1
|
KUBOHARA YUZURU. Research on a Minor Organism can also be Benefit the World: The Fascinating Cellular Slime Mold Dictyostelium discoideum. JUNTENDO IJI ZASSHI = JUNTENDO MEDICAL JOURNAL 2024; 70:339-347. [PMID: 39545231 PMCID: PMC11560335 DOI: 10.14789/jmj.jmj24-0021-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 11/17/2024]
Abstract
In 1985, when I entered the Graduate School of Science at Kyoto University, I began my research on cellular slime molds, a group of soil microorganisms. The cellular slime mold Dictyostelium discoideum is studied globally as a model organism for cell and developmental biology. I was conducting basic biological research into cell differentiation and migration using D. discoideum, and during this process, our research group made a discovery with potential implications for drug development. Specifically, we found that a chlorinated polyketide named differentiation-inducing factor 1 (DIF-1), derived from D. discoideum, exhibits antitumor activity. Based on this discovery, I began elucidating the mechanism of the antitumor action of DIF-1 and developing anticancer drugs using DIF-1 as a lead compound. During this period, in 1991, I obtained my Ph.D. in research related to D. discoideum cell differentiation, and subsequently served as a Japan Society for the Promotion of Science (JSPS) Special Research Fellow before joining the Institute for Molecular and Cellular Regulation (IMCR) at Gunma University in 1993. I then joined the Graduate School of Health and Sports Sciences at Juntendo University in 2015, where I have been until 2024. Throughout this period, I continued my research on DIF-1 and discovered that DIF-1 and its derivatives possess various biological activities ─ such as anti-diabetic, immunoregulatory, anti-bacterial, and anti-malarial activities ─ that could be applicable in drug development. In this review, I aim to present a segment of both our fundamental and applied research on D. discoideum and DIF-1.
Collapse
Affiliation(s)
- YUZURU KUBOHARA
- Corresponding author: Yuzuru Kubohara, Laboratory of Health and Life Science, Juntendo University Graduate School of Health and Sports Science, 1-1 Hiraka-gakuendai, Inzai-shi, Chiba 270-1695, Japan, TEL: +81-476-98-1001 FAX: +81-476-98-1011 E-mail:
| |
Collapse
|
2
|
Arioka M, Miura K, Han R, Igawa K, Takahashi-Yanaga F, Sasaguri T. Mammalian target of differentiation-inducing factor-1 is mitochondrial malate dehydrogenase for activation of AMP-activated protein kinase and induction of mitochondrial fission. Life Sci 2024; 351:122807. [PMID: 38852800 DOI: 10.1016/j.lfs.2024.122807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
AIMS Differentiation-inducing factor-1 (DIF-1) is a polyketide produced by Dictyostelium discoideum that inhibits growth and migration, while promoting the differentiation of Dictyostelium stalk cells through unknown mechanisms. DIF-1 localizes in stalk mitochondria. In addition to its effect on Dictyostelium, DIF-1 also inhibits growth and migration, and induces mitochondrial fission followed by mitophagy in mammalian cells, at least in part by activating AMP-activated protein kinase (AMPK). In a previous study, we found that DIF-1 binds to mitochondrial malate dehydrogenase (MDH2) and inhibits its activity in HeLa cells. In the present study, we investigated whether MDH2 serves as a pharmacological target of DIF-1 in mammalian cells. MAIN METHODS To examine the enzymatic activity of MDH, mitochondrial morphology, and molecular mechanisms of DIF-1 action, we conducted an MDH reverse reaction assay, immunofluorescence staining, western blotting, and RNA interference using mammalian cells such as human umbilical vein endothelial cells, human cervical cancer cells, mouse endothelial cells, and mouse breast cancer cells. KEY FINDINGS DIF-1 inhibited mitochondrial but not cytoplasmic MDH activity. Similar to DIF-1, LW6, an authentic MDH2 inhibitor, induced phosphorylation of AMPK, resulting in the phosphorylation of acetyl-CoA carboxylase (ACC) and the dephosphorylation of p70 S6 kinase with approximately the same potency. DIF-1 and LW6 induced mitochondrial fission. Furthermore, MDH2 knockdown using siRNA reproduced the DIF-1 action on the AMPK signaling and mitochondrial morphology. Conversely, an AMPK inhibitor prevented DIF-1-induced mitochondrial fission. SIGNIFICANCE We propose that MDH2 is a mammalian target of DIF-1 for the activation of AMPK and induction of mitochondrial fission.
Collapse
Affiliation(s)
- Masaki Arioka
- Department of Pharmacology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan; Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Koichi Miura
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ruzhe Han
- Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazunobu Igawa
- Department of Chemistry, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan.
| | - Fumi Takahashi-Yanaga
- Department of Pharmacology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan.
| | - Toshiyuki Sasaguri
- Department of Pharmacology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan; Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
3
|
Kubohara Y, Fukunaga Y, Kikuchi H, Kuwayama H. Pharmacological Evidence That Dictyostelium Differentiation-Inducing Factor 1 Promotes Glucose Uptake Partly via an Increase in Intracellular cAMP Content in Mouse 3T3-L1 Cells. Molecules 2023; 28:7926. [PMID: 38067655 PMCID: PMC10708055 DOI: 10.3390/molecules28237926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/22/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
Differentiation-inducing factor 1 (DIF-1) isolated from the cellular slime mold Dictyostelium discoideum can inhibit mammalian calmodulin-dependent cAMP/cGMP phosphodiesterase (PDE1) in vitro. DIF-1 also promotes glucose uptake, at least in part, via a mitochondria- and AMPK-dependent pathway in mouse 3T3-L1 fibroblast cells, but the mechanism underlying this effect has not been fully elucidated. In this study, we investigated the effects of DIF-1 on intracellular cAMP and cGMP levels, as well as the effects that DIF-1 and several compounds that increase cAMP and cGMP levels have on glucose uptake in confluent 3T3-L1 cells. DIF-1 at 20 μM (a concentration that promotes glucose uptake) increased the level of intracellular cAMP by about 20% but did not affect the level of intracellular cGMP. Neither the PDE1 inhibitor 8-methoxymethyl-3-isobutyl-1-methylxanthine at 10-200 μM nor the broad-range PDE inhibitor 3-isobutyl-1-methylxanthine at 40-400 μM had any marked effects on glucose uptake. The membrane-permeable cAMP analog 8-bromo-cAMP at 200-1000 μM significantly promoted glucose uptake (by 20-25%), whereas the membrane-permeable cGMP analog 8-bromo-cGMP at 3-100 μM did not affect glucose uptake. The adenylate cyclase activator forskolin at 1-10 μM promoted glucose uptake by 20-30%. Thus, DIF-1 may promote glucose uptake by 3T3-L1 cells, at least in part, via an increase in intracellular cAMP level.
Collapse
Affiliation(s)
- Yuzuru Kubohara
- Laboratory of Health and Life Science, Graduate School of Health and Sports Science, Juntendo University, Inzai 270-1695, Japan
| | - Yuko Fukunaga
- Department of Animal Risk Management, Faculty of Risk and Crisis Management, Chiba Institute of Science, Choshi 288-0025, Japan;
| | - Haruhisa Kikuchi
- Division of Natural Medicines, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan;
| | - Hidekazu Kuwayama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan;
| |
Collapse
|
4
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
5
|
Kubohara Y, Homma Y, Shibata H, Oshima Y, Kikuchi H. Dictyostelium Differentiation-Inducing Factor-1 Promotes Glucose Uptake, at Least in Part, via an AMPK-Dependent Pathway in Mouse 3T3-L1 Cells. Int J Mol Sci 2021; 22:2293. [PMID: 33669058 PMCID: PMC7956221 DOI: 10.3390/ijms22052293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 11/16/2022] Open
Abstract
Differentiation-inducing factor-1 (DIF-1) is a chlorinated alkylphenone (a polyketide) found in the cellular slime mold Dictyostelium discoideum. DIF-1 and its derivative, DIF-1(3M) promote glucose consumption in vitro in mammalian cells and in vivo in diabetic rats; they are expected to be the leading antiobesity and antidiabetes compounds. In this study, we investigated the mechanisms underlying the actions of DIF-1 and DIF-1(3M). In isolated mouse liver mitochondria, these compounds at 2-20 μM promoted oxygen consumption in a dose-dependent manner, suggesting that they act as mitochondrial uncouplers, whereas CP-DIF-1 (another derivative of DIF-1) at 10-20 μM had no effect. In confluent mouse 3T3-L1 fibroblasts, DIF-1 and DIF-1(3M) but not CP-DIF-1 induced phosphorylation (and therefore activation) of AMP kinase (AMPK) and promoted glucose consumption and metabolism. The DIF-induced glucose consumption was reduced by compound C (an AMPK inhibitor) or AMPK knock down. These data suggest that DIF-1 and DIF-1(3M) promote glucose uptake, at least in part, via an AMPK-dependent pathway in 3T3-L1 cells, whereas cellular metabolome analysis revealed that DIF-1 and DIF-1(3M) may act differently at least in part.
Collapse
Affiliation(s)
- Yuzuru Kubohara
- Laboratory of Health and Life Science, Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba 270-1695, Japan
| | - Yoshimi Homma
- Department of Biomolecular Science, Institute of Biomedical Sciences, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan;
| | - Hiroshi Shibata
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan;
| | - Yoshiteru Oshima
- Laboratory of Natural Product Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan; (Y.O.); (H.K.)
| | - Haruhisa Kikuchi
- Laboratory of Natural Product Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan; (Y.O.); (H.K.)
| |
Collapse
|
6
|
Antimicrobial Activities of Dictyostelium Differentiation-Inducing Factors and Their Derivatives. Biomolecules 2019; 9:biom9050163. [PMID: 31035614 PMCID: PMC6571789 DOI: 10.3390/biom9050163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 01/22/2023] Open
Abstract
At the end of its life cycle, the cellular slime mold Dictyostelium discoideum forms a fruiting body consisting of spores and a multicellular stalk. Originally, the chlorinated alkylphenone differentiation-inducing factors (DIFs) -1 and -3 were isolated as stalk cell inducers in D. discoideum. Later, DIFs and their derivatives were shown to possess several biologic activities including antitumor and anti-Trypanosoma properties. In this study, we examined the antibacterial activities of approximately 30 DIF derivatives by using several bacterial species. Several of the DIF derivatives strongly suppressed the growth of the Gram-positive bacteria Staphylococcus aureus, Bacillus subtilis, and Enterococcus faecalis and Enterococcus faecium, at minimum inhibitory concentrations (MICs) in the sub-micromolar to low-micromolar range. In contrast, none of the DIF derivatives evaluated had any noteworthy effect on the growth of the Gram-negative bacterium Escherichia coli (MIC, >100 µM). Most importantly, several of the DIF derivatives strongly inhibited the growth of methicillin-resistant S. aureus and vancomycin-resistant E. faecalis and E. faecium. Transmission electron microscopy revealed that treatment with DIF derivatives led to the formation of distinct multilayered structures consisting of cell wall or plasma membrane in S. aureus. The present results suggest that DIF derivatives are good lead compounds for developing novel antimicrobials.
Collapse
|
7
|
Kubohara Y, Kikuchi H. Dictyostelium: An Important Source of Structural and Functional Diversity in Drug Discovery. Cells 2018; 8:E6. [PMID: 30583484 PMCID: PMC6356392 DOI: 10.3390/cells8010006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
The cellular slime mold Dictyostelium discoideum is an excellent model organism for the study of cell and developmental biology because of its simple life cycle and ease of use. Recent findings suggest that Dictyostelium and possibly other genera of cellular slime molds, are potential sources of novel lead compounds for pharmacological and medical research. In this review, we present supporting evidence that cellular slime molds are an untapped source of lead compounds by examining the discovery and functions of polyketide differentiation-inducing factor-1, a compound that was originally isolated as an inducer of stalk-cell differentiation in D. discoideum and, together with its derivatives, is now a promising lead compound for drug discovery in several areas. We also review other novel compounds, including secondary metabolites, that have been isolated from cellular slime molds.
Collapse
Affiliation(s)
- Yuzuru Kubohara
- Laboratory of Health and Life Science, Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba 270-1695, Japan.
| | - Haruhisa Kikuchi
- Laboratory of Natural Product Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
8
|
Takahashi K, Kikuchi H, Nguyen VH, Oshima Y, Ishigaki H, Nakajima-Shimada J, Kubohara Y. Biological Activities of Novel Derivatives of Differentiation-Inducing Factor 3 from Dictyostelium discoideum. Biol Pharm Bull 2018; 40:1941-1947. [PMID: 29093342 DOI: 10.1248/bpb.b17-00484] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Differentiation-inducing factor-3 (DIF-3; 1-(3-chloro-2,6-dihydroxy-4-methoxyphenyl)hexan-1-one), which is found in the cellular slime mold Dictyostelium discoideum, is a potential candidate compound for the development of new medicines; DIF-3 and its derivatives possess several beneficial biological activities, including anti-tumor, anti-Trypanosoma cruzi, and immunoregulatory effects. To assess the relationship between the biological activities of DIF-3 and its chemical structure, particularly in regard to its alkoxy group and the length of the alkyl chains at the acyl group, we synthesized two derivatives of DIF-3, 1-(3-chloro-2,6-dihydroxy-4-methoxyphenyl)octan-1-one (DIF-3(+3)) and 1-(3-chloro-2,6-dihydroxy-4-butoxyphenyl)-hexan-1-one (Hex-DIF-3), and investigated their biological activities in vitro. At micro-molar levels, DIF-3(+3) and Hex-DIF-3 exhibited strong anti-proliferative effects in tumor cell cultures, but their anti-T. cruzi activities at 1 µM in vitro were not as strong as those of other known DIF derivatives. In addition, Hex-DIF-3 at 5 µM significantly suppressed mitogen-induced interleukin-2 production in vitro in Jurkat T cells. These results suggest that DIF-3(+3) and Hex-DIF-3 are promising leads for the development of anti-cancer and immunosuppressive agents.
Collapse
Affiliation(s)
- Katsunori Takahashi
- Department of Medical Technology, Faculty of Health Science, Gunma Paz College
| | - Haruhisa Kikuchi
- Laboratory of Natural Product Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Van Hai Nguyen
- Laboratory of Natural Product Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Yoshiteru Oshima
- Laboratory of Natural Product Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University
| | - Hirotaka Ishigaki
- Department of Medical Technology, Faculty of Health Science, Gunma Paz College
| | - Junko Nakajima-Shimada
- Department of Molecular and Cellular Parasitology, Graduate School of Health Sciences, Gunma University
| | - Yuzuru Kubohara
- Laboratory of Health and Life Science, Graduate School of Heath and Sports Science, Juntendo University
| |
Collapse
|
9
|
Kawaharada R, Nakamura A, Takahashi K, Kikuchi H, Oshima Y, Kubohara Y. Oral administration of Dictyostelium differentiation-inducing factor 1 lowers blood glucose levels in streptozotocin-induced diabetic rats. Life Sci 2016; 155:56-62. [PMID: 27131631 DOI: 10.1016/j.lfs.2016.04.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/18/2016] [Accepted: 04/26/2016] [Indexed: 11/15/2022]
Abstract
AIMS Differentiation-inducing factor 1 (DIF-1), originally discovered in the cellular slime mold Dictyostelium discoideum, and its derivatives possess pharmacological activities, such as the promotion of glucose uptake in non-transformed mammalian cells in vitro. Accordingly, DIFs are considered promising lead candidates for novel anti-diabetic drugs. The aim of this study was to assess the anti-diabetic and toxic effects of DIF-1 in mouse 3T3-L1 fibroblast cells in vitro and in diabetic rats in vivo. Main methods We investigated the in vitro effects of DIF-1 and DIF-1(3M), a derivative of DIF-1, on glucose metabolism in 3T3-L1 cells by using capillary electrophoresis time-of-flight mass spectrometry (CE-TOF-MS). We also examined the effects of DIF-1 on blood glucose levels in streptozotocin (STZ)-induced rats. KEY FINDINGS CE-TOF-MS revealed that 20μM DIF-1 and 20μM DIF-1(3M) promoted glucose uptake and metabolism in 3T3-L1 cells. Oral administration of DIF-1 (30mg/kg) significantly lowered basal blood glucose levels in STZ-treated rats and promoted a decrease in blood glucose levels after oral glucose loading (2.5g/kg) in the rats. In addition, daily oral administration of DIF-1 (30mg/kg/day) for 1wk significantly lowered the blood glucose levels in STZ-treated rats but did not affect their body weight and caused only minor alterations in the levels of other blood analytes. SIGNIFICANCE These results indicate that DIF-1 may be a good lead compound for the development of anti-diabetic drugs.
Collapse
Affiliation(s)
- Ritsuko Kawaharada
- Department of Health and Nutrition, Faculty of Health and Welfare, Takasaki University of Health and Welfare, Takasaki 370-0033, Japan
| | - Akio Nakamura
- Department of Molecular Pharmacology and Oncology, Gunma University School of Medicine, Maebashi 371-8515, Japan
| | - Katsunori Takahashi
- Department of Medical Technology, Faculty of Health Science, Gunma Paz College, Takasaki 370-0006, Japan
| | - Haruhisa Kikuchi
- Laboratory of Natural Product Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yoshiteru Oshima
- Laboratory of Natural Product Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yuzuru Kubohara
- Department of Molecular and Cellular Biology, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan; Department of Health Science, Graduate School of Health and Sports Science, Juntendo University, Inzai City 270-1695, Japan.
| |
Collapse
|
10
|
Lee TY, Lin HH, Chen CL, Hwang SM, Tseng CP. Inhibitory Effect of Excessive Glucose on Its Biochemical Pathway and the Growth of Chinese Hamster Ovary (CHO) Cells. J Carbohydr Chem 2015. [DOI: 10.1080/07328303.2014.977908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Kikuchi H, Kubohara Y, Nguyen VH, Katou Y, Oshima Y. Novel chlorinated dibenzofurans isolated from the cellular slime mold, Polysphondylium filamentosum, and their biological activities. Bioorg Med Chem 2013; 21:4628-33. [PMID: 23746784 DOI: 10.1016/j.bmc.2013.05.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/11/2013] [Accepted: 05/14/2013] [Indexed: 11/30/2022]
Abstract
Cellular slime molds are expected to have the huge potential for producing secondary metabolites including polyketides, and we have studied the diversity of secondary metabolites of cellular slime molds for their potential utilization as new biological resources for natural product chemistry. From the methanol extract of fruiting bodies of Polysphondylium filamentosum, we obtained new chlorinated benzofurans Pf-1 (4) and Pf-2 (5) which display multiple biological activities; these include stalk cell differentiation-inducing activity in the well-studied cellular slime mold, Dictyostelium discoideum, and inhibitory activities on cell proliferation in mammalian cells and gene expression in Drosophila melanogaster.
Collapse
Affiliation(s)
- Haruhisa Kikuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-yama, Aoba-ku, Sendai 980-8578, Japan.
| | | | | | | | | |
Collapse
|
12
|
Derivatives of Dictyostelium discoideum differentiation-inducing factor-3 suppress the activities of Trypanosoma cruzi in vitro and in vivo. Biochem Pharmacol 2013; 85:1603-10. [PMID: 23511088 DOI: 10.1016/j.bcp.2013.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/05/2013] [Accepted: 03/06/2013] [Indexed: 11/21/2022]
Abstract
Chagas disease (human American trypanosomiasis), which is caused by the protozoan parasite Trypanosoma cruzi, is responsible for numerous deaths each year; however, established treatments for the disease are limited. Differentiation-inducing factor-1 (DIF-1) and DIF-3 are chlorinated alkylphenones originally found in the cellular slime mold Dictyostelium discoideum that have been shown to possess pharmacological activities. Here, we investigated the effects of DIF-3 derivatives on the infection rate and growth of T. cruzi by using an in vitro assay system utilizing host human fibrosarcoma HT1080 cells. Certain DIF-3 derivatives, such as butoxy-DIF-3 (Bu-DIF-3), at micro-molar levels strongly suppressed both the infection rate and growth of T. cruzi in HT1080 cells and exhibited little toxicity for HT1080 cells. For example, the IC50 of DIF-3 and Bu-DIF-3 versus the growth of T. cruzi in HT1080 cells were 3.95 and 0.72μM, respectively, and the LD50 of the two compounds versus HT1080 cells were both greater than 100μM. We also examined the effects of DIF-3 and Bu-DIF-3 on T. cruzi activity in C57BL/6 mice. Intraperitoneally administered Bu-DIF-3 (50mg/kg) significantly suppressed the number of trypomastigotes in blood with no apparent adverse effects. These results strongly suggest that DIF-3 derivatives could be new lead compounds in the development of anti-trypanosomiasis drugs.
Collapse
|
13
|
Isolation, synthesis, and biological activity of biphenyl and m-terphenyl-type compounds from Dictyostelium cellular slime molds. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.08.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Takahashi K, Murakami M, Kikuchi H, Oshima Y, Kubohara Y. Derivatives of Dictyostelium differentiation-inducing factors promote mitogen-activated IL-2 production via AP-1 in Jurkat cells. Life Sci 2011; 88:480-5. [PMID: 21238462 DOI: 10.1016/j.lfs.2011.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 12/08/2010] [Accepted: 12/23/2010] [Indexed: 01/05/2023]
Abstract
AIMS Differentiation-inducing factors (DIFs) are chlorinated alkylphenones found in the cellular slime mold Dictyostelium discoideum. DIF derivatives exhibit antiproliferative activities and promote glucose consumption in mammalian cells in vitro. Here, we assessed the ability of DIFs to regulate the immune system in a mammalian cell-line and investigated their mechanisms of action. MAIN METHODS We examined the effects of 30 DIF derivatives on concanavalin A-induced interleukin-2 (IL-2) production (CIIP) in Jurkat T-cells. We also examined the effects of these DIF derivatives on the activity of three transcription factors required for CIIP: namely, activator protein-1 (AP-1), nuclear factor of activated T-cells (NFAT), and nuclear factor kappa B (NFκB). KEY FINDINGS A reporter gene assay suggested that 2 DIF derivatives, termed DIF-1(+1) and DIF-3(3M), significantly promoted CIIP in Jurkat cells, at least in part, by enhancing the activity of AP-1. These 2 DIF derivatives had no significant effect on concanavalin A-induced interferon-γ production. SIGNIFICANCE The results suggest that DIF derivatives could be developed as novel drugs for the activation of IL-2 production and resultant stimulation of the immune system.
Collapse
Affiliation(s)
- Katsunori Takahashi
- Department of Clinical Laboratory, Gunma University School of Medicine, Maebashi 371-8511, Japan
| | | | | | | | | |
Collapse
|
15
|
Novel prenylated and geranylated aromatic compounds isolated from Polysphondylium cellular slime molds. Tetrahedron 2010. [DOI: 10.1016/j.tet.2010.06.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
16
|
Takahashi K, Murakami M, Hosaka K, Kikuchi H, Oshima Y, Kubohara Y. Regulation of IL-2 production in Jurkat cells by Dictyostelium-derived factors. Life Sci 2009; 85:438-43. [DOI: 10.1016/j.lfs.2009.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 07/11/2009] [Accepted: 07/14/2009] [Indexed: 10/20/2022]
|