1
|
Galineau L, Claude E, Gulhan Z, Bodard S, Sérrière S, Dupuy C, Monteiro J, Oury A, Bertevello P, Chicheri G, Vercouillie J, Nadal-Desbarats L, Chalon S, Lefèvre A, Emond P. DESI-TQ-MS imaging for ex vivo brain biodistribution assessment: evaluation of LBT-999, a ligand of the dopamine transporter (DAT). EJNMMI Radiopharm Chem 2024; 9:63. [PMID: 39192050 DOI: 10.1186/s41181-024-00289-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Selection of the most promising radiotracer candidates for radiolabeling is a difficult step in the development of radiotracer pharmaceuticals, especially for the brain. Mass spectrometry (MS) is an alternative to study ex vivo the characteristics of candidates, but most MS studies are complicated by the pharmacologic doses injected and the dissection of regions to study candidate biodistribution. In this study, we tested the ability of a triple quadrupole analyzer (TQ LC-MS/MS) to quantify low concentrations of a validated precursor of a radiotracer targeting the DAT (LBT-999) in dissected regions. We also investigated its biodistribution on brain slices using MS imaging with desorption electrospray ionization (DESI) coupled to time-of-flight (TOF) vs. TQ mass analyzers. RESULTS TQ LC-MS/MS enabled quantification of LBT-999 injected at sub-tracer doses in dissected striata. DESI-MS imaging (DESI-MSI) with both analyzers provided images of LBT-999 biodistribution on sagittal slices that were consistent with positron emission tomography (PET). However, the TOF analyzer only obtained biodistribution images at a high injected dose of LBT-999, while the TQ analyzer provided biodistribution images at lower injected doses of LBT-999 with a better signal-to-noise ratio. It also allowed simultaneous visualization of endogenous metabolites such as dopamine. CONCLUSIONS Our results show that LC-TQ MS/MS in combination with DESI-MSI can provide important information (biodistribution, specific and selective binding) that can facilitate the selection of the most promising candidates for radiolabeling and support the development of radiotracers.
Collapse
Affiliation(s)
- Laurent Galineau
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
| | | | - Zuhal Gulhan
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
| | - Sylvie Bodard
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
| | - Sophie Sérrière
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
| | - Camille Dupuy
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
- PST Analyse Des Systèmes Biologiques - Département d'Analyse Chimique Et Métabolomique - METABOHUB, Université de Tours, Tours, France
| | - Jérémy Monteiro
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
- PST Analyse Des Systèmes Biologiques - Département d'Analyse Chimique Et Métabolomique - METABOHUB, Université de Tours, Tours, France
| | - Adeline Oury
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
- PST Analyse Des Systèmes Biologiques - Département d'Analyse Chimique Et Métabolomique - METABOHUB, Université de Tours, Tours, France
| | - Priscila Bertevello
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
- PST Analyse Des Systèmes Biologiques - Département d'Analyse Chimique Et Métabolomique - METABOHUB, Université de Tours, Tours, France
| | - Gabrielle Chicheri
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
- PST Analyse Des Systèmes Biologiques - Département d'Analyse Chimique Et Métabolomique - METABOHUB, Université de Tours, Tours, France
| | - Johnny Vercouillie
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
| | - Lydie Nadal-Desbarats
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
- PST Analyse Des Systèmes Biologiques - Département d'Analyse Chimique Et Métabolomique - METABOHUB, Université de Tours, Tours, France
| | - Sylvie Chalon
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
| | - Antoine Lefèvre
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France
- PST Analyse Des Systèmes Biologiques - Département d'Analyse Chimique Et Métabolomique - METABOHUB, Université de Tours, Tours, France
| | - Patrick Emond
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37032, Tours, France.
- Service de Médecine Nucléaire In Vitro, Hôpital Bretonneau, CHRU Tours, 37044, Tours Cedex 1, France.
- PST Analyse Des Systèmes Biologiques - Département d'Analyse Chimique Et Métabolomique - METABOHUB, Université de Tours, Tours, France.
| |
Collapse
|
2
|
Nerurkar A, Nguyen T, Wang S, Bhatt U, Li K, Li Y, Ding P, Seidl FJ, Holan M, Lee J, Widjaja T, Wei ZL, Sadlowski C, Sperandio D, McGee LR, Youngblood B, Schwartz N, Gehlert D, Medina JC. Novel series of tunable µOR modulators with enhanced brain penetration for the treatment of opioid use disorder, pain and neuropsychiatric indications. Bioorg Med Chem Lett 2023; 92:129405. [PMID: 37414346 PMCID: PMC10529836 DOI: 10.1016/j.bmcl.2023.129405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/23/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
Structural optimization of a previously reported agonist of µOR, PZM21 is described resulting in the discovery of a novel series of amides with at least 4-folds enhanced CNS penetration in rat. Furthermore, these efforts yielded compounds with varying levels of efficacy on the receptor ranging from high efficacy agonists such as compound 20 to antagonists, such as 24. The correlation between in vitro activation of µOR and relative activity in models of analgesia for these compounds is discussed. The compelling results obtained in these studies demonstrate the potential utility of these newly discovered compounds in the treatment of pain and opioid use disorder.
Collapse
Affiliation(s)
- Alok Nerurkar
- R2M Pharma, Inc., 600 Gateway Blvd. Suite 100, South San Francisco, CA 94080, USA
| | - Thomas Nguyen
- R2M Pharma, Inc., 600 Gateway Blvd. Suite 100, South San Francisco, CA 94080, USA
| | - Sheldon Wang
- R2M Pharma, Inc., 600 Gateway Blvd. Suite 100, South San Francisco, CA 94080, USA
| | - Ulhas Bhatt
- R2M Pharma, Inc., 600 Gateway Blvd. Suite 100, South San Francisco, CA 94080, USA
| | - Kevin Li
- R2M Pharma, Inc., 600 Gateway Blvd. Suite 100, South San Francisco, CA 94080, USA
| | - Yihong Li
- R2M Pharma, Inc., 600 Gateway Blvd. Suite 100, South San Francisco, CA 94080, USA
| | - Pingyu Ding
- R2M Pharma, Inc., 600 Gateway Blvd. Suite 100, South San Francisco, CA 94080, USA
| | - Frederick J Seidl
- R2M Pharma, Inc., 600 Gateway Blvd. Suite 100, South San Francisco, CA 94080, USA
| | - Martin Holan
- R2M Pharma, Inc., 600 Gateway Blvd. Suite 100, South San Francisco, CA 94080, USA
| | - John Lee
- R2M Pharma, Inc., 600 Gateway Blvd. Suite 100, South San Francisco, CA 94080, USA
| | - Tien Widjaja
- R2M Pharma, Inc., 600 Gateway Blvd. Suite 100, South San Francisco, CA 94080, USA
| | - Zhi-Liang Wei
- R2M Pharma, Inc., 600 Gateway Blvd. Suite 100, South San Francisco, CA 94080, USA
| | - Corinne Sadlowski
- R2M Pharma, Inc., 600 Gateway Blvd. Suite 100, South San Francisco, CA 94080, USA
| | - David Sperandio
- R2M Pharma, Inc., 600 Gateway Blvd. Suite 100, South San Francisco, CA 94080, USA
| | - Lawrence R McGee
- R2M Pharma, Inc., 600 Gateway Blvd. Suite 100, South San Francisco, CA 94080, USA
| | | | - Neil Schwartz
- Epiodyne, 953 Indiana St. San Francisco, CA 94107, USA
| | | | - Julio C Medina
- R2M Pharma, Inc., 600 Gateway Blvd. Suite 100, South San Francisco, CA 94080, USA.
| |
Collapse
|
3
|
Tan LA, Gajipara N, Sun L, Bacolod M, Zhou Y, Namchuk M, Cunningham JI. In vivo Characterization of the Opioid Receptor-Binding Profiles of Samidorphan and Naltrexone in Rats: Comparisons at Clinically Relevant Concentrations. Neuropsychiatr Dis Treat 2022; 18:2497-2506. [PMID: 36345421 PMCID: PMC9636859 DOI: 10.2147/ndt.s373195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 10/07/2022] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION The atypical antipsychotic olanzapine is approved for the treatment of schizophrenia and bipolar I disorder; however, weight gain and metabolic dysregulation associated with olanzapine therapy have limited its clinical utility. In clinical studies, treatment with the combination of olanzapine and the opioid receptor antagonist samidorphan (OLZ/SAM) mitigated olanzapine-associated weight gain while providing antipsychotic efficacy similar to that of olanzapine. Although samidorphan is structurally similar to the opioid receptor antagonist naltrexone, the two differ in their pharmacokinetics and in vitro binding affinities to mu, delta, and kappa opioid receptors (MOR, DOR, and KOR, respectively). The objective of this series of nonclinical studies was to compare the in vivo binding profiles of samidorphan and naltrexone and their receptor occupancies at MOR, DOR, and KOR in rat brains. METHODS Male rats were injected with samidorphan or naltrexone to obtain total and unbound plasma and brain concentrations representing levels observed in humans at clinically relevant oral doses. Subsequently, samidorphan and naltrexone brain receptor occupancy at MOR, DOR, and KOR was measured using ultra-performance liquid chromatography and high-resolution accurate-mass mass spectrometry. RESULTS A dose-dependent increase in samidorphan occupancy was observed at MOR, DOR, and KOR (EC50: 5.1, 54.7, and 42.9 nM, respectively). Occupancy of naltrexone at MOR (EC50: 15.5 nM) and KOR was dose dependent; minimal DOR occupancy was detected. At the clinically relevant unbound brain concentration of 23.1 nM, samidorphan bound to MOR, DOR, and KOR with 93.2%, 36.1%, and 41.9% occupancy, respectively. At 33.5 nM, naltrexone bound to MOR and KOR with 79.4% and 9.4% occupancy, respectively, with no binding at DOR. DISCUSSION At clinically relevant concentrations, samidorphan occupied MOR, DOR, and KOR, whereas naltrexone occupied only MOR and KOR. The binding profile of samidorphan differs from that of naltrexone, with potential clinical implications.
Collapse
Affiliation(s)
| | | | - Lei Sun
- Alkermes, Inc, Waltham, MA, USA
| | | | | | | | | |
Collapse
|
4
|
Youngblood B, Li K, Gehlert DR, Medina JC, Schwartz N. A Novel Maintenance Therapeutic for Opioid Use Disorder. J Pharmacol Exp Ther 2021; 378:133-145. [PMID: 34011529 PMCID: PMC8407529 DOI: 10.1124/jpet.120.000214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 05/17/2021] [Indexed: 12/23/2022] Open
Abstract
Opioid use disorder (OUD) is a major socioeconomic burden. An ideal OUD pharmacotherapy will mitigate the suffering associated with opioid-withdrawal, inhibit the effects of high efficacy opioids, and minimize opioid-cravings while being safe and accessible to a diverse patient population. Although current OUD pharmacotherapies inhibit the euphoric effects of opioids of abuse, the extent to which they safely alleviate withdrawal and opioid-cravings corresponds with their intrinsic µ opioid receptor (MOR) efficacy. In addition to inhibiting the euphoric effects of opioids of abuse, the medium efficacy MOR agonist buprenorphine alleviates withdrawal and opioid-cravings, but its intrinsic MOR efficacy is sufficient such that its utility is limited by abuse and safety liabilities. Although the MOR antagonist naltrexone minimizes euphoria and has no abuse liability, it exacerbates suffering associated with withdrawal and opioid cravings. Therefore, a therapeutic with intrinsic MOR activity between the partial agonist (buprenorphine) and the antagonist (naltrexone) would strike a balance between the benefits and liabilities of these two therapeutics. To address this need, we derived RM1490, an MOR agonist based on a nonmorphinan scaffold that exhibits approximately half the intrinsic MOR efficacy of buprenorphine. In a series of preclinical assays, we compared RM1490 with buprenorphine and naltrexone at doses that achieve therapeutic levels of central nervous system MOR occupancy. RM1490 exhibited a behavioral profile consistent with reduced reward, dependence, and precipitated withdrawal liabilities. RM1490 was also more effective than buprenorphine at reversing the respiratory depressant effects of fentanyl and did not suppress respiration when combined with diazepam. SIGNIFICANCE STATEMENT: In preclinical studies, RM1490 has a physiological and behavioral profile suitable for opioid use disorder maintenance therapy.
Collapse
Affiliation(s)
- Beth Youngblood
- Epiodyne Inc., San Francisco, California (B.Y., D.R.G., J.C.M., N.S.) and R2M Pharma Inc., South San Francisco, California (K.L., J.C.M.)
| | - Kevin Li
- Epiodyne Inc., San Francisco, California (B.Y., D.R.G., J.C.M., N.S.) and R2M Pharma Inc., South San Francisco, California (K.L., J.C.M.)
| | - Donald R Gehlert
- Epiodyne Inc., San Francisco, California (B.Y., D.R.G., J.C.M., N.S.) and R2M Pharma Inc., South San Francisco, California (K.L., J.C.M.)
| | - Julio C Medina
- Epiodyne Inc., San Francisco, California (B.Y., D.R.G., J.C.M., N.S.) and R2M Pharma Inc., South San Francisco, California (K.L., J.C.M.)
| | - Neil Schwartz
- Epiodyne Inc., San Francisco, California (B.Y., D.R.G., J.C.M., N.S.) and R2M Pharma Inc., South San Francisco, California (K.L., J.C.M.)
| |
Collapse
|
5
|
Takamura Y, Kakuta H. In Vivo Receptor Visualization and Evaluation of Receptor Occupancy with Positron Emission Tomography. J Med Chem 2021; 64:5226-5251. [PMID: 33905258 DOI: 10.1021/acs.jmedchem.0c01714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Positron emission tomography (PET) is useful for noninvasive in vivo visualization of disease-related receptors, for evaluation of receptor occupancy to determine an appropriate drug dosage, and for proof-of-concept of drug candidates in translational research. For these purposes, the specificity of the PET tracer for the target receptor is critical. Here, we review work in this area, focusing on the chemical structures of reported PET tracers, their Ki/Kd values, and the physical properties relevant to target receptor selectivity. Among these physical properties, such as cLogP, cLogD, molecular weight, topological polar surface area, number of hydrogen bond donors, and pKa, we focus especially on LogD and LogP as important physical properties that can be easily compared across a range of studies. We discuss the success of PET tracers in evaluating receptor occupancy and consider likely future developments in the field.
Collapse
Affiliation(s)
- Yuta Takamura
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Hiroki Kakuta
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
6
|
Collier TL, Dahl K, Stephenson NA, Holland JP, Riley A, Liang SH, Vasdev N. Recent applications of a single quadrupole mass spectrometer in 11C, 18F and radiometal chemistry. J Fluor Chem 2018; 210:46-55. [PMID: 30410189 PMCID: PMC6217822 DOI: 10.1016/j.jfluchem.2018.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mass spectrometry (MS) has longstanding applications in radiochemistry laboratories, stemming from carbon-dating. However, research on the development of radiotracers for molecular imaging with either positron emission tomography (PET) or single photon emission computed tomography has yet to take full advantage of MS. This inertia has been attributed to the relatively low concentrations of radiopharmaceutical formulations and lack of access to the required MS equipment due to the high costs for purchase and maintenance of specialized MS systems. To date, single quadrupole (SQ)-MS coupled to liquid chromatography (LC) systems is the main form of MS that has been used in radiochemistry laboratories. These LC/MS systems are primarily used for assessing the chemical purity of radiolabeling precursor or standard molecules but also have applications in the determination of metabolites. Herein, we highlight personal experiences using a compact SQ-MS in our PET radiochemistry laboratories, to monitor the small amounts of carrier observed in most radiotracer preparations, even at high molar activities. The use of a SQ-MS in the observation of the low mass associated with non-radioactive species which are formed along with the radiotracer from the trace amounts of carrier found is demonstrated. Herein, we describe a pre-concentration system to detect dilute radiopharmaceutical formulations and metabolite analyses by SQ-MS. Selected examples where SQ-MS was critical for optimization of radiochemical reactions and for unequivocal characterization of radiotracers are showcased. We also illustrate examples where SQ-MS can be applied in identification of radiometal complexes and development of a new purification methodology for Pd-catalyzed radiofluorination reactions, shedding light on the identity of metal complexes present in the labelling solution.
Collapse
Affiliation(s)
- Thomas L. Collier
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital (MGH) & Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Advion, Inc., Ithaca, New York, USA
| | - Kenneth Dahl
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital (MGH) & Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Nickeisha A. Stephenson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital (MGH) & Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason P. Holland
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital (MGH) & Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Adam Riley
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital (MGH) & Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital (MGH) & Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital (MGH) & Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Developing a cassette microdosing approach to enhance the throughput of PET imaging agent screening. J Pharm Biomed Anal 2018. [PMID: 29533858 DOI: 10.1016/j.jpba.2018.02.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cassette dosing is also known as N-in-One dosing: several compounds are simultaneously administrated to a single animal and then the samples are rapidly detected by LC-MS/MS. This approach is a successful strategy to enhance the efficiency of drug discovery and reduce animal usage. However, no report on the utility of the cassette approach in radiotracer discovery has appeared in the literature. This study designed a cassette microdose with LC-MS/MS method to enhance the throughput for screening radiopharmaceutical biodistribution in the rat brain directly. Three unradiolabeled compounds (FPBM FPBM2 and AV-133) were chosen as model drugs administrated intravenously to the rats as a cassette as opposed to discrete study. The rat brain biodistribution data, target localization, the differential uptake ratio (%ID/g) and the brain tissue-specific binding ratio were obtained by the LC-MS/MS analysis. These data matched very well with the values obtained by the standard radioactivity measurements. Moreover, no significant differences between discrete dosing and cassette dosing were observed. By circumventing the need for radiolabeled molecules, this method may be high-throughput and safe for the research and development of new PET imaging agents. The combination of cassette microdosing and LC-MS/MS would be a medium throughput screening tool at an early stage in the discovery/development process of PET imaging agents.
Collapse
|
8
|
Takai N, Miyajima N, Tonomura M, Abe K. Relationship between receptor occupancy and the antinociceptive effect of mu opioid receptor agonists in male rats. Brain Res 2017; 1680:105-109. [PMID: 29269051 DOI: 10.1016/j.brainres.2017.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 11/13/2017] [Accepted: 12/12/2017] [Indexed: 11/24/2022]
Abstract
The analgesic mechanisms of mu opioid receptor (MOR) agonists, including receptor occupancy at the site of action, are not completely understood. The aims of the present study were to evaluate: (i) receptor occupancy in the rat brain after administration of MOR agonists; (ii) the relationship between occupancy and the antinociceptive effect. Morphine (2 or 4 mg/kg) or oxycodone (1 or 3 mg/kg) was subcutaneously administered to rats. The antinociceptive effect of these drugs was measured by the hot-plate test. MOR occupancy in the thalamus was assessed by conducting an ex vivo receptor binding assay using [3H] [D-Ala2, N-MePhe4, Gly-ol]-enkephalin, followed by autoradiographic analysis. Both drugs produced antinociception in a dose-dependent manner, and these effects disappeared after the time point at which the maximal effect was elicited. Thalamic MOR occupancy was observed in a dose-dependent manner at the time point at which maximal antinociception was elicited, and relatively low occupancy was observed when the antinociceptive effect was decreasing. Good correlation between thalamic MOR occupancy and the antinociceptive effect was observed. These findings provide direct evidence for the receptor occupancy of MOR agonists at the site of action and its relationship with the analgesic effect.
Collapse
Affiliation(s)
- Nozomi Takai
- Biomarker R&D Department, Shionogi & Co., Ltd., Osaka, Japan.
| | | | - Misato Tonomura
- Biomarker R&D Department, Shionogi & Co., Ltd., Osaka, Japan.
| | - Kohji Abe
- Biomarker R&D Department, Shionogi & Co., Ltd., Osaka, Japan.
| |
Collapse
|
9
|
Approaches for the discovery of novel positron emission tomography radiotracers for brain imaging. Clin Transl Imaging 2017. [DOI: 10.1007/s40336-017-0221-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
10
|
de Witte WEA, Wong YC, Nederpelt I, Heitman LH, Danhof M, van der Graaf PH, Gilissen RAHJ, de Lange ECM. Mechanistic models enable the rational use of in vitro drug-target binding kinetics for better drug effects in patients. Expert Opin Drug Discov 2015; 11:45-63. [PMID: 26484747 DOI: 10.1517/17460441.2016.1100163] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Drug-target binding kinetics are major determinants of the time course of drug action for several drugs, as clearly described for the irreversible binders omeprazole and aspirin. This supports the increasing interest to incorporate newly developed high-throughput assays for drug-target binding kinetics in drug discovery. A meaningful application of in vitro drug-target binding kinetics in drug discovery requires insight into the relation between in vivo drug effect and in vitro measured drug-target binding kinetics. AREAS COVERED In this review, the authors discuss both the relation between in vitro and in vivo measured binding kinetics and the relation between in vivo binding kinetics, target occupancy and effect profiles. EXPERT OPINION More scientific evidence is required for the rational selection and development of drug-candidates on the basis of in vitro estimates of drug-target binding kinetics. To elucidate the value of in vitro binding kinetics measurements, it is necessary to obtain information on system-specific properties which influence the kinetics of target occupancy and drug effect. Mathematical integration of this information enables the identification of drug-specific properties which lead to optimal target occupancy and drug effect in patients.
Collapse
Affiliation(s)
- Wilhelmus E A de Witte
- a Division of Pharmacology, Leiden Academic Centre for Drug Research , Leiden University , Einsteinweg 55, 2333 CC Leiden , The Netherlands
| | - Yin Cheong Wong
- a Division of Pharmacology, Leiden Academic Centre for Drug Research , Leiden University , Einsteinweg 55, 2333 CC Leiden , The Netherlands
| | - Indira Nederpelt
- b Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research , Leiden University , Einsteinweg 55, 2333 CC Leiden , The Netherlands
| | - Laura H Heitman
- b Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research , Leiden University , Einsteinweg 55, 2333 CC Leiden , The Netherlands
| | - Meindert Danhof
- a Division of Pharmacology, Leiden Academic Centre for Drug Research , Leiden University , Einsteinweg 55, 2333 CC Leiden , The Netherlands
| | - Piet H van der Graaf
- a Division of Pharmacology, Leiden Academic Centre for Drug Research , Leiden University , Einsteinweg 55, 2333 CC Leiden , The Netherlands
| | - Ron A H J Gilissen
- c A Division of Janssen Pharmaceutica N.V., Janssen Research and Development , Turnhoutseweg 30, Beerse 2340 , Belgium
| | - Elizabeth C M de Lange
- a Division of Pharmacology, Leiden Academic Centre for Drug Research , Leiden University , Einsteinweg 55, 2333 CC Leiden , The Netherlands
| |
Collapse
|
11
|
Hutson PH, Rowley HL, Gosden J, Kulkarni RS, Slater N, Love PL, Wang Y, Heal D. The effects in rats of lisdexamfetamine in combination with olanzapine on mesocorticolimbic dopamine efflux, striatal dopamine D2 receptor occupancy and stimulus generalization to a D-amphetamine cue. Neuropharmacology 2015; 101:24-35. [PMID: 26384654 DOI: 10.1016/j.neuropharm.2015.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/28/2015] [Accepted: 09/11/2015] [Indexed: 12/21/2022]
Abstract
The etiology of schizophrenia is poorly understood and two principle hypotheses have dominated the field. Firstly, that subcortical dopamine function is enhanced while cortical dopamine function is reduced and secondly, that cortical glutamate systems are dysfunctional. It is also widely accepted that currently used antipsychotics have essentially no impact on cognitive deficits and persistent negative symptoms in schizophrenia. Reduced dopamine transmission via dopamine D1 receptors in the prefrontal cortex has been hypothesized to be involved in the aetiology of these symptom domains and enhancing cortical dopamine transmission within an optimal window has been suggested to be potentially beneficial. In these pre-clinical studies we have determined that combined administration of the d-amphetamine pro-drug, lisdexamfetamine and the atypical antipsychotic olanzapine increased dopamine efflux in the rat prefrontal cortex and nucleus accumbens to an extent greater than either drug given separately without affecting olanzapine's ability to block striatal dopamine D2 receptors which is important for its antipsychotic activity. Furthermore, in an established rodent model used to compare the subjective effects of novel compounds the ability of lisdexamfetamine to generalize to a d-amphetamine cue was dose-dependently attenuated when co-administered with olanzapine suggesting that lisdexamfetamine may produce less marked subjective effects when administered adjunctively with olanzapine.
Collapse
Affiliation(s)
- Peter H Hutson
- Shire Pharmaceutical, 300 Shire Way, Lexington, MA 02421 USA.
| | - Helen L Rowley
- RenaSci Ltd, BioCity, Nottingham, Pennyfoot Street, Nottingham, NG1 1GF, UK
| | - James Gosden
- RenaSci Ltd, BioCity, Nottingham, Pennyfoot Street, Nottingham, NG1 1GF, UK
| | - Rajiv S Kulkarni
- RenaSci Ltd, BioCity, Nottingham, Pennyfoot Street, Nottingham, NG1 1GF, UK
| | - Nigel Slater
- RenaSci Ltd, BioCity, Nottingham, Pennyfoot Street, Nottingham, NG1 1GF, UK
| | - Patrick L Love
- Covance, Inc., 671 South Meridian Road, Greenfield, IN 46140, USA
| | - Yiyun Wang
- Covance, Inc., 671 South Meridian Road, Greenfield, IN 46140, USA
| | - David Heal
- RenaSci Ltd, BioCity, Nottingham, Pennyfoot Street, Nottingham, NG1 1GF, UK
| |
Collapse
|
12
|
Boger E, Ewing P, Eriksson UG, Fihn BM, Chappell M, Evans N, Fridén M. A novel in vivo receptor occupancy methodology for the glucocorticoid receptor: toward an improved understanding of lung pharmacokinetic/pharmacodynamic relationships. J Pharmacol Exp Ther 2015; 353:279-87. [PMID: 25680710 DOI: 10.1124/jpet.114.221226] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Investigation of pharmacokinetic/pharmacodynamic (PK/PD) relationships for inhaled drugs is challenging because of the limited possibilities of measuring tissue exposure and target engagement in the lung. The aim of this study was to develop a methodology for measuring receptor occupancy in vivo in the rat for the glucocorticoid receptor (GR) to allow more informative inhalation PK/PD studies. From AstraZeneca's chemical library of GR binders, compound 1 [N-(2-amino-2-oxo-ethyl)-3-[5-[(1R,2S)-2-(2,2-difluoropropanoylamino)-1-(2,3-dihydro-1,4-benzodioxin-6-yl)propoxy]indazol-1-yl]-N-methyl-benzamide] was identified to have properties that are useful as a tracer for GR in vitro. When given at an appropriate dose (30 nmol/kg) to rats, compound 1 functioned as a tracer in the lung and spleen in vivo using liquid chromatography-tandem mass spectrometry bioanalysis. The methodology was successfully used to show the dose-receptor occupancy relationship measured at 1.5 hours after intravenous administration of fluticasone propionate (20, 150, and 750 nmol/kg) as well as to characterize the time profile for receptor occupancy after a dose of 90 nmol/kg i.v. The dose giving 50% occupancy was estimated as 47 nmol/kg. The methodology is novel in terms of measuring occupancy strictly in vivo and by using an unlabeled tracer. This feature confers key advantages, including occupancy estimation not being influenced by drug particle dissolution or binding/dissociation taking place postmortem. In addition, the tracer may be labeled for use in positron emission tomography imaging, thus enabling occupancy estimation in humans as a translatable biomarker of target engagement.
Collapse
Affiliation(s)
- Elin Boger
- Respiratory, Inflammation and Autoimmunity innovative Medicines, AstraZeneca R&D, Mölndal, Sweden (E.B., P.E., U.G.E., B.-M.F., M.F.); School of Engineering, University of Warwick, Coventry, United Kingdom (E.B, M.C., N.E.); and Translational PKPD, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden (M.F.)
| | - Pär Ewing
- Respiratory, Inflammation and Autoimmunity innovative Medicines, AstraZeneca R&D, Mölndal, Sweden (E.B., P.E., U.G.E., B.-M.F., M.F.); School of Engineering, University of Warwick, Coventry, United Kingdom (E.B, M.C., N.E.); and Translational PKPD, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden (M.F.)
| | - Ulf G Eriksson
- Respiratory, Inflammation and Autoimmunity innovative Medicines, AstraZeneca R&D, Mölndal, Sweden (E.B., P.E., U.G.E., B.-M.F., M.F.); School of Engineering, University of Warwick, Coventry, United Kingdom (E.B, M.C., N.E.); and Translational PKPD, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden (M.F.)
| | - Britt-Marie Fihn
- Respiratory, Inflammation and Autoimmunity innovative Medicines, AstraZeneca R&D, Mölndal, Sweden (E.B., P.E., U.G.E., B.-M.F., M.F.); School of Engineering, University of Warwick, Coventry, United Kingdom (E.B, M.C., N.E.); and Translational PKPD, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden (M.F.)
| | - Michael Chappell
- Respiratory, Inflammation and Autoimmunity innovative Medicines, AstraZeneca R&D, Mölndal, Sweden (E.B., P.E., U.G.E., B.-M.F., M.F.); School of Engineering, University of Warwick, Coventry, United Kingdom (E.B, M.C., N.E.); and Translational PKPD, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden (M.F.)
| | - Neil Evans
- Respiratory, Inflammation and Autoimmunity innovative Medicines, AstraZeneca R&D, Mölndal, Sweden (E.B., P.E., U.G.E., B.-M.F., M.F.); School of Engineering, University of Warwick, Coventry, United Kingdom (E.B, M.C., N.E.); and Translational PKPD, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden (M.F.)
| | - Markus Fridén
- Respiratory, Inflammation and Autoimmunity innovative Medicines, AstraZeneca R&D, Mölndal, Sweden (E.B., P.E., U.G.E., B.-M.F., M.F.); School of Engineering, University of Warwick, Coventry, United Kingdom (E.B, M.C., N.E.); and Translational PKPD, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden (M.F.)
| |
Collapse
|
13
|
Wu X, Zhou X, Zhang S, Zhang Y, Deng A, Han J, Zhu L, Kung HF, Qiao J. Brain uptake of a non-radioactive pseudo-carrier and its effect on the biodistribution of [(18)F]AV-133 in mouse brain. Nucl Med Biol 2015; 42:630-6. [PMID: 25910857 DOI: 10.1016/j.nucmedbio.2015.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/28/2015] [Accepted: 03/30/2015] [Indexed: 10/23/2022]
Abstract
INTRODUCTION 9-[(18)F]Fluoropropyl-(+)-dihydrotetrabenazine ([(18)F]AV-133) is a new PET imaging agent targeting vesicular monoamine transporter type II (VMAT2). To shorten the preparation of [(18)F]AV-133 and to make it more widely available, a simple and rapid purification method using solid-phase extraction (SPE) instead of high-pressure liquid chromatography (HPLC) was developed. The SPE method produced doses containing the non-radioactive pseudo-carrier 9-hydroxypropyl-(+)-dihydrotetrabenazine (AV-149). The objectives of this study were to evaluate the brain uptake of AV-149 by UPLC-MS/MS and its effect on the biodistribution of [(18)F]AV-133 in the brains of mice. METHODS The mice were injected with a bolus including [(18)F]AV-133 and different doses of AV-149. Brain tissue and blood samples were harvested. The effect of different amounts of AV-149 on [(18)F]AV-133 was evaluated by quantifying the brain distribution of radiolabelled tracer [(18)F]AV-133. The concentrations of AV-149 in the brain and plasma were analyzed using a UPLC-MS/MS method. RESULTS The concentrations of AV-149 in the brain and plasma exhibited a good linear relationship with the doses. The receptor occupancy curve was fit, and the calculated ED50 value was 8.165mg/kg. The brain biodistribution and regional selectivity of [(18)F]AV-133 had no obvious differences at AV-149 doses lower than 0.1mg/kg. With increasing doses of AV-149, the brain biodistribution of [(18)F]AV-133 changed significantly. CONCLUSION The results are important to further support that the improved radiolabelling procedure of [(18)F]AV-133 using an SPE method may be suitable for routine clinical application.
Collapse
Affiliation(s)
- Xianying Wu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Xue Zhou
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Shuxian Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Yan Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Aifang Deng
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Jie Han
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Lin Zhu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China; Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China.
| | - Hank F Kung
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Jinping Qiao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China.
| |
Collapse
|
14
|
Rorick-Kehn LM, Witcher JW, Lowe SL, Gonzales CR, Weller MA, Bell RL, Hart JC, Need AB, McKinzie JH, Statnick MA, Suico JG, McKinzie DL, Tauscher-Wisniewski S, Mitch CH, Stoltz RR, Wong CJ. Determining pharmacological selectivity of the kappa opioid receptor antagonist LY2456302 using pupillometry as a translational biomarker in rat and human. Int J Neuropsychopharmacol 2015; 18:pyu036. [PMID: 25637376 PMCID: PMC4368892 DOI: 10.1093/ijnp/pyu036] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Selective kappa opioid receptor antagonism is a promising experimental strategy for the treatment of depression. The kappa opioid receptor antagonist, LY2456302, exhibits ~30-fold higher affinity for kappa opioid receptors over mu opioid receptors, which is the next closest identified pharmacology. METHODS Here, we determined kappa opioid receptor pharmacological selectivity of LY2456302 by assessing mu opioid receptor antagonism using translational pupillometry in rats and humans. RESULTS In rats, morphine-induced mydriasis was completely blocked by the nonselective opioid receptor antagonist naloxone (3mg/kg, which produced 90% mu opioid receptor occupancy), while 100 and 300 mg/kg LY2456302 (which produced 56% and 87% mu opioid receptor occupancy, respectively) only partially blocked morphine-induced mydriasis. In humans, fentanyl-induced miosis was completely blocked by 50mg naltrexone, and LY2456302 dose-dependently blocked miosis at 25 and 60 mg (minimal-to-no blockade at 4-10mg). CONCLUSIONS We demonstrate, for the first time, the use of translational pupillometry in the context of receptor occupancy to identify a clinical dose of LY2456302 achieving maximal kappa opioid receptor occupancy without evidence of significant mu receptor antagonism.
Collapse
Affiliation(s)
- Linda M Rorick-Kehn
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Drs Rorick-Kehn, Witcher, Lowe, Gonzales, Bell, Hard, Need, J. McKinzie, Statnick, Suico, D. McKinzie, Tauscher-Wisniewski, Mitch, and Wong); inVentiv Health Clinical, Ann Arbor, Michigan (Dr Weller); Covance Clinical Research Unit, Inc., Evansville, Indiana (Dr Stoltz).
| | - Jennifer W Witcher
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Drs Rorick-Kehn, Witcher, Lowe, Gonzales, Bell, Hard, Need, J. McKinzie, Statnick, Suico, D. McKinzie, Tauscher-Wisniewski, Mitch, and Wong); inVentiv Health Clinical, Ann Arbor, Michigan (Dr Weller); Covance Clinical Research Unit, Inc., Evansville, Indiana (Dr Stoltz)
| | - Stephen L Lowe
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Drs Rorick-Kehn, Witcher, Lowe, Gonzales, Bell, Hard, Need, J. McKinzie, Statnick, Suico, D. McKinzie, Tauscher-Wisniewski, Mitch, and Wong); inVentiv Health Clinical, Ann Arbor, Michigan (Dr Weller); Covance Clinical Research Unit, Inc., Evansville, Indiana (Dr Stoltz)
| | - Celedon R Gonzales
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Drs Rorick-Kehn, Witcher, Lowe, Gonzales, Bell, Hard, Need, J. McKinzie, Statnick, Suico, D. McKinzie, Tauscher-Wisniewski, Mitch, and Wong); inVentiv Health Clinical, Ann Arbor, Michigan (Dr Weller); Covance Clinical Research Unit, Inc., Evansville, Indiana (Dr Stoltz)
| | - Mary Ann Weller
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Drs Rorick-Kehn, Witcher, Lowe, Gonzales, Bell, Hard, Need, J. McKinzie, Statnick, Suico, D. McKinzie, Tauscher-Wisniewski, Mitch, and Wong); inVentiv Health Clinical, Ann Arbor, Michigan (Dr Weller); Covance Clinical Research Unit, Inc., Evansville, Indiana (Dr Stoltz)
| | - Robert L Bell
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Drs Rorick-Kehn, Witcher, Lowe, Gonzales, Bell, Hard, Need, J. McKinzie, Statnick, Suico, D. McKinzie, Tauscher-Wisniewski, Mitch, and Wong); inVentiv Health Clinical, Ann Arbor, Michigan (Dr Weller); Covance Clinical Research Unit, Inc., Evansville, Indiana (Dr Stoltz)
| | - John C Hart
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Drs Rorick-Kehn, Witcher, Lowe, Gonzales, Bell, Hard, Need, J. McKinzie, Statnick, Suico, D. McKinzie, Tauscher-Wisniewski, Mitch, and Wong); inVentiv Health Clinical, Ann Arbor, Michigan (Dr Weller); Covance Clinical Research Unit, Inc., Evansville, Indiana (Dr Stoltz)
| | - Anne B Need
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Drs Rorick-Kehn, Witcher, Lowe, Gonzales, Bell, Hard, Need, J. McKinzie, Statnick, Suico, D. McKinzie, Tauscher-Wisniewski, Mitch, and Wong); inVentiv Health Clinical, Ann Arbor, Michigan (Dr Weller); Covance Clinical Research Unit, Inc., Evansville, Indiana (Dr Stoltz)
| | - Jamie H McKinzie
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Drs Rorick-Kehn, Witcher, Lowe, Gonzales, Bell, Hard, Need, J. McKinzie, Statnick, Suico, D. McKinzie, Tauscher-Wisniewski, Mitch, and Wong); inVentiv Health Clinical, Ann Arbor, Michigan (Dr Weller); Covance Clinical Research Unit, Inc., Evansville, Indiana (Dr Stoltz)
| | - Michael A Statnick
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Drs Rorick-Kehn, Witcher, Lowe, Gonzales, Bell, Hard, Need, J. McKinzie, Statnick, Suico, D. McKinzie, Tauscher-Wisniewski, Mitch, and Wong); inVentiv Health Clinical, Ann Arbor, Michigan (Dr Weller); Covance Clinical Research Unit, Inc., Evansville, Indiana (Dr Stoltz)
| | - Jeffrey G Suico
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Drs Rorick-Kehn, Witcher, Lowe, Gonzales, Bell, Hard, Need, J. McKinzie, Statnick, Suico, D. McKinzie, Tauscher-Wisniewski, Mitch, and Wong); inVentiv Health Clinical, Ann Arbor, Michigan (Dr Weller); Covance Clinical Research Unit, Inc., Evansville, Indiana (Dr Stoltz)
| | - David L McKinzie
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Drs Rorick-Kehn, Witcher, Lowe, Gonzales, Bell, Hard, Need, J. McKinzie, Statnick, Suico, D. McKinzie, Tauscher-Wisniewski, Mitch, and Wong); inVentiv Health Clinical, Ann Arbor, Michigan (Dr Weller); Covance Clinical Research Unit, Inc., Evansville, Indiana (Dr Stoltz)
| | - Sitra Tauscher-Wisniewski
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Drs Rorick-Kehn, Witcher, Lowe, Gonzales, Bell, Hard, Need, J. McKinzie, Statnick, Suico, D. McKinzie, Tauscher-Wisniewski, Mitch, and Wong); inVentiv Health Clinical, Ann Arbor, Michigan (Dr Weller); Covance Clinical Research Unit, Inc., Evansville, Indiana (Dr Stoltz)
| | - Charles H Mitch
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Drs Rorick-Kehn, Witcher, Lowe, Gonzales, Bell, Hard, Need, J. McKinzie, Statnick, Suico, D. McKinzie, Tauscher-Wisniewski, Mitch, and Wong); inVentiv Health Clinical, Ann Arbor, Michigan (Dr Weller); Covance Clinical Research Unit, Inc., Evansville, Indiana (Dr Stoltz)
| | - Randall R Stoltz
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Drs Rorick-Kehn, Witcher, Lowe, Gonzales, Bell, Hard, Need, J. McKinzie, Statnick, Suico, D. McKinzie, Tauscher-Wisniewski, Mitch, and Wong); inVentiv Health Clinical, Ann Arbor, Michigan (Dr Weller); Covance Clinical Research Unit, Inc., Evansville, Indiana (Dr Stoltz)
| | - Conrad J Wong
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana (Drs Rorick-Kehn, Witcher, Lowe, Gonzales, Bell, Hard, Need, J. McKinzie, Statnick, Suico, D. McKinzie, Tauscher-Wisniewski, Mitch, and Wong); inVentiv Health Clinical, Ann Arbor, Michigan (Dr Weller); Covance Clinical Research Unit, Inc., Evansville, Indiana (Dr Stoltz)
| |
Collapse
|
15
|
Rankovic Z. CNS Drug Design: Balancing Physicochemical Properties for Optimal Brain Exposure. J Med Chem 2015; 58:2584-608. [DOI: 10.1021/jm501535r] [Citation(s) in RCA: 342] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Zoran Rankovic
- Eli Lilly and Company, 893 South
Delaware Street, Indianapolis, Indiana 46285, United States
| |
Collapse
|
16
|
Joshi EM, Need A, Schaus J, Chen Z, Benesh D, Mitch C, Morton S, Raub TJ, Phebus L, Barth V. Efficiency gains in tracer identification for nuclear imaging: can in vivo LC-MS/MS evaluation of small molecules screen for successful PET tracers? ACS Chem Neurosci 2014; 5:1154-63. [PMID: 25247893 DOI: 10.1021/cn500073j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Positron emission tomography (PET) imaging has become a useful noninvasive technique to explore molecular biology within living systems; however, the utility of this method is limited by the availability of suitable radiotracers to probe specific targets and disease biology. Methods to identify potential areas of improvement in the ability to predict small molecule performance as tracers prior to radiolabeling would speed the discovery of novel tracers. In this retrospective analysis, we characterized the brain penetration or peak SUV (standardized uptake value), binding potential (BP), and brain exposure kinetics across a series of known, nonradiolabeled PET ligands using in vivo LC-MS/MS (liquid chromatography coupled to mass spectrometry) and correlated these parameters with the reported PET ligand performance in nonhuman primates and humans available in the literature. The PET tracers studied included those reported to label G protein-coupled receptors (GPCRs), intracellular enzymes, and transporters. Additionally, data for each tracer was obtained from a mouse brain uptake assay (MBUA), previously published, where blood-brain barrier (BBB) penetration and clearance parameters were assessed and compared against similar data collected on a broad compound set of central nervous system (CNS) therapeutic compounds. The BP and SUV identified via nonradiolabeled LC-MS/MS, while different from the published values observed in the literature PET tracer data, allowed for an identification of initial criteria values we sought to facilitate increased potential for success from our early discovery screening paradigm. Our analysis showed that successful, as well as novel, clinical PET tracers exhibited BP of greater than 1.5 and peak SUVs greater than approximately 150% at 5 min post dose in rodents. The brain kinetics appeared similar between both techniques despite differences in tracer dose, suggesting linearity across these dose ranges. The assessment of tracers in a CNS exposure model, the mouse brain uptake assessment (MBUA), showed that those compound with initial brain-to-plasma ratios >2 and unbound fraction in brain homogenate >0.01 were more likely to be clinically successful PET ligands. Taken together, early incorporation of a LC/MS/MS cold tracer discovery assay and a parallel MBUA can be an useful screening paradigm to prioritize and rank order potential novel PET radioligands during early tracer discovery efforts. Compounds considered for continued in vivo PET assessments can be identified quickly by leveraging in vitro affinity and selectivity measures, coupled with data from a MBUA, primarily the 5 min brain-to-plasma ratio and unbound fraction data. Coupled utilization of these data creates a strategy to efficiently screen for the identification of appropriate chemical space to invest in for radiotracer discovery.
Collapse
Affiliation(s)
- Elizabeth M. Joshi
- Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Anne Need
- Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - John Schaus
- Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Zhaogen Chen
- Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Dana Benesh
- Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Charles Mitch
- Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Stuart Morton
- Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Thomas J. Raub
- Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Lee Phebus
- Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| | - Vanessa Barth
- Eli Lilly and Co., Lilly Research Laboratories, Indianapolis, Indiana 46285, United States
| |
Collapse
|
17
|
Zheng MQ, Kim SJ, Holden D, Lin SF, Need A, Rash K, Barth V, Mitch C, Navarro A, Kapinos M, Maloney K, Ropchan J, Carson RE, Huang Y. An Improved Antagonist Radiotracer for the κ-Opioid Receptor: Synthesis and Characterization of (11)C-LY2459989. J Nucl Med 2014; 55:1185-91. [PMID: 24854795 DOI: 10.2967/jnumed.114.138701] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Accepted: 03/25/2014] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED The κ-opioid receptors (KORs) are implicated in several neuropsychiatric diseases and addictive disorders. PET with radioligands provides a means to image the KOR in vivo and investigate its function in health and disease. The purpose of this study was to develop the selective KOR antagonist (11)C-LY2459989 as a PET radioligand and characterize its imaging performance in nonhuman primates. METHODS LY2459989 was synthesized and assayed for in vitro binding to opioid receptors. Ex vivo studies in rodents were conducted to assess its potential as a tracer candidate. (11)C-LY2459989 was synthesized by reaction of its iodophenyl precursor with (11)C-cyanide, followed by partial hydrolysis of the resulting (11)C-cyanophenyl intermediate. Imaging experiments with (11)C-LY2459989 were performed in rhesus monkeys with arterial input function measurement. Imaging data were analyzed with kinetic models to derive in vivo binding parameters. RESULTS LY2459989 is a full antagonist with high binding affinity and selectivity for KOR (0.18, 7.68, and 91.3 nM, respectively, for κ, μ, and δ receptors). Ex vivo studies in rats indicated LY2459989 as an appropriate tracer candidate with high specific binding signals and confirmed its KOR binding selectivity in vivo. (11)C-LY2459989 was synthesized in high radiochemical purity and good specific activity. In rhesus monkeys, (11)C-LY2459989 displayed a fast rate of peripheral metabolism. Similarly, (11)C-LY2459989 displayed fast uptake kinetics in the brain and an uptake pattern consistent with the distribution of KOR in primates. Pretreatment with naloxone (1 mg/kg, intravenously) resulted in a uniform distribution of radioactivity in the brain. Further, specific binding of (11)C-LY2459989 was dose-dependently reduced by the selective KOR antagonist LY2456302 and the unlabeled LY2459989. Regional binding potential values derived from the multilinear analysis-1 (MA1) method, as a measure of in vivo specific binding signal, were 2.18, 1.39, 1.08, 1.04, 1.03, 0.59, 0.51, and 0.50, respectively, for the globus pallidus, cingulate cortex, insula, caudate, putamen, frontal cortex, temporal cortex, and thalamus. CONCLUSION The novel PET radioligand (11)C-LY2459989 displayed favorable pharmacokinetic properties, a specific and KOR-selective binding profile, and high specific binding signals in vivo, thus making it a promising PET imaging agent for KOR.
Collapse
Affiliation(s)
- Ming-Qiang Zheng
- PET Center, Department of Diagnostic Radiology, Yale University, New Haven, Connecticut; and
| | - Su Jin Kim
- PET Center, Department of Diagnostic Radiology, Yale University, New Haven, Connecticut; and
| | - Daniel Holden
- PET Center, Department of Diagnostic Radiology, Yale University, New Haven, Connecticut; and
| | - Shu-fei Lin
- PET Center, Department of Diagnostic Radiology, Yale University, New Haven, Connecticut; and
| | - Anne Need
- Eli Lilly & Company, Indianapolis, Indiana
| | - Karen Rash
- Eli Lilly & Company, Indianapolis, Indiana
| | | | | | | | - Michael Kapinos
- PET Center, Department of Diagnostic Radiology, Yale University, New Haven, Connecticut; and
| | - Kathleen Maloney
- PET Center, Department of Diagnostic Radiology, Yale University, New Haven, Connecticut; and
| | - Jim Ropchan
- PET Center, Department of Diagnostic Radiology, Yale University, New Haven, Connecticut; and
| | - Richard E Carson
- PET Center, Department of Diagnostic Radiology, Yale University, New Haven, Connecticut; and
| | - Yiyun Huang
- PET Center, Department of Diagnostic Radiology, Yale University, New Haven, Connecticut; and
| |
Collapse
|
18
|
Deng A, Wu X, Zhou X, Zhang Y, Yin W, Qiao J, Zhu L. Mapping the target localization and biodistribution of non-radiolabeled VMAT2 ligands in rat brain. AAPS JOURNAL 2014; 16:592-9. [PMID: 24706374 DOI: 10.1208/s12248-014-9584-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/21/2014] [Indexed: 01/02/2023]
Abstract
Imaging targeting vesicular monoamine transporter (VMAT2) alterations is a sensitive tool for early diagnosis of Parkinson's disease. Our group has reported several novel 2-amino-DTBZ derivatives as potential VMAT2 imaging agents. The objective of this paper is to develop a non-radiolabeled methodology to screen the candidate compounds for accelerating the drug discovery process. 9-[(18)F]fluoropropyl-(+)-dihydrotetrabenazine ([(18)F]AV-133) is a PET imaging agent targeting VMAT2 binding sites in the brain. Nonradioactive AV-133 was injected (iv) into rats, at the end of the allotted time, the animals were killed and six regions of brain and plasma from each animal were processed for quantitative measurement of AV-133 by LC-MS/MS. These data were converted to the percentage injected dose per gram tissue weight (%ID/g tissue) and the brain target tissue to background ratios to allow direct comparison with data obtained by gamma counting of the injected radioactive [(18)F]AV-133. The %ID/g and the brain target tissue to background ratios calculated using the LC-MS/MS method were highly correlated to the values obtained by standard radioactivity measurements of [(18)F]AV-133. The pattern of AV-133 in rat brain was consistent with the known distribution of VMAT2. The concordance indicated that high-sensitivity LC-MS/MS is an indispensable tool in evaluating the quantity of administered chemical in tissue as part of the development of new molecular imaging probes. Furthermore, several novel 2-amino-DTBZ derivatives were detected using this methodology, and their biodistribution data in rat brain were obtained. The information about target engagements of candidates was provided.
Collapse
Affiliation(s)
- Aifang Deng
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
19
|
Rorick-Kehn LM, Witkin JM, Statnick MA, Eberle EL, McKinzie JH, Kahl SD, Forster BM, Wong CJ, Li X, Crile RS, Shaw DB, Sahr AE, Adams BL, Quimby SJ, Diaz N, Jimenez A, Pedregal C, Mitch CH, Knopp KL, Anderson WH, Cramer JW, McKinzie DL. LY2456302 is a novel, potent, orally-bioavailable small molecule kappa-selective antagonist with activity in animal models predictive of efficacy in mood and addictive disorders. Neuropharmacology 2014; 77:131-44. [DOI: 10.1016/j.neuropharm.2013.09.021] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 09/10/2013] [Accepted: 09/13/2013] [Indexed: 11/29/2022]
|
20
|
Nirogi R, Kandikere V, Jayarajan P, Bhyrapuneni G, Saralaya R, Muddana N, Abraham R. Aripiprazole in an animal model of chronic alcohol consumption and dopamine D₂ receptor occupancy in rats. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2014; 39:72-9. [PMID: 23421566 DOI: 10.3109/00952990.2012.730590] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Epidemiologic studies and clinical assessment of schizophrenic population have revealed a high incidence of overlap between schizophrenia and addictive disorders. OBJECTIVE The aim of the present investigation was to study the effect of aripiprazole in a preclinical animal model of chronic alcohol self-administration (CASA) and also to evaluate the influence of CASA on plasma pharmacokinetics and dopamine D₂ receptor (D₂R) occupancy in rats. METHODS The effect of oral administration of aripiprazole (1, 3, and 10 mg/kg) on 4% alcohol intake in CASA was studied for a period of 45 min after a post-dosing interval of 60 min. Brain penetration, pharmacokinetics, and D₂R occupancy of aripiprazole were evaluated in normal and CASA rats. RESULTS Aripiprazole reduced alcohol consumption in CASA rats by 13, 28, and 86% at 1, 3, and 10 mg/kg, respectively, and the effect reached statistical significance at 10 mg/kg (p < .01). At this behavioral effective dose, a decrease (75%) in total plasma apparent clearance and an increase in oral area under the concentration-time curve (3.98-fold) and bioavailability (3.50-fold) of aripiprazole was observed in CASA rats. Striatal D₂R occupancy and brain exposure of aripiprazole were significantly higher (∼twofold) in CASA rats when compared to normal rats (p < .01). CONCLUSION Chronic alcohol intake results in a significant increase in exposure of aripiprazole in plasma and brain and striatal D₂R occupancy. SCIENTIFIC SIGNIFICANCE Chronic alcohol intake would increase aripiprazole exposure, thus aripiprazole dose might have to be decreased (assuming this same phenomenon occurs in humans).
Collapse
Affiliation(s)
- Ramakrishna Nirogi
- Department of ADME, Discovery Research, Suven Life Sciences Ltd ., Hyderabad - 500055, India.
| | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Barth V, Need AB, Tzavara ET, Giros B, Overshiner C, Gleason SD, Wade M, Johansson AM, Perry K, Nomikos GG, Witkin JM. In vivo occupancy of dopamine D3 receptors by antagonists produces neurochemical and behavioral effects of potential relevance to attention-deficit-hyperactivity disorder. J Pharmacol Exp Ther 2013; 344:501-10. [PMID: 23197772 DOI: 10.1124/jpet.112.198895] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dopamine D(3) receptors have eluded definitive linkage to neurologic and psychiatric disorders since their cloning over 20 years ago. We report a new method that does not employ a radiolabel for simultaneously defining in vivo receptor occupancy of D(3) and D(2) receptors in rat brain after systemic dosing using the tracer epidepride (N-[[(2S)-1-ethylpyrrolidin-2-yl]methyl]-5-iodo-2,3-dimethoxybenzamide). Decreases in epidepride binding in lobule 9 of cerebellum (rich in D(3) receptors) were compared with nonspecific binding in the lateral cerebellum. The in vivo occupancy of the dopamine D(3) receptors was dose dependently increased by SB-277011A (trans-N-[4-[2-(6-cyano-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-4-quinolinecarboxamide) and U99194 (2,3-dihydro-5,6-dimethoxy- N,N-dipropyl-1H-inden-2-amine). Both antagonists increased extracellular levels of acetylcholine (ACh) in the medial prefrontal cortex of rats and modified brain-tissue levels of ACh and choline. Consistent with these findings, the D(3) receptor antagonists enhanced the acquisition of learning of rats either alone or in the presence of the norepinephrine uptake blocker reboxetine as with the attention-deficit-hyperactivity disorder (ADHD) drug methylphenidate. Like reboxetine, the D(3) receptor antagonists also prevented deficits induced by scopolamine in object recognition memory of rats. Mice in which the dopamine transporter (DAT) has been deleted exhibit hyperactivity that is normalized by compounds that are effective in the treatment of ADHD. Both D(3) receptor antagonists decreased the hyperactivity of DAT(-/-) mice without affecting the activity of wild type controls. The present findings indicate that dopamine D(3) receptor antagonists engender cognition-enhancing and hyperactivity-dampening effects. Thus, D(3) receptor blockade could be considered as a novel treatment approach for cognitive deficits and hyperactivity syndromes, including those observed in ADHD.
Collapse
Affiliation(s)
- V Barth
- Psychiatric Drug Discovery, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285-0501, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Nirogi R, Kandikere V, Bhyrapuneni G, Saralaya R, Ajjala DR, Aleti RR, Rasheed MA. In-vivo rat striatal 5-HT4 receptor occupancy using non-radiolabelled SB207145. J Pharm Pharmacol 2013; 65:704-12. [DOI: 10.1111/jphp.12030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 12/19/2012] [Indexed: 12/18/2022]
Abstract
Abstract
Objectives
The objective of the current investigation was to develop a simple, rapid method for determining in-vivo 5-hydroxytryptamine type 4 receptor (5-HT4R) occupancy in rat brain using non-radiolabelled SB207145 as a tracer for accelerating the drug discovery process.
Methods
In-vivo tracer optimization studies for tracer dose, survival intervals and brain distribution profile were carried out in rats. The tracer was pharmacologically validated using potent well-characterized 5-HT4R ligands. The brain regional concentrations of tracer (SB207145); plasma and brain concentrations of 5-HT4R ligands were quantified using high-performance liquid chromatography coupled with a tandem mass spectrometric detector (LC-MS/MS).
Key findings
SB207145 showed a higher specific binding in striatum (1.96 ng/g) and lower binding in cerebellum (0.66 ng/g), which is consistent with findings of other published 5-HT4R expression studies. Pretreatment with potent 5-HT4 ligands dose-dependently reduced striatal SB207145 concentration and the effective dose to achieve 50% receptor occupancy (ED50) values were 4.8, 2.0, 7.4, 9.9, 3.8 and 0.02 mg/kg for GR113808, piboserod, prucalopride, RS67333, TD8954 and PF04995274, respectively.
Conclusions
Results from the mass spectrometry approach to determine 5-HT4R occupancy in rat brain are comparable with those reported using radiolabelled scintillation spectroscopy methods. In conclusion, the LC-MS/MS characterization permits use of tracer at a preclinical stage in high-throughput fashion as well as characterization of target expression.
Collapse
Affiliation(s)
- Ramakrishna Nirogi
- Pharmacokinetics and Drug Metabolism, Suven Life Sciences Ltd, Hyderabad, India
- Department of Medicinal Chemistry, Discovery Research, Suven Life Sciences Ltd, Hyderabad, India
| | | | | | - Ramanatha Saralaya
- Pharmacokinetics and Drug Metabolism, Suven Life Sciences Ltd, Hyderabad, India
| | | | | | - Mohammed Abdul Rasheed
- Department of Medicinal Chemistry, Discovery Research, Suven Life Sciences Ltd, Hyderabad, India
| |
Collapse
|
24
|
Zheng MQ, Nabulsi N, Kim SJ, Tomasi G, Lin SF, Mitch C, Quimby S, Barth V, Rash K, Masters J, Navarro A, Seest E, Morris ED, Carson RE, Huang Y. Synthesis and evaluation of 11C-LY2795050 as a κ-opioid receptor antagonist radiotracer for PET imaging. J Nucl Med 2013; 54:455-63. [PMID: 23353688 DOI: 10.2967/jnumed.112.109512] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Kappa-opioid receptors (KOR) are believed to be involved in the pathophysiology of depression, anxiety disorders, drug abuse, and alcoholism. To date, only 1 tracer, the KOR agonist (11)C-GR103545, has been reported to be able to image KOR in primates. The goal of the present study was to synthesize the selective KOR antagonist (11)C-LY2795050 and evaluate its potential as a PET tracer to image KOR in vivo. METHODS The in vitro binding affinity of LY2795050 was measured in radioligand competition binding assays. Ex vivo experiments were conducted using microdosing of the unlabeled ligand in Sprague-Dawley rats and in wild-type and KOR knockout mice, to assess the ligand's potential as a tracer candidate. Imaging experiments with (11)C-LY2795050 in monkeys were performed on the Focus-220 scanner with arterial blood input function measurement. Binding parameters were determined with kinetic modeling analysis. RESULTS LY2795050 displays full antagonist activity and high binding affinity and selectivity for KOR. Microdosing studies in rodents and ex vivo analysis of tissue concentrations with liquid chromatography-tandem mass spectrometry identified LY2795050 as an appropriate tracer candidate able to provide specific binding signals in vivo. (11)C-LY2795050 was prepared in an average yield of 12% and greater than 99% radiochemical purity. In rhesus monkeys, (11)C-LY2795050 displayed a moderate rate of peripheral metabolism, with approximately 40% of parent compound remaining at 30 min after injection. In the brain, (11)C-LY2795050 displayed fast uptake kinetics (regional activity peak times of <20 min) and an uptake pattern consistent with the distribution of KOR in primates. Pretreatment with naloxone (1 mg/kg, intravenously) resulted in a uniform distribution of radioactivity. Further, specific binding of (11)C-LY2795050 was reduced by the selective KOR antagonist LY2456302 in a dose-dependent manner. CONCLUSION (11)C-LY2795050 displayed favorable pharmacokinetic properties and binding profiles in vivo and therefore is a suitable ligand for imaging the KOR in primates. This newly developed KOR antagonist tracer has since been advanced to PET imaging of KOR in humans and constitutes the first successful KOR antagonist radiotracer.
Collapse
Affiliation(s)
- Ming-Qiang Zheng
- PET Center, Department of Diagnostic Radiology, Yale University, New Haven, Connecticut; and
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Koh MT, Rosenzweig-Lipson S, Gallagher M. Selective GABA(A) α5 positive allosteric modulators improve cognitive function in aged rats with memory impairment. Neuropharmacology 2012; 64:145-52. [PMID: 22732440 DOI: 10.1016/j.neuropharm.2012.06.023] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 06/04/2012] [Accepted: 06/11/2012] [Indexed: 01/16/2023]
Abstract
A condition of excess activity in the hippocampal formation is observed in the aging brain and in conditions that confer additional risk during aging for Alzheimer's disease. Compounds that act as positive allosteric modulators at GABA(A) α5 receptors might be useful in targeting this condition because GABA(A) α5 receptors mediate tonic inhibition of principal neurons in the affected network. While agents to improve cognitive function in the past focused on inverse agonists, which are negative allosteric modulators at GABA(A) α5 receptors, research supporting that approach used only young animals and predated current evidence for excessive hippocampal activity in age-related conditions of cognitive impairment. Here, we used two compounds, Compound 44 [6,6-dimethyl-3-(3-hydroxypropyl)thio-1-(thiazol-2-yl)-6,7-dihydro-2-benzothiophen-4(5H)-one] and Compound 6 [methyl 3,5-diphenylpyridazine-4-carboxylate], with functional activity as potentiators of γ-aminobutyric acid at GABA(A) α5 receptors, to test their ability to improve hippocampal-dependent memory in aged rats with identified cognitive impairment. Improvement was obtained in aged rats across protocols differing in motivational and performance demands and across varying retention intervals. Significant memory improvement occurred after either intracereboventricular infusion with Compound 44 (100 μg) in a water maze task or systemic administration with Compound 6 (3 mg/kg) in a radial arm maze task. Furthermore, systemic administration improved behavioral performance at dosing shown to provide drug exposure in the brain and in vivo receptor occupancy in the hippocampus. These data suggest a novel approach to improve neural network function in clinical conditions of excess hippocampal activity. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
Affiliation(s)
- Ming Teng Koh
- Department of Psychological and Brain Sciences, Johns Hopkins University, Ames Hall, 3400 North Charles Street, Baltimore, MD 21218, USA.
| | | | | |
Collapse
|
26
|
Nirogi R, Kandikere V, Bhyrapuneni G, Saralaya R, Muddana N, Komarneni P. Methyllycaconitine: a non-radiolabeled ligand for mapping α7 neuronal nicotinic acetylcholine receptors - in vivo target localization and biodistribution in rat brain. J Pharmacol Toxicol Methods 2012; 66:22-8. [PMID: 22609758 DOI: 10.1016/j.vascn.2012.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Reduction of cerebral cortical and hippocampal α7 neuronal nicotinic acetylcholine receptor (nAChR) density was observed in the Alzheimer's disease (AD) and other neurodegenerative diseases. Mapping the subtypes of nAChRs with selective ligand by viable, quick and consistent method in preclinical drug discovery may lead to rapid development of more effective therapeutic agents. The objective of this study was to evaluate the use of methyllycaconitine (MLA) in non-radiolabeled form for mapping α7 nAChRs in rat brain. METHODS MLA pharmacokinetic and brain penetration properties were assessed in male Wistar rats. The tracer properties of MLA were evaluated in rat brain by dose and time dependent differential regional distribution studies. Target specificity was validated after blocking with potent α7 nAChR agonists ABBF, PNU282987 and nicotine. High performance liquid chromatography combined with triple quad mass spectral detector (LC-MS/MS) was used to measure the plasma and brain tissue concentrations of MLA. RESULTS MLA has shown rapid brain uptake followed by a 3-5 fold higher specific binding in regions containing the α7 nAChRs (hypothalamus - 1.60 ng/g), when compared to non-specific regions (striatum - 0.53 ng/g, hippocampus - 0.46 ng/g, midbrain - 0.37 ng/g, frontal cortex - 0.35 ng/g and cerebellum - 0.30 ng/g). Pretreatment with potent α7 nAChR agonists significantly blocked the MLA uptake in hypothalamus. The non-radiolabeled MLA binding to brain region was comparable with the α7 mRNA localization and receptor distribution reported for [(3)H] MLA in rat brain. DISCUSSION The rat pharmacokinetic, brain penetration and differential brain regional distribution features favor that MLA is suitable to use in preclinical stage for mapping α7 nAChRs. Hence, this approach can be employed as an essential tool for quicker development of novel selective ligand to map variation in the α7 receptor densities, as well as to evaluate potential new chemical entities targeting neurodegenerative diseases.
Collapse
Affiliation(s)
- Ramakrishna Nirogi
- Pharmacokinetics and Drug Metabolism, Discovery Research, Suven Life Sciences Ltd, Serene Chambers, Banjara Hills, Hyderabad 500034, India.
| | | | | | | | | | | |
Collapse
|
27
|
Hu E, Ma J, Biorn C, Lester-Zeiner D, Cho R, Rumfelt S, Kunz RK, Nixey T, Michelsen K, Miller S, Shi J, Wong J, Hill Della Puppa G, Able J, Talreja S, Hwang DR, Hitchcock SA, Porter A, Immke D, Allen JR, Treanor J, Chen H. Rapid identification of a novel small molecule phosphodiesterase 10A (PDE10A) tracer. J Med Chem 2012; 55:4776-87. [PMID: 22548439 DOI: 10.1021/jm3002372] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A radiolabeled tracer for imaging therapeutic targets in the brain is a valuable tool for lead optimization in CNS drug discovery and for dose selection in clinical development. We report the rapid identification of a novel phosphodiesterase 10A (PDE10A) tracer candidate using a LC-MS/MS technology. This structurally distinct PDE10A tracer, AMG-7980 (5), has been shown to have good uptake in the striatum (1.2% ID/g tissue), high specificity (striatum/thalamus ratio of 10), and saturable binding in vivo. The PDE10A affinity (K(D)) and PDE10A target density (B(max)) were determined to be 0.94 nM and 2.3 pmol/mg protein, respectively, using [(3)H]5 on rat striatum homogenate. Autoradiography on rat brain sections indicated that the tracer signal was consistent with known PDE10A expression pattern. The specific binding of [(3)H]5 to rat brain was blocked by another structurally distinct, published PDE10A inhibitor, MP-10. Lastly, our tracer was used to measure in vivo PDE10A target occupancy of a PDE10A inhibitor in rats using LC-MS/MS technology.
Collapse
Affiliation(s)
- Essa Hu
- Department of Small Molecule Chemistry, Amgen Inc. , One Amgen Center Drive, Thousand Oaks, California 91320-1799, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Nirogi R, Kandikere V, Bhyrapuneni G, Muddana N, Saralaya R, Ponnamaneni RK, Manoharan AK. In vivo receptor occupancy assay of histamine H3 receptor antagonist in rats using non-radiolabeled tracer. J Pharmacol Toxicol Methods 2012; 65:115-21. [DOI: 10.1016/j.vascn.2012.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 03/23/2012] [Accepted: 03/23/2012] [Indexed: 11/15/2022]
|
29
|
Nirogi R, Kandikere V, Bhyrapuneni G, Saralaya R, Muddana N, Ajjala DR. Rat thalamic α4β2 neuronal nicotinic acetylcholine receptor occupancy assay using LC–MS/MS. J Pharmacol Toxicol Methods 2012; 65:136-41. [DOI: 10.1016/j.vascn.2012.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 04/13/2012] [Accepted: 04/13/2012] [Indexed: 10/28/2022]
|
30
|
Mitch CH, Quimby SJ, Diaz N, Pedregal C, de la Torre MG, Jimenez A, Shi Q, Canada EJ, Kahl SD, Statnick MA, McKinzie DL, Benesh DR, Rash KS, Barth VN. Discovery of aminobenzyloxyarylamides as κ opioid receptor selective antagonists: application to preclinical development of a κ opioid receptor antagonist receptor occupancy tracer. J Med Chem 2011; 54:8000-12. [PMID: 21958337 DOI: 10.1021/jm200789r] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Arylphenylpyrrolidinylmethylphenoxybenzamides were found to have high affinity and selectivity for κ opioid receptors. On the basis of receptor binding assays in Chinese hamster ovary (CHO) cells expressing cloned human opioid receptors, (S)-3-fluoro-4-(4-((2-(3-fluorophenyl)pyrrolidin-1-yl)methyl)phenoxy)benzamide (25) had a K(i) = 0.565 nM for κ opioid receptor binding while having a K(i) = 35.8 nM for μ opioid receptors and a K(i) = 211 nM for δ opioid receptor binding. Compound 25 was also a potent antagonist of κ opioid receptors when tested in vitro using a [(35)S]-guanosine 5'O-[3-thiotriphosphate] ([(35)S]GTP-γ-S) functional assay in CHO cells expressing cloned human opioid receptors. Compounds were also evaluated for potential use as receptor occupancy tracers. Tracer evaluation was done in vivo, using liquid chromatography-tandem mass spectrometry (LC/MS/MS) methods, precluding the need for radiolabeling. (S)-3-Chloro-4-(4-((2-(pyridine-3-yl)pyrrolidin-1-yl)methyl)phenoxy)benzamide (18) was found to have favorable properties for a tracer for receptor occupancy, including good specific versus nonspecific binding and good brain uptake.
Collapse
Affiliation(s)
- Charles H Mitch
- Lilly Research Laboratories, Lilly Corporate Center, Eli Lilly and Company, Indianapolis, Indiana 46285-0150, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Measurement of the pharmacokinetics and pharmacodynamics of neuroactive compounds. Neurobiol Dis 2010; 37:38-47. [DOI: 10.1016/j.nbd.2009.09.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 09/29/2009] [Accepted: 09/30/2009] [Indexed: 11/24/2022] Open
|
32
|
Grimwood S, Hartig PR. Target site occupancy: Emerging generalizations from clinical and preclinical studies. Pharmacol Ther 2009; 122:281-301. [DOI: 10.1016/j.pharmthera.2009.03.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 03/04/2009] [Indexed: 01/17/2023]
|
33
|
Abstract
Neuroimaging, particularly that of neuroreceptor radioisotope and functional magnetic resonance imaging (fMRI), has played a fundamental role in neuropharmacology and neurophysiology. Because of the unique and pioneering role, especially of the radiolabeling of central nervous system (CNS) drugs for receptor and neurotransmitter system imaging, there is an increasingly major role to aid in CNS drug development. One component is providing evidence for proof of concept of the target for which candidate drugs are being tested for receptor occupancy mechanism of action and ultimately rational drug dosing. There is also a role for other areas of neuroimaging, including fMRI and magnetic resonance spectroscopy in other magnetic resonance-based techniques that, together with radioisotope imaging, represent 'CNS molecular imaging.' The role of these approaches and a review of the recent advances in such neuroimaging for proof-of-concept studies is the subject for this paper. Moreover, hypothetical examples and possible algorithms for early discovery/phase I development using neuroimaging provide specific working approaches. In summary, this article reviews the vital biomarker approach of neuroimaging in proof of concept studies.
Collapse
|
34
|
Abstract
This paper is the thirtieth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2007 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd.,Flushing, NY 11367, United States.
| |
Collapse
|