1
|
Omidkhoda SF, Rajabian F, Hosseinzadeh H. Lipoic acid as a protective agent against lipopolysaccharide and other natural toxins: a comprehensive review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04123-w. [PMID: 40227307 DOI: 10.1007/s00210-025-04123-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/28/2025] [Indexed: 04/15/2025]
Abstract
Alpha-lipoic acid, also known as lipoate or lipoic acid (LA), is naturally present in the mitochondria of cells, where it functions as a cofactor for dehydrogenase enzyme complexes. It has also been reported that LA is a potent antioxidant. Not only does it scavenge free radicals directly, but it can also regenerate other essential cellular antioxidants. LA exhibits various anti-inflammatory effects and offers protection to mitochondria. Numerous studies have assessed the potential protective effects of LA against natural toxins, including lipopolysaccharides, galactosamine, mycotoxins, snake venoms, and toxins derived from cyanobacteria and plants. In general, the results of these studies indicate that LA can be effective in mitigating various toxicities, primarily due to the previously mentioned capabilities. Furthermore, novel mechanisms have been proposed for LA against specific toxins, for example, direct inactivation of secretory phospholipase A2 in some snake venoms or enhancement of p-glycoprotein activity to prevent saxitoxin entry into the neuronal cells. However, the gaps in the available data from most animal experiments conducted to date have resulted in insufficient evidence to justify further clinical evaluations of the effects of LA on human poisoning cases. Consequently, more extensive research is required to address these gaps and fully realize the therapeutic potential of this valuable substance.
Collapse
Affiliation(s)
- Seyedeh Farzaneh Omidkhoda
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Rajabian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Zwierz M, Chabowski A, Sztolsztener K. α-Lipoic acid - a promising agent for attenuating inflammation and preventing steatohepatitis in rats fed a high-fat diet. Arch Biochem Biophys 2023; 750:109811. [PMID: 37926405 DOI: 10.1016/j.abb.2023.109811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent liver disorder affecting a significant part of the global population. This study aimed to investigate the potential therapeutic effects of α-lipoic acid (α-LA) on the inflammatory response during simple steatosis development and progression into steatohepatitis. The study used the MASLD model in male Wistar rats that were fed a standard diet or a high-fat diet (HFD) for 8 weeks. Throughout the entire experiment, half of the animals received α-LA supplementation. The hepatic activity of pro-inflammatory n-6 and anti-inflammatory n-3 polyunsaturated fatty acid (PUFA) pathways and the concentration of arachidonic acid (AA) in selected lipid fractions were determined by the gas-liquid chromatography (GLC). The hepatic expression of proteins from inflammatory pathway was measured by the Western blot technique. The level of eicosanoids, cytokines and chemokines was assessed by the ELISA or multiplex assay kits. The results showed that α-LA supplementation attenuated the activity of n-6 PUFA pathway in FFA and DAG and increased the activity of n-3 PUFA pathway in PL, TAG and DAG. In addition, the administration of α-LA decreased the concentration of AA in DAG and FFA, indicating its potential protective effect on the deterioration of simple hepatic steatosis. The supplementation of α-LA also increased the expression of COX-1 and COX-2 with the lack of significant changes in prostaglandins profile. We observed an increase in the expression of 12/15-LOX, which was reflected in an increase in lipoxin A4 (LXA4) level. A decrease in pro-inflammatory cytokines and an increase in anti-inflammatory cytokines was also noticed in the liver of rats treated with HFD and α-LA. Our observations confirm that α-LA treatment has potential protective effects on inflammation development in the MASLD model. We believe that α-LA has a preventive impact when it comes to the progression of simple steatosis lesions to steatohepatitis.
Collapse
Affiliation(s)
- Mateusz Zwierz
- Department of Physiology, Medical University of Bialystok, Mickiewicz Str. 2C, 15-222, Bialystok, Poland.
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Mickiewicz Str. 2C, 15-222, Bialystok, Poland.
| | - Klaudia Sztolsztener
- Department of Physiology, Medical University of Bialystok, Mickiewicz Str. 2C, 15-222, Bialystok, Poland.
| |
Collapse
|
3
|
Syringol isolated from Eleusine coracana (L.) Gaertn bran suppresses inflammatory response through the down-regulation of cPLA 2, COX-2, IκBα, p38 and MPO signaling in sPLA 2 induced mice paw oedema. Inflammopharmacology 2022; 30:1853-1870. [PMID: 35639234 DOI: 10.1007/s10787-022-00983-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 03/25/2022] [Indexed: 11/05/2022]
Abstract
Eleusine coracana (L.) Gaertn (E. coracana) is one of the highest consuming food crops in Asia and Africa. E. coracana is a plant with several medicinal values including anti-ulcerative, anti-diabetic, anti-viral and anti-cancer properties. However, the anti-inflammatory property of E. coracana remains to be elucidated. Therefore, the objective of present study was to investigate the potential in isolated molecule from E. coracana via a combination of in vitro, in vivo and in silico methods. In this study, we have isolated, purified and characterized an anti-inflammatory molecule from E. coracana bran extract known as syringol. Purification of syringol was accomplished by combination of GC-MS and RP-HPLC techniques. Syringol significantly inhibited the enzymes activity of sPLA2 (IC50 = 3.00 µg) and 5-LOX (IC50 = 0.325 µg) in vitro. The inhibition is independent of substrate concentration, calcium ion concentration and was irreversible. Syringol interacts with purified sPLA2 enzymes as evidenced by fluorescence and molecular docking studies. Further, the syringol molecule dose dependently inhibited the development of sPLA2 and λ-carrageenan induced edema. Furthermore, syringol decreases the expression of cPLA2, COX-2, IκBα, p38 and MPO in edematous tissues as demonstrated by western blots. These studies revealed that syringol isolated from E. coracana bran may develop as a potent anti-inflammatory molecule.
Collapse
|
4
|
Jamshidi K, Abdollahzad H, Nachvak M, Rezaei M, Golpayegani MR, Sharifi Zahabi E. Effects of Alpha-Lipoic Acid Supplementation on Cardiovascular Disease Risk Factors in β-Thalassemia Major Patients: A Clinical Trial Crossover Study. J Blood Med 2020; 11:131-139. [PMID: 32494211 PMCID: PMC7225175 DOI: 10.2147/jbm.s252105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/22/2020] [Indexed: 01/05/2023] Open
Abstract
AIM Thalassemia is one of the most common genetic diseases, and cardiovascular disease (CVD) has been considered as the leading cause of mortality in more than 50% of β-thalassemia patients. The aim of this study was to determine the effects of alpha-lipoic acid (ALA) on CVD risk factors in β-thalassemia major patients. METHODS Twenty β-thalassemia major patients participated in this randomized crossover clinical trial study. Participants were randomly assigned to ALA (600 mg/day) or placebo groups for two 8-wk interventions that were separated by a 3-wk washout period. The CVD risk factors including serum osteoprotegerin (OPG), homocysteine, lipoprotein-associated phospholipase A2 and trimethylamine N-oxide were measured at the beginning and the end of each intervention phase according to the standard protocol. RESULTS Serum OPG reduced significantly in the ALA group in all participants (5.38 ± 2.79 to 3.27 ± 2.43 ng/mL, P= .003) and in the male subgroup (5.24 ± 2.56 to 3.13 ± 2.5 ng/mL, P= .015); this reduction was significant in comparison with the placebo group (P= .013). The changes in other CVD risk factors were not significant. CONCLUSION The results of this study showed that after 8-wk of ALA consumption, the serum OPG reduced significantly in β-thalassemia major patients. Therefore, controlling the serum OPG level with ALA consumption can be an important complementary therapeutic option to prevent the progression of CVD in β-thalassemia major patients.
Collapse
Affiliation(s)
- Khadijeh Jamshidi
- The Student Research Committee, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadi Abdollahzad
- Nutritional Sciences Department, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mostafa Nachvak
- Nutritional Sciences Department, School of Nutritional Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mansour Rezaei
- Department of Biostatistics and Epidemiology, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Golpayegani
- Department of Pediatrics, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Sharifi Zahabi
- Imam Khomeini Comprehensive Health Services Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
5
|
Reboa G, Gipponi M, Fregatti P, Depaoli F. Integrated Treatment With Stapled Haemorrhoidopexy and Proctonorm® of Haemorrhoidal Disease. In Vivo 2019; 33:1671-1675. [PMID: 31471422 DOI: 10.21873/invivo.11654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM This retrospective study was performed in patients undergoing Stapled Haemorrhoidopexy (SH) who were post-operatively treated with Proctonorm® with the aim of assessing its effect on early and late haemorrhoidal-related symptoms. PATIENTS AND METHODS Forty-six males and 54 females received Proctonorm® (one tablet twice daily for 14 days) and Ketoprofene R (200 mg, one tablet twice daily, as requested). RESULTS "Early Complication Score" (0-12) two days after surgery was 2.02±1.03; pain VAS (Visual Analogue Scale) (0-10) was 1.21±0.89, and the number of anti-inflammatory tablets was 4.24±1.06. At 40-day post-operative assessment, seven patients had post-operative complications with "Late Complication Score" (0-20) of 0.34±0.68. At six-month follow-up, a high index of patient satisfaction (VAS=9.39±0.24) was self-reported with 75% reduction in CSS (Constipation Scoring System) (1.95±2.58) compared to preoperative scores; "Late Complication Score" was 0. CONCLUSION The specific target activity of Proctonorm® at the microcircular level may be effective in patients undergoing SH in order to reduce the inflammatory response of residual haemorrhoids while waiting for stable resolution of symptoms within one or two weeks.
Collapse
Affiliation(s)
- Giuliano Reboa
- Department of Surgery, Coloproctology Unit - Casa di Cura San Camillo, Forte dei Marmi (Lucca), Italy
| | - Marco Gipponi
- Breast Surgery Clinic, Osp. Policlinico San Martino, Genoa, Italy
| | - Piero Fregatti
- Breast Surgery Clinic, Osp. Policlinico San Martino, Genoa, Italy.,School of Medicine, University of Genoa, Genoa, Italy
| | | |
Collapse
|
6
|
Gowda R, Rajaiah R, Angaswamy N, Krishna S, Bannikuppe Sannanayak V. Biochemical and pharmacological characterization of Trimersurus malabaricus snake venom. J Cell Biochem 2018. [PMID: 29528146 DOI: 10.1002/jcb.26782] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Trimeresurus malabaricus is a venomous pit viper species endemic to southwestern part of India. In earlier reports, we have shown that envenomation by T. malabaricus venom leading to strong local tissue damage but the mechanism of action is not clearly revealed. Local tissue damage affected by T. malabaricus venom is of great importance since the poison has serious systemic effects including death in the case of multiple attacks. The present study details the major manifestations of T. malabaricus venom and the induction of local tissue damage, which suggests that most toxins are present in the form of hydrolytic enzymes. Hydrolytic activity of the enzymes was measured and the data indicated that protease and phospholipase A2 activity was high which is responsible for local tissue damage. Furthermore, the role of hydrolytic enzymes in the induction of pathological events such as hemorrhage, edema, myotoxicity, and blood coagulation examination were assessed through animal models.
Collapse
Affiliation(s)
- Raghavendra Gowda
- Department of Pharmacology, Penn State College of Medicine, Penn State University, Hershey, Pennsylvania
| | - Rajesh Rajaiah
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - Nataraj Angaswamy
- Department of Pharmacology, Penn State College of Medicine, Penn State University, Hershey, Pennsylvania
| | - Sharath Krishna
- Department of Natural Sciences, Central State University, Wilberforce, Ohio
| | | |
Collapse
|
7
|
Joshi V, Umashankara M, Ramakrishnan C, Nanjaraj Urs AN, Suvilesh KN, Velmurugan D, Rangappa KS, Vishwanath BS. Dimethyl ester of bilirubin exhibits anti-inflammatory activity through inhibition of secretory phospholipase A2, lipoxygenase and cyclooxygenase. Arch Biochem Biophys 2016; 598:28-39. [PMID: 27060751 DOI: 10.1016/j.abb.2016.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/02/2016] [Accepted: 04/04/2016] [Indexed: 12/18/2022]
Abstract
Overproduction of arachidonic acid (AA) mediated by secretory phospholipase A2 group IIA (sPLA2IIA) is a hallmark of many inflammatory disorders. AA is subsequently converted into pro-inflammatory eicosanoids through 5-lipoxygenase (5-LOX) and cyclooxygenase-1/2 (COX-1/2) activities. Hence, inhibition of sPLA2IIA, 5-LOX and COX-1/2 activities is critical in regulating inflammation. We have previously reported unconjugated bilirubin (UCB), an endogenous antioxidant, as sPLA2IIA inhibitor. However, lipophilic UCB gets conjugated in liver with glucuronic acid into hydrophilic conjugated bilirubin (CB). Since hydrophobicity is pre-requisite for sPLA2IIA inhibition, conjugation reduces the efficacy of UCB. In this regard, UCB was chemically modified and derivatives were evaluated for sPLA2IIA, 5-LOX and COX-1/2 inhibition. Among the derivatives, BD1 (dimethyl ester of bilirubin) exhibited ∼ 3 fold greater inhibitory potency towards sPLA2IIA compared to UCB. Both UCB and BD1 inhibited human 5-LOX and COX-2 activities; however only BD1 inhibited AA induced platelet aggregation. Molecular docking studies demonstrated BD1 as better inhibitor of aforesaid enzymes than UCB and other endogenous antioxidants. These data suggest that BD1 exhibits strong anti-inflammatory activity through inhibition of AA cascade enzymes which is of great therapeutic importance.
Collapse
Affiliation(s)
- Vikram Joshi
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - M Umashankara
- Department of Chemistry, Karnataka State Open University, Mukthagangotri, Mysuru, Karnataka, India
| | - Chandrasekaran Ramakrishnan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India
| | | | - Kanve Nagaraj Suvilesh
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysuru, Karnataka, India
| | - Devadasan Velmurugan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India; Bioinformatics Infrastructure Facility, University of Madras, Guindy Campus, Chennai, Tamil Nadu, India
| | | | | |
Collapse
|
8
|
Pakai E, Garami A, Nucci TB, Ivanov AI, Romanovsky AA. Hyperbilirubinemia exaggerates endotoxin-induced hypothermia. Cell Cycle 2016; 14:1260-7. [PMID: 25774749 PMCID: PMC4613908 DOI: 10.1080/15384101.2015.1014150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Systemic inflammation is accompanied by an increased production of reactive oxygen species (ROS) and by either fever or hypothermia (or both). To study aseptic systemic inflammation, it is often induced in rats by the intravenous administration of bacterial lipopolysaccharide (LPS). Knowing that bilirubin is a potent ROS scavenger, we compared responses to LPS between normobilirubinemic Gunn rats (heterozygous, asymptomatic; J/+) and hyperbilirubinemic Gunn rats (homozygous, jaundiced; J/J) to establish whether ROS mediate fever and hypothermia in aseptic systemic inflammation. These two genotypes correspond to undisturbed versus drastically suppressed (by bilirubin) tissue accumulation of ROS, respectively. A low dose of LPS (10 μg/kg) caused a typical triphasic fever in both genotypes, without any intergenotype differences. A high dose of LPS (1,000 μg/kg) caused a complex response consisting of early hypothermia followed by late fever. The hypothermic response was markedly exaggerated, whereas the subsequent fever response was strongly attenuated in J/J rats, as compared to J/+ rats. J/J rats also tended to respond to 1,000 μg/kg with blunted surges in plasma levels of all hepatic enzymes studied (alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transferase), thus suggesting an attenuation of hepatic damage. We propose that the reported exaggeration of LPS-induced hypothermia in J/J rats occurs via direct inhibition of nonshivering thermogenesis by bilirubin and possibly via a direct vasodilatatory action of bilirubin in the skin. This hypothermia-exaggerating effect might be responsible, at least in part, for the observed tendency of J/J rats to be protected from LPS-induced hepatic damage. The attenuation of the fever response to 1,000 μg/kg could be due to either direct actions of bilirubin on thermoeffectors or the ROS-scavenging action of bilirubin. However, the experiments with 10 μg/kg strongly suggest that ROS signaling is not involved in the fever response to low doses of LPS.
Collapse
Key Words
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- BUN, blood urea nitrogen
- COX, cyclooxygenase
- GGT, gamma-glutamyl transferase
- Gunn rats
- LPS
- LPS, lipopolysaccharide
- NO, nitric oxide
- PG, prostaglandin
- ROS
- ROS, reactive oxygen species
- Ta, ambient temperature
- Tb, body temperature
- antioxidants
- bilirubin
- fever
- hepatic damage
- lipopolysaccharides
- liver
- reactive oxygen species
- transferases
Collapse
Affiliation(s)
- Eszter Pakai
- a FeverLab; Trauma Research; St. Joseph's Hospital and Medical Center ; Phoenix , AZ USA
| | | | | | | | | |
Collapse
|
9
|
Hussein SA, Hassanein MRR, Amin A, Hussein AHM. Alpha-Lipoic Acid Protects Rat Kidney Against Oxidative Stress-Mediated DNA Damage and Apoptosis Induced by Lead. ACTA ACUST UNITED AC 2015. [DOI: 10.3923/ajbmb.2016.1.14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Tsai CJ, Lin YC, Chen YL, Feng CH. Chemical derivatization combined with capillary LC or MALDI-TOF MS for trace determination of lipoic acid in cosmetics and integrated protein expression profiling in human keratinocytes. Talanta 2014; 130:347-55. [DOI: 10.1016/j.talanta.2014.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 01/24/2023]
|
11
|
Tsai CJ, Chen YL, Feng CH. Dispersive liquid–liquid microextraction combined with microwave-assisted derivatization for determining lipoic acid and its metabolites in human urine. J Chromatogr A 2013; 1310:31-6. [DOI: 10.1016/j.chroma.2013.08.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/13/2013] [Accepted: 08/15/2013] [Indexed: 12/22/2022]
|
12
|
Astiz M, Hurtado de Catalfo GE, García MN, Galletti SM, Errecalde AL, de Alaniz MJT, Marra CA. Pesticide-induced decrease in rat testicular steroidogenesis is differentially prevented by lipoate and tocopherol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 91:129-38. [PMID: 23465731 DOI: 10.1016/j.ecoenv.2013.01.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 01/17/2013] [Accepted: 01/21/2013] [Indexed: 05/05/2023]
Abstract
We have previously demonstrated that the sub-chronic administration of low doses of Toc or α-Toc, glyphosate and zineb to rats (i.p. 1/250 LD50, three times a week for 5 weeks) provoked severe oxidative stress (OS) in testicles. These effects were also reflected in plasma. Lipoic acid (LA) and α-tocopherol are considered as antioxidants due to their ability to neutralize reactive oxygenated species (ROS) and reset endogenous antioxidant levels. To investigate the possible protective effect on reproductive function, LA and Toc (i.p. 25, 50 and 100mg/kg) were administered simultaneously with the pesticide mixture (PM) for 5 weeks. Both drugs prevented OS and the damage to proteins and lipids caused by PM in a dose-dependent manner. The PM-induced increase levels of prostaglandins E2 and F2α was completely restored by LA but not by Toc. Similarly, only LA was able to restore the inhibition of testosterone production, the decrease of 3β- and 17β-hydroxysteroid dehydrogenases activities, and the elevation of gonatropins (FSH and LH) levels produced by PM. Furthermore, LA was more efficient than Toc in normalizing the histological alterations produced by PM administration, suggesting that pesticides act though other mechanisms that generate oxidative stress. In our experimental model LA displayed a higher protective role against pesticide-induced damage than that observed by Toc administration. Our results suggest that LA administration is a promising therapeutic strategy for coping with disorders suspected to be caused by OS generators - such as pesticides - in male reproductive system.
Collapse
Affiliation(s)
- Mariana Astiz
- INIBIOLP (Instituto de Investigaciones Bioquímicas de La Plata), CCT La Plata, CONICET-UNLP, Cátedra de Bioquímica y Biología Molecular, Argentina
| | | | | | | | | | | | | |
Collapse
|
13
|
Astiz M, de Alaniz MJ, Marra CA. The oxidative damage and inflammation caused by pesticides are reverted by lipoic acid in rat brain. Neurochem Int 2012; 61:1231-41. [DOI: 10.1016/j.neuint.2012.09.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 08/25/2012] [Accepted: 09/05/2012] [Indexed: 12/22/2022]
|
14
|
Perumal Samy R, Gopalakrishnakone P, Chow VTK. Therapeutic application of natural inhibitors against snake venom phospholipase A(2). Bioinformation 2012; 8:48-57. [PMID: 22359435 PMCID: PMC3282276 DOI: 10.6026/97320630008048] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 12/17/2011] [Indexed: 02/07/2023] Open
Abstract
Natural inhibitors occupy an important place in the potential to neutralize the toxic effects caused by snake venom proteins and enzymes. It has been well recognized for several years that animal sera, some of the plant and marine extracts are the most potent in neutralizing snake venom phospholipase A(2) (svPLA(2)). The implication of this review to update the latest research work which has been accomplished with svPLA(2) inhibitors from various natural sources like animal, marine organisms presents a compilation of research in this field over the past decade and revisiting the previous research report including those found in plants. In addition to that the bioactive compounds/inhibitor molecules from diverse sources like aristolochic alkaloid, flavonoids and neoflavonoids from plants, hydrocarbones -2, 4 dimethyl hexane, 2 methylnonane, and 2, 6 dimethyl heptane obtained from traditional medicinal plants Tragia involucrata (Euphorbiaceae) member of natural products involved for the inhibitory potential of phospholipase A(2) (PLA(2)) enzymes in vitro and also decrease both oedema induced by snake venom as well as human synovial fluid PLA(2). Besides marine natural products that inhibit PLA(2) are manoalide and its derivatives such as scalaradial and related compounds, pseudopterosins and vidalols, tetracylne from synthetic chemicals etc. There is an overview of the role of PLA(2) in inflammation that provides a rationale for seeking inhibitors of PLA(2) as anti-inflammatory agents. However, more studies should be considered to evaluate antivenom efficiency of sera and other agents against a variety of snake venoms found in various parts of the world. The implications of these new groups of svPLA(2) toxin inhibitors in the context of our current understanding of snake biology as well as in the development of new novel antivenoms therapeutics agents in the efficient treatment of snake envenomations are discussed.
Collapse
Affiliation(s)
- Ramar Perumal Samy
- Infectious Disease Programme, Department of Microbiology
- Venom and Toxin Research Programme, Department of Anatomy; Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Ponnampalam Gopalakrishnakone
- Venom and Toxin Research Programme, Department of Anatomy; Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | | |
Collapse
|
15
|
Changes in PLA2 activity after interacting with anti-inflammatory drugs and model membranes: evidence for the involvement of tryptophan residues. Chem Phys Lipids 2011; 164:292-9. [DOI: 10.1016/j.chemphyslip.2011.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 03/09/2011] [Accepted: 03/11/2011] [Indexed: 11/23/2022]
|
16
|
|
17
|
A biophysical approach to phospholipase A2 activity and inhibition by anti-inflammatory drugs. Biophys Chem 2010; 152:109-17. [DOI: 10.1016/j.bpc.2010.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Revised: 08/14/2010] [Accepted: 08/17/2010] [Indexed: 11/18/2022]
|
18
|
Chemical modification of ascorbic acid and evaluation of its lipophilic derivatives as inhibitors of secretory phospholipase A2 with anti-inflammatory activity. Mol Cell Biochem 2010; 345:69-76. [DOI: 10.1007/s11010-010-0561-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 07/29/2010] [Indexed: 10/19/2022]
|
19
|
Pinelli A, Cighetti G, Trivulzio S. Plasma malondialdehyde levels and opiate withdrawal signs observed in rats treated with morphine plus naloxone: effects of -lipoic acid administration. Fundam Clin Pharmacol 2008; 22:439-45. [DOI: 10.1111/j.1472-8206.2008.00612.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|