. Neuroscience 2008; 156:640-52. [PMID: 18760334 DOI: 10.1016/j.neuroscience.2008.07.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 07/30/2008] [Accepted: 07/31/2008] [Indexed: 10/21/2022]
Abstract
The developmental effects of thyroid hormones (TH) in mammalian brain are mainly mediated by nuclear receptors regulating gene expression. However, there are increasing evidences of nongenomic mechanisms of these hormones associated with kinase- and calcium-activated signaling pathways. In this context, the aim of the present work was to investigate the signaling pathways involved in the mechanism of action of TH on cytoskeletal phosphorylation in cerebral cortex of 15-day-old male rats. Results showed that L-thyroxine (L-T4) increased the intermediate filament (IF) phosphorylation independently of protein synthesis, without altering the total immunocontent of these proteins. Otherwise, neither 3,5,3'-triiodo-L-thyronine (L-T3) nor neurotransmitters (GABA, ATP, L-glutamate or epinephrine) acted on the IF-associated phosphorylation level. We also demonstrated that the mechanisms underlying the L-T4 effect on the cytoskeleton involve membrane initiated actions through Gi protein-coupled receptor. This evidence was reinforced by the inhibition of cyclic adenosine 5'-monophosphate (cAMP) levels. Moreover, we showed the participation of phospholipase C, protein kinase C, mitogen-activated protein kinase, calcium/calmodulin-dependent protein kinase II, intra- and extracellular Ca2+ mediating the effects of L-T4 on the cytoskeleton. Stimulation of 45Ca2+ uptake by L-T4 was also demonstrated. These findings demonstrate that L-T4 has important physiological roles modulating the cytoskeleton of neural cells during development.
Collapse
Affiliation(s)
- A Zamoner
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600 anexo, 90035-003 Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|