1
|
Mir FA, Abdesselem HB, Cyprian F, Iskandarani A, Doudin A, Shraim MA, Alkhalaf BM, Alkasem M, Abdalhakam I, Bensmail I, Al Halabi HA, Taheri S, Abou-Samra AB. Metabolically Healthy Obesity Is Characterized by a Distinct Proteome Signature. Int J Mol Sci 2025; 26:2262. [PMID: 40076884 PMCID: PMC11901089 DOI: 10.3390/ijms26052262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 03/14/2025] Open
Abstract
Obesity is commonly associated with metabolic diseases including type 2 diabetes, hypertension, and dyslipidemia. Moreover, individuals with obesity are at increased risk of cardiovascular disease. However, a subgroup of individuals within the obese population presents without concurrent metabolic disorders. Even though this group has a stable metabolic status and does not exhibit overt metabolic disease, this status may be transient; these individuals may have subclinical metabolic derangements. To investigate the latter hypothesis, an analysis of the proteome signature was conducted. Plasma samples from 27 subjects with obesity but without an associated metabolic disorder (obesity only (OBO)) and 15 lean healthy control (LHC) subjects were examined. Fasting samples were subjected to Olink proteomics analysis targeting 184 proteins enriched in cardiometabolic and inflammation pathways. Our results distinctly delineated two groups with distinct plasma protein expression profiles. Specifically, a total of 24 proteins were differentially expressed in individuals with obesity compared to LHC. Among these, 13 proteins were downregulated, whereas 11 proteins were upregulated. The pathways that were upregulated in the OBO group were related to chemoattractant activity, growth factor activity, G protein-coupled receptor binding, chemokine activity, and cytokine activity, whereas the pathways that were downregulated include regulation of T cell differentiation, leukocyte differentiation, reproductive system development, inflammatory response, neutrophil, lymphocyte, monocyte and leukocyte chemotaxis, and neutrophil migration. The study identifies several pathways that are altered in individuals with obesity compared to healthy control subjects. These findings provide valuable insights into the underlying mechanisms, potentially paving the way for the identification of therapeutic targets aimed at improving metabolic health in individuals with obesity.
Collapse
Affiliation(s)
- Fayaz Ahmad Mir
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha P.O. Box 3010, Qatar; (A.I.); (B.M.A.); (I.A.); (H.A.A.H.); (A.-B.A.-S.)
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Houari B. Abdesselem
- Proteomics Core Facility, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Farhan Cyprian
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Ahmad Iskandarani
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha P.O. Box 3010, Qatar; (A.I.); (B.M.A.); (I.A.); (H.A.A.H.); (A.-B.A.-S.)
| | - Asmma Doudin
- Laboratory of Immunoregulation, Research Department, Sidra Medicine, Doha P.O. Box 26999, Qatar;
| | - Mutasem AbdelRahim Shraim
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha P.O. Box 3010, Qatar; (A.I.); (B.M.A.); (I.A.); (H.A.A.H.); (A.-B.A.-S.)
| | - Bader M. Alkhalaf
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha P.O. Box 3010, Qatar; (A.I.); (B.M.A.); (I.A.); (H.A.A.H.); (A.-B.A.-S.)
| | - Meis Alkasem
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha P.O. Box 3010, Qatar; (A.I.); (B.M.A.); (I.A.); (H.A.A.H.); (A.-B.A.-S.)
| | - Ibrahem Abdalhakam
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha P.O. Box 3010, Qatar; (A.I.); (B.M.A.); (I.A.); (H.A.A.H.); (A.-B.A.-S.)
| | - Ilham Bensmail
- Proteomics Core Facility, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Hamza A. Al Halabi
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha P.O. Box 3010, Qatar; (A.I.); (B.M.A.); (I.A.); (H.A.A.H.); (A.-B.A.-S.)
| | - Shahrad Taheri
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha P.O. Box 3010, Qatar; (A.I.); (B.M.A.); (I.A.); (H.A.A.H.); (A.-B.A.-S.)
- National Obesity Treatment Center, Hamad Medical Corporation, Doha P.O. Box 3010, Qatar
- Weil Cornell Medicine—Qatar, Doha P.O. Box 24144, Qatar
| | - Abdul-Badi Abou-Samra
- Qatar Metabolic Institute, Academic Health System, Hamad Medical Corporation, Doha P.O. Box 3010, Qatar; (A.I.); (B.M.A.); (I.A.); (H.A.A.H.); (A.-B.A.-S.)
- National Obesity Treatment Center, Hamad Medical Corporation, Doha P.O. Box 3010, Qatar
- Weil Cornell Medicine—Qatar, Doha P.O. Box 24144, Qatar
| |
Collapse
|
2
|
Kuban W, Haduch A, Bromek E, Basińska-Ziobroń A, Gawlińska K, Gawliński D, Filip M, Daniel WA. The Effect of Maternal High-Fat or High-Carbohydrate Diet during Pregnancy and Lactation on Cytochrome P450 2D (CYP2D) in the Liver and Brain of Rat Offspring. Int J Mol Sci 2024; 25:7904. [PMID: 39063146 PMCID: PMC11276948 DOI: 10.3390/ijms25147904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Cytochrome P450 2D (CYP2D) is important in psychopharmacology as it is engaged in the metabolism of drugs, neurosteroids and neurotransmitters. An unbalanced maternal diet during pregnancy and lactation can cause neurodevelopmental abnormalities and increases the offspring's predisposition to neuropsychiatric diseases. The aim of the present study was to evaluate the effect of maternal modified types of diet: a high-fat diet (HFD) and high-carbohydrate diet (HCD) during pregnancy and lactation on CYP2D in the liver and brain of male offspring at 28 (adolescent) or 63 postnatal days (young adult). The CYP2D activity and protein level were measured in the liver microsomes and the levels of mRNAs of CYP2D1, 2D2 and 2D4 were investigated both in the liver and brain. In the liver, both HFD and HCD increased the mRNA levels of all the three investigated CYP2D genes in adolescents, but an opposite effect was observed in young adults. The CYP2D protein level increased in adolescents but not in young adults. In contrast, young adults showed significantly decreased CYP2D activity. Similar effect of HFD on the CYP2D mRNAs was observed in the prefrontal cortex, while the effect of HCD was largely different than in the liver (the CYP2D2 expression was not affected, the CYP2D4 expression was decreased in young adults). In conclusion, modified maternal diets influence the expression of individual CYP2D1, CYP2D2 and CYP2D4 genes in the liver and brain of male offspring, which may affect the metabolism of CYP2D endogenous substrates and drugs and alter susceptibility to brain diseases and pharmacotherapy outcome.
Collapse
Affiliation(s)
- Wojciech Kuban
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland; (W.K.); (A.H.); (E.B.); (A.B.-Z.)
| | - Anna Haduch
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland; (W.K.); (A.H.); (E.B.); (A.B.-Z.)
| | - Ewa Bromek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland; (W.K.); (A.H.); (E.B.); (A.B.-Z.)
| | - Agnieszka Basińska-Ziobroń
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland; (W.K.); (A.H.); (E.B.); (A.B.-Z.)
| | - Kinga Gawlińska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland; (K.G.); (D.G.); (M.F.)
| | - Dawid Gawliński
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland; (K.G.); (D.G.); (M.F.)
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland; (K.G.); (D.G.); (M.F.)
| | - Władysława A. Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland; (W.K.); (A.H.); (E.B.); (A.B.-Z.)
| |
Collapse
|
3
|
Zhang J, Huang Y, Li H, Xu P, Liu Q, Sun Y, Zhang Z, Wu T, Tang Q, Jia Q, Xia Y, Xu Y, Jing X, Li J, Mo L, Xie W, Qu A, He J, Li Y. B3galt5 functions as a PXR target gene and regulates obesity and insulin resistance by maintaining intestinal integrity. Nat Commun 2024; 15:5919. [PMID: 39004626 PMCID: PMC11247088 DOI: 10.1038/s41467-024-50198-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Pregnane X receptor (PXR) has been reported to regulate glycolipid metabolism. The dysfunction of intestinal barrier contributes to metabolic disorders. However, the role of intestinal PXR in metabolic diseases remains largely unknown. Here, we show that activation of PXR by tributyl citrate (TBC), an intestinal-selective PXR agonist, improves high fat diet (HFD)-induced obesity. The metabolic benefit of intestinal PXR activation is associated with upregulation of β-1,3 galactosyltransferase 5 (B3galt5). Our results reveal that B3galt5 mainly expresses in the intestine and is a direct PXR transcriptional target. B3galt5 knockout exacerbates HFD-induced obesity, insulin resistance and inflammation. Mechanistically, B3galt5 is essential to maintain the integrity of intestinal mucus barrier. B3galt5 ablation impairs the O-glycosylation of mucin2, destabilizes the mucus layer, and increases intestinal permeability. Furthermore, B3galt5 deficiency abolishes the beneficial effect of intestinal PXR activation on metabolic disorders. Our results suggest the intestinal-selective PXR activation regulates B3galt5 expression and maintains metabolic homeostasis, making it a potential therapeutic strategy in obesity.
Collapse
Affiliation(s)
- Jinhang Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ya Huang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Department of Pharmacy, GuiQian International General Hospital, Guiyang, China
| | - Hong Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Pengfei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qinhui Liu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yang Sun
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming, Yunnan Province, China
| | - Zijing Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tong Wu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qin Tang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qingyi Jia
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yan Xia
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ying Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiandan Jing
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiahui Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Mo
- Center of Gerontology and Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Yanping Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
4
|
Cho S, Jo H, Hwang YJ, Kim C, Jo YH, Yun JW. Potential impact of underlying diseases influencing ADME in nonclinical safety assessment. Food Chem Toxicol 2024; 188:114636. [PMID: 38582343 DOI: 10.1016/j.fct.2024.114636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Nonclinical studies involve in vitro, in silico, and in vivo experiments to assess the toxicokinetics, toxicology, and safety pharmacology of drugs according to regulatory requirements by a national or international authority. In this review, we summarize the potential effects of various underlying diseases governing the absorption, distribution, metabolism, and excretion (ADME) of drugs to consider the use of animal models of diseases in nonclinical trials. Obesity models showed alterations in hepatic metabolizing enzymes, transporters, and renal pathophysiology, which increase the risk of drug-induced toxicity. Diabetes models displayed changes in hepatic metabolizing enzymes, transporters, and glomerular filtration rates (GFR), leading to variability in drug responses and susceptibility to toxicity. Animal models of advanced age exhibited impairment of drug metabolism and kidney function, thereby reducing the drug-metabolizing capacity and clearance. Along with changes in hepatic metabolic enzymes, animal models of metabolic syndrome-related hypertension showed renal dysfunction, resulting in a reduced GFR and urinary excretion of drugs. Taken together, underlying diseases can induce dysfunction of organs involved in the ADME of drugs, ultimately affecting toxicity. Therefore, the use of animal models of representative underlying diseases in nonclinical toxicity studies can be considered to improve the predictability of drug side effects before clinical trials.
Collapse
Affiliation(s)
- Sumin Cho
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Harin Jo
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yeon Jeong Hwang
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Changuk Kim
- Department of Biotechnology, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Yong Hyeon Jo
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jun-Won Yun
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
5
|
Chen S, Li M, Zhang R, Ye L, Jiang Y, Jiang X, Peng H, Wang Z, Guo Z, Chen L, Zhang R, Niu Y, Aschner M, Li D, Chen W. Type 1 diabetes and diet-induced obesity predispose C57BL/6J mice to PM 2.5-induced lung injury: a comparative study. Part Fibre Toxicol 2023; 20:10. [PMID: 37069663 PMCID: PMC10108512 DOI: 10.1186/s12989-023-00526-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/11/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Pre-existing metabolic diseases may predispose individuals to particulate matter (PM)-induced adverse health effects. However, the differences in susceptibility of various metabolic diseases to PM-induced lung injury and their underlying mechanisms have yet to be fully elucidated. RESULTS Type 1 diabetes (T1D) murine models were constructed by streptozotocin injection, while diet-induced obesity (DIO) models were generated by feeding 45% high-fat diet 6 weeks prior to and throughout the experiment. Mice were subjected to real-ambient PM exposure in Shijiazhuang City, China for 4 weeks at a mean PM2.5 concentration of 95.77 µg/m3. Lung and systemic injury were assessed, and the underlying mechanisms were explored through transcriptomics analysis. Compared with normal diet (ND)-fed mice, T1D mice exhibited severe hyperglycemia with a blood glucose of 350 mg/dL, while DIO mice displayed moderate obesity and marked dyslipidemia with a slightly elevated blood glucose of 180 mg/dL. T1D and DIO mice were susceptible to PM-induced lung injury, manifested by inflammatory changes such as interstitial neutrophil infiltration and alveolar septal thickening. Notably, the acute lung injury scores of T1D and DIO mice were higher by 79.57% and 48.47%, respectively, than that of ND-fed mice. Lung transcriptome analysis revealed that increased susceptibility to PM exposure was associated with perturbations in multiple pathways including glucose and lipid metabolism, inflammatory responses, oxidative stress, cellular senescence, and tissue remodeling. Functional experiments confirmed that changes in biomarkers of macrophage (F4/80), lipid peroxidation (4-HNE), cellular senescence (SA-β-gal), and airway repair (CCSP) were most pronounced in the lungs of PM-exposed T1D mice. Furthermore, pathways associated with xenobiotic metabolism showed metabolic state- and tissue-specific perturbation patterns. Upon PM exposure, activation of nuclear receptor (NR) pathways and inhibition of the glutathione (GSH)-mediated detoxification pathway were evident in the lungs of T1D mice, and a significant upregulation of NR pathways was present in the livers of T1D mice. CONCLUSIONS These differences might contribute to differential susceptibility to PM exposure between T1D and DIO mice. These findings provide new insights into the health risk assessment of PM exposure in populations with metabolic diseases.
Collapse
Affiliation(s)
- Shen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Miao Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Rui Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Lizhu Ye
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yue Jiang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xinhang Jiang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hui Peng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ziwei Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhanyu Guo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Liping Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yujie Niu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Daochuan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
6
|
Short-Term High-Fat Diet Alters Acetaminophen Metabolism in Healthy Individuals. Ther Drug Monit 2022; 44:797-804. [PMID: 35500453 DOI: 10.1097/ftd.0000000000000993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/28/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND Acetaminophen is metabolized through a nontoxic sulfation and glucuronidation pathway and toxic oxidation pathway (via CYP2E1 and CYP1A2). A short-term high-fat diet induces alterations in the steatotic liver and may alter hepatic drug enzyme activity. In the case of acetaminophen, these alterations may result in an increased risk of hepatotoxicity. Therefore, this study was conducted to assess the effect of a 3-day hypercaloric high-fat diet on the plasma levels of acetaminophen metabolites. METHODS Nine healthy subjects participated in this randomized, crossover intervention study. The subjects consumed a regular diet or a regular diet supplemented with 500 mL of cream (1700 kcal) for 3 days and then fasted overnight. After ingesting 1000-mg acetaminophen, the plasma concentration of acetaminophen (APAP) and its metabolites [acetaminophen glucuronide, acetaminophen sulfate, 3-cysteinyl-acetaminophen, and 3-(N-acetyl-L-cystein-S-yl)-acetaminophen, and 3-methoxy-acetaminophen] were measured. RESULTS The 3-day high-fat diet increased the extrapolated area under the concentration-time curve from 0 to infinity (area under the curve 0-inf ) of APAP-Cys by approximately 20% ( P = 0.02) and that from 0 to 8 hours (area under the curve 0-8 ) of APAP-Cys-NAC by approximately 39% ( P = 0.01). The 3-day high-fat diet did not alter the pharmacokinetic parameters of the parent compound acetaminophen and other metabolites. CONCLUSIONS A short-term, hypercaloric, high-fat diet increases the plasma levels of the APAP metabolites formed by the oxidation pathway, which may increase the risk of hepatotoxicity.
Collapse
|
7
|
Krøyer Rasmussen M, Thøgersen R, Horsbøl Lindholm P, Bertram HC, Pilegaard H. Hepatic PGC-1α has minor regulatory effect on the transcriptome and metabolome during high fat high fructose diet and exercise. Gene 2022; 851:147039. [DOI: 10.1016/j.gene.2022.147039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022]
|
8
|
Zhang T, Krekels EHJ, Smit C, Knibbe CAJ. Drug pharmacokinetics in the obese population: challenging common assumptions on predictors of obesity-related parameter changes. Expert Opin Drug Metab Toxicol 2022; 18:657-674. [PMID: 36217846 DOI: 10.1080/17425255.2022.2132931] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Obesity is associated with many physiological changes. We review available evidence regarding five commonly accepted assumptions to a priori predict the impact of obesity on drug pharmacokinetics (PK). AREAS COVERED The investigated assumptions are: 1) lean body weight is the preferred descriptor of clearance and dose adjustments; 2) volume of distribution increases for lipophilic, but not for hydrophilic drugs; 3) CYP-3A4 activity is suppressed and UGT activity is increased, implying decreased and increased dose requirements for substrates of these enzyme systems, respectively; 4) glomerular filtration rate is enhanced, necessitating higher doses for drugs cleared through glomerular filtration; 5) drug dosing information from obese adults can be extrapolated to obese adolescents. EXPERT OPINION Available literature contradicts, or at least limits the generalizability, of all five assumptions. Clinical studies should focus on quantifying the impact of duration and severity of obesity on drug PK in adults and adolescents, and also include oral bioavailability and pharmacodynamics in these studies. Physiologically-based PK approaches can be used to predict PK changes for individual drugs, but can also be used to define in general terms based on patient characteristics and drug properties, when certain assumptions can or cannot be expected to be systematically accurate.
Collapse
Affiliation(s)
- Tan Zhang
- Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Elke H J Krekels
- Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Cornelis Smit
- Department of Clinical Pharmacy, Antonius Hospital Sneek, The Netherlands
| | - Catherijne A J Knibbe
- Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.,Department of Clinical Pharmacy, St. Antonius Hospital Nieuwegein, The Netherlands
| |
Collapse
|
9
|
Obesity-related genomic instability and altered xenobiotic metabolism: possible consequences for cancer risk and chemotherapy. Expert Rev Mol Med 2022; 24:e28. [PMID: 35899852 PMCID: PMC9884759 DOI: 10.1017/erm.2022.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The increase in the prevalence of obesity has led to an elevated risk for several associated diseases including cancer. Several studies have investigated the DNA damage in human blood samples and showed a clear trend towards increased DNA damage in obesity. Reduced genomic stability is thus one of the consequences of obesity, which may contribute to the related cancer risk. Whether this is influenced by compromised DNA repair has not been elucidated sufficiently yet. On the other hand, obesity has also been linked to reduced therapy survival and increased adverse effects during chemotherapy, although the available data are controversial. Despite some indications that obesity might alter hepatic metabolism, current literature in humans is insufficient, and results from animal studies are inconclusive. Here we have summarised published data on hepatic drug metabolism to understand the impact of obesity on cancer therapy better. Furthermore, we highlight knowledge gaps in the interrelationship between obesity and drug metabolism from a toxicological perspective.
Collapse
|
10
|
3,5-T2-an Endogenous Thyroid Hormone Metabolite as Promising Lead Substance in Anti-Steatotic Drug Development? Metabolites 2022; 12:metabo12070582. [PMID: 35888706 PMCID: PMC9322486 DOI: 10.3390/metabo12070582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
Thyroid hormones, their metabolites, and synthetic analogues are potential anti-steatotic drug candidates considering that subclinical and manifest hypothyroidism is associated with hepatic lipid accumulation, non-alcoholic fatty liver disease, and its pandemic sequelae. Thyromimetically active compounds stimulate hepatic lipogenesis, fatty acid beta-oxidation, cholesterol metabolism, and metabolic pathways of glucose homeostasis. Many of these effects are mediated by T3 receptor β1-dependent modulation of transcription. However, rapid non-canonical mitochondrial effects have also been reported, especially for the metabolite 3,5-diiodothyronine (3,5-T2), which does not elicit the full spectrum of “thyromimetic” actions inherent to T3. Most preclinical studies in rodent models of obesity and first human clinical trials are promising with respect to the antisteatotic hepatic effects, but potent agents exhibit unwanted thyromimetic effects on the heart and/or suppress feedback regulation of the hypothalamus-pituitary-thyroid-periphery axis and the fine-tuned thyroid hormone system. This narrative review focuses on 3,5-T2 effects on hepatic lipid and glucose metabolism and (non-)canonical mechanisms of action including its mitochondrial targets. Various high fat diet animal models with distinct thyroid hormone status indicate species- and dose-dependent efficiency of 3,5-T2 and its synthetic analogue TRC150094. No convincing evidence has been presented for their clinical use in the prevention or treatment of obesity and related metabolic conditions.
Collapse
|
11
|
Tao G, Dagher F, Li L, Singh R, Hu M, Ghose R. Irinotecan decreases intestinal UDP-glucuronosyltransferase (UGT) 1A1 via TLR4/MyD88 pathway prior to the onset of diarrhea. Food Chem Toxicol 2022; 166:113246. [PMID: 35728726 DOI: 10.1016/j.fct.2022.113246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/29/2022] [Accepted: 06/15/2022] [Indexed: 10/18/2022]
Affiliation(s)
- Gabriel Tao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA
| | - Fatima Dagher
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA
| | - Li Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA
| | - Rashim Singh
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA
| | - Romi Ghose
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
12
|
Tao G, Dagher F, Ghose R. Neratinib causes non-recoverable gut injury and reduces intestinal cytochrome P450 3A enzyme in mice. Toxicol Res (Camb) 2022; 11:184-194. [PMID: 35237423 PMCID: PMC8882787 DOI: 10.1093/toxres/tfab111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/15/2021] [Accepted: 10/29/2021] [Indexed: 01/21/2023] Open
Abstract
Neratinib is a pan-HER tyrosine kinase inhibitor newly approved by FDA in 2017 to treat HER2-positive breast cancer, but the phase III trial of neratinib showed that 96% of the patients taking neratinib experienced diarrhea. So far very few mechanistic studies explore neratinib-induced gastrointestinal (GI) toxicity. Hereby, we performed toxicity studies in mice to characterize the potential mechanism underlying this adverse effect. C57BL/6 J mice were separated into three groups A, B, C. Group A received vehicle; group B was orally dosed with 100 mg/kg neratinib once daily for 18 days. Group C was dosed with 100 mg/kg neratinib for 12 days and switched to vehicle for 6 days. Intestine and liver were collected for further analysis. Human intestine-derived cells were treated with neratinib in vitro. Our results showed that 12 days treatment of neratinib caused persistent histological damage in mouse GI tract. Both gene expression and activity of Cyp3a11, the major enzyme metabolizing neratinib in mice was reduced in small intestine. The gene expression of proinflammatory cytokines increased throughout the GI tract. Such damages were not recovered after 6 days without neratinib treatment. In addition, in vitro data showed that neratinib was potent in killing human intestine-derived cell lines. Based on such findings, we hypothesized that neratinib downregulates intestinal CYP3A enzyme to cause excessive drug disposition, eventually leading to gut injury.
Collapse
Affiliation(s)
- Gabriel Tao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Fatima Dagher
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Romi Ghose
- Correspondence address. Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Health Building 2, Room 7045, 4849 Calhoun Rd., 4349 Martin Luther King Blvd., Houston, TX 77204, USA. Tel: +1-832-842-8343. E-mail:
| |
Collapse
|
13
|
Chen K, Lin Y, Luo P, Yang N, Yang G, Zhu L, Pei Q. Effect of laparoscopic sleeve gastrectomy on drug pharmacokinetics. Expert Rev Clin Pharmacol 2021; 14:1481-1495. [PMID: 34694169 DOI: 10.1080/17512433.2021.1997585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Given its feasibility and efficacy, laparoscopic sleeve gastrectomy (LSG) has become a widely accepted bariatric surgery for patients with clinically diagnosed severe obesity. LSG induces anatomical changes and subsequent weight loss which may affect drug pharmacokinetics (PK) and consequently impact dosing regimens. This review aims to examine the effect of LSG on drug PK and identify relevant gastrointestinal physiological alterations. AREAS COVERED PubMed, Embase, Scopus, and the Cochrane Library were searched for articles related to drug PK and LSG from inception to July 2021. Moreover, literature concerning postoperative physiological conditions in the gastrointestinal tract, such as gastric pH, gastric emptying, and small bowel transit time, etc., which may affect the PK profile of drug products was also reviewed. EXPERT OPINION Although LSG is classified as having restrictive property without malabsorptive bypass, postoperative changes in gastrointestinal physiology and subsequent weight loss may also lead to increased, decreased or unaltered drug exposure levels. General monitoring on drug efficacy or safety using biomarkers is proposed. In addition, therapeutic drug monitoring for those drugs when it is applicable and available is recommended to ensure efficient drug dosing and avoid adverse effects. Further research into many individual drugs are warranted.
Collapse
Affiliation(s)
- Kaifeng Chen
- Department of Pharmacy, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yaqi Lin
- Department of Pharmacy, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China.,Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ping Luo
- Department of General Surgery, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Nan Yang
- Department of Pharmacy, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Guoping Yang
- Center of Clinical Pharmacology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liyong Zhu
- Department of General Surgery, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qi Pei
- Department of Pharmacy, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
14
|
Multidrug Resistance Like Protein 1 Activity in Malpighian Tubules Regulates Lipid Homeostasis in Drosophila. MEMBRANES 2021; 11:membranes11060432. [PMID: 34201304 PMCID: PMC8229909 DOI: 10.3390/membranes11060432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/30/2021] [Accepted: 06/05/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Multidrug resistance proteins (MRPs) are important for ion transport, toxin/xenobiotic secretion, and signal transduction. Although studies have been undertaken to understand their physiological function, it is not fully known how MRPs may regulate metabolism. We knocked down the expression of Drosophila multidrug-resistance like protein 1 (MRP) in several tissues central to metabolic regulation. Reducing MRP in Malpighian tubules, the functional equivalent to the human kidney, was sufficient to disrupt metabolic homeostasis, owing to abnormal lipid accumulation, as well as changes in feeding behavior. It also increased oxidative stress resistance in adult flies, possibly due to reduced levels of reactive oxygen species. Abstract Multidrug resistance proteins (MRPs), members of the ATP-binding cassette transporter (ABC transporter) family, are pivotal for transporting endo- and xenobiotics, which confer resistance to anticancer agents and contribute to the clearance of oxidative products. However, their function in many biological processes is still unclear. We investigated the role of an evolutionarily conserved MRP in metabolic homeostasis by knocking down the expression of Drosophila multidrug-resistance like protein 1 (MRP) in several tissues involved in regulating metabolism, including the gut, fat body, and Malpighian tubules. Interestingly, only suppression of MRP in the Malpighian tubules, the functional equivalent to the human kidney, was sufficient to cause abnormal lipid accumulation and disrupt feeding behavior. Furthermore, reduced Malpighian tubule MRP expression resulted in increased Hr96 (homolog of human pregnane X receptor) expression. Hr96 is known to play a role in detoxification and lipid metabolism processes. Reduced expression of MRP in the Malpighian tubules also conveyed resistance to oxidative stress, as well as reduced normal levels of reactive oxygen species in adult flies. This study reveals that an evolutionarily conserved MRP is required in Drosophila Malpighian tubules for proper metabolic homeostasis.
Collapse
|
15
|
Rives C, Fougerat A, Ellero-Simatos S, Loiseau N, Guillou H, Gamet-Payrastre L, Wahli W. Oxidative Stress in NAFLD: Role of Nutrients and Food Contaminants. Biomolecules 2020; 10:E1702. [PMID: 33371482 PMCID: PMC7767499 DOI: 10.3390/biom10121702] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is often the hepatic expression of metabolic syndrome and its comorbidities that comprise, among others, obesity and insulin-resistance. NAFLD involves a large spectrum of clinical conditions. These range from steatosis, a benign liver disorder characterized by the accumulation of fat in hepatocytes, to non-alcoholic steatohepatitis (NASH), which is characterized by inflammation, hepatocyte damage, and liver fibrosis. NASH can further progress to cirrhosis and hepatocellular carcinoma. The etiology of NAFLD involves both genetic and environmental factors, including an unhealthy lifestyle. Of note, unhealthy eating is clearly associated with NAFLD development and progression to NASH. Both macronutrients (sugars, lipids, proteins) and micronutrients (vitamins, phytoingredients, antioxidants) affect NAFLD pathogenesis. Furthermore, some evidence indicates disruption of metabolic homeostasis by food contaminants, some of which are risk factor candidates in NAFLD. At the molecular level, several models have been proposed for the pathogenesis of NAFLD. Most importantly, oxidative stress and mitochondrial damage have been reported to be causative in NAFLD initiation and progression. The aim of this review is to provide an overview of the contribution of nutrients and food contaminants, especially pesticides, to oxidative stress and how they may influence NAFLD pathogenesis.
Collapse
Affiliation(s)
- Clémence Rives
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Anne Fougerat
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Sandrine Ellero-Simatos
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Nicolas Loiseau
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Hervé Guillou
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Laurence Gamet-Payrastre
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
| | - Walter Wahli
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRA, EVT, INP-Purpan, UPS, 31300 Toulouse, France; (C.R.); (A.F.); (S.E.-S.); (N.L.); (H.G.)
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
- Center for Integrative Genomics, Université de Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
| |
Collapse
|
16
|
Pande P, Zhong XB, Ku WW. Histone Methyltransferase G9a Regulates Expression of Nuclear Receptors and Cytochrome P450 Enzymes in HepaRG Cells at Basal Level and in Fatty Acid Induced Steatosis. Drug Metab Dispos 2020; 48:1321-1329. [PMID: 33077425 DOI: 10.1124/dmd.120.000195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/11/2020] [Indexed: 02/13/2025] Open
Abstract
Obesity and nonalcoholic fatty liver disease (NAFLD) affect expression and function of cytochrome P450 genes (P450s). The increased expression of inflammatory cytokines is a major driver of the downregulation of P450 expression in NAFLD. Decrease in P450 expression could potentially lead to drug-drug interaction, inefficient pharmacological effect of a drug, or hepatotoxicity. An epigenetic modifier, histone 3 lysine 9 methyl transferase enzyme (G9a), known to increase histone 3 lysine 9 methylation, is downregulated in diet-induced obesity animal models. In a liver-specific G9a knockout animal model, expression of P450s was downregulated. Currently, the role of G9a in regulation of P450s in steatosis is unknown. Our hypothesis is that in steatosis G9a plays a role in downregulation of P450 expression. In this study, we used HepaRG cells to induce steatosis using a combination of free fatty acids oleic acid and palmitic acid. The G9a was knocked down and overexpressed using small interfering RNA and adenovirus mediated approaches, respectively. Knockdown and overexpression of G9a in the absence of steatosis decreased and increased expression of nuclear receptors constitutive androstane receptor (CAR), pregnane X receptor, small heterodimer partner, and CYP2B6, 2E1, 2C8, 2C9, and 3A4, respectively. In steatotic conditions, overexpression of G9a prevented fatty acid mediated decreased expression of CAR, CYP2C19, 2C8, 7A1, and 3A4. Our current study suggests that G9a might serve as a key regulator of P450 expression at both the basal level and in early steatotic conditions. Single nucleotide polymorphism of G9a leading to loss/gain of function could lead to the poor metabolizer or ultrarapid metabolizer phenotypes. SIGNIFICANCE STATEMENT: The current study demonstrates that histone modification enzyme G9a is involved in the regulation of expression of nuclear receptors constitutive androstane receptor, pregnane X receptor, and small heterodimer partner as well as drug-metabolizing cytochrome P450s (P450s) at basal conditions and in fatty acid induced cellular model of steatosis. Histone 3 lysine 9 methylation should be considered together with histone 3 lysine 4 and histone 3 lysine 27 methylation as the epigenetic mechanisms controlling gene expression of P450s.
Collapse
Affiliation(s)
- Parimal Pande
- Non-Clinical Drug Safety, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (P.P., W.W.K.) and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (P.P., X.-b.Z.)
| | - Xiao-Bo Zhong
- Non-Clinical Drug Safety, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (P.P., W.W.K.) and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (P.P., X.-b.Z.)
| | - Warren W Ku
- Non-Clinical Drug Safety, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (P.P., W.W.K.) and Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (P.P., X.-b.Z.)
| |
Collapse
|
17
|
Daujat-Chavanieu M, Gerbal-Chaloin S. Regulation of CAR and PXR Expression in Health and Disease. Cells 2020; 9:E2395. [PMID: 33142929 PMCID: PMC7692647 DOI: 10.3390/cells9112395] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Pregnane X receptor (PXR, NR1I2) and constitutive androstane receptor (CAR, NR1I3) are members of the nuclear receptor superfamily that mainly act as ligand-activated transcription factors. Their functions have long been associated with the regulation of drug metabolism and disposition, and it is now well established that they are implicated in physiological and pathological conditions. Considerable efforts have been made to understand the regulation of their activity by their cognate ligand; however, additional regulatory mechanisms, among which the regulation of their expression, modulate their pleiotropic effects. This review summarizes the current knowledge on CAR and PXR expression during development and adult life; tissue distribution; spatial, temporal, and metabolic regulations; as well as in pathological situations, including chronic diseases and cancers. The expression of CAR and PXR is modulated by complex regulatory mechanisms that involve the interplay of transcription factors and also post-transcriptional and epigenetic modifications. Moreover, many environmental stimuli affect CAR and PXR expression through mechanisms that have not been elucidated.
Collapse
Affiliation(s)
| | - Sabine Gerbal-Chaloin
- IRMB, University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France;
| |
Collapse
|
18
|
Novelli M, Masiello P, Beffy P, Menegazzi M. Protective Role of St. John's Wort and Its Components Hyperforin and Hypericin against Diabetes through Inhibition of Inflammatory Signaling: Evidence from In Vitro and In Vivo Studies. Int J Mol Sci 2020; 21:E8108. [PMID: 33143088 PMCID: PMC7662691 DOI: 10.3390/ijms21218108] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is a very common chronic disease with progressively increasing prevalence. Besides the well-known autoimmune and inflammatory pathogenesis of type 1 diabetes, in many people, metabolic changes and inappropriate lifestyle favor a subtle chronic inflammatory state that contributes to development of insulin resistance and progressive loss of β-cell function and mass, eventually resulting in metabolic syndrome or overt type 2 diabetes. In this paper, we review the anti-inflammatory effects of the extract of Hypericum perforatum L. (St. John's wort, SJW) and its main active ingredients firstly in representative pathological situations on inflammatory basis and then in pancreatic β cells and in obese or diabetic animal models. The simultaneous and long-lasting inhibition of signal transducer and activator of transcription (STAT)-1, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinases (MAPKs)/c-jun N-terminal kinase (JNK) signaling pathways involved in pro-inflammatory cytokine-induced β-cell dysfunction/death and insulin resistance make SJW particularly suitable for both preventive and therapeutic use in metabolic diseases. Hindrance of inflammatory cytokine signaling is likely dependent on the hyperforin content of SJW extract, but recent data reveal that hypericin can also exert relevant protective effects, mediated by activation of the cyclic adenosine monophosphate (cAMP)/protein kinase cAMP-dependent (PKA)/adenosine monophosphate activated protein kinase (AMPK) pathway, against high-fat-diet-induced metabolic abnormalities. Actually, the mechanisms of action of the two main components of SJW appear complementary, strengthening the efficacy of the plant extract. Careful quantitative analysis of SJW components and suitable dosage, with monitoring of possible drug-drug interaction in a context of remarkable tolerability, are easily achievable pre-requisites for forthcoming clinical applications.
Collapse
Affiliation(s)
- Michela Novelli
- Department of Translational Research and New Technologies in Medicine and Surgery, School of Medicine, University of Pisa, 56126 Pisa, Italy
| | - Pellegrino Masiello
- Department of Translational Research and New Technologies in Medicine and Surgery, School of Medicine, University of Pisa, 56126 Pisa, Italy
| | - Pascale Beffy
- Institute of Clinical Physiology, CNR, 56124 Pisa, Italy;
| | - Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, 37134 Verona, Italy;
| |
Collapse
|
19
|
Gabás‐Rivera C, Jurado‐Ruiz E, Sánchez‐Ortiz A, Romanos E, Martínez‐Beamonte R, Navarro MA, Surra JC, Arnal C, Rodríguez‐Yoldi MJ, Andrés‐Lacueva C, Osada J. Dietary Squalene Induces CytochromesCyp2b10andCyp2c55Independently of Sex, Dose, and Diet in Several Mouse Models. Mol Nutr Food Res 2020; 64:e2000354. [DOI: 10.1002/mnfr.202000354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Clara Gabás‐Rivera
- Departamento Bioquímica y Biología Molecular y Celular Facultad de Veterinaria Instituto de Investigación Sanitaria de Aragón (IISA) Universidad de Zaragoza Zaragoza 50013 Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN) Instituto de Salud Carlos III Madrid 28029 Spain
| | | | | | - Eduardo Romanos
- Instituto de Investigación Sanitaria de Aragón (IISA) Universidad de Zaragoza Zaragoza 50009 Spain
| | - Roberto Martínez‐Beamonte
- Departamento Bioquímica y Biología Molecular y Celular Facultad de Veterinaria Instituto de Investigación Sanitaria de Aragón (IISA) Universidad de Zaragoza Zaragoza 50013 Spain
- Instituto Agroalimentario de Aragón CITA‐Universidad de Zaragoza Zaragoza 50013 Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN) Instituto de Salud Carlos III Madrid 28029 Spain
| | - María A. Navarro
- Departamento Bioquímica y Biología Molecular y Celular Facultad de Veterinaria Instituto de Investigación Sanitaria de Aragón (IISA) Universidad de Zaragoza Zaragoza 50013 Spain
- Instituto Agroalimentario de Aragón CITA‐Universidad de Zaragoza Zaragoza 50013 Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN) Instituto de Salud Carlos III Madrid 28029 Spain
| | - Joaquín C. Surra
- Instituto Agroalimentario de Aragón CITA‐Universidad de Zaragoza Zaragoza 50013 Spain
- Departamento de Producción Animal Instituto de Investigación Sanitaria de Aragón (IISA) Escuela Politécnica Superior de Huesca Huesca 22071 Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN) Instituto de Salud Carlos III Madrid 28029 Spain
| | - Carmen Arnal
- Instituto Agroalimentario de Aragón CITA‐Universidad de Zaragoza Zaragoza 50013 Spain
- Departamento de Patología Animal Facultad de Veterinaria Instituto de Investigación Sanitaria de Aragón (IISA) Universidad de Zaragoza Zaragoza 50013 Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN) Instituto de Salud Carlos III Madrid 28029 Spain
| | - María J. Rodríguez‐Yoldi
- Instituto Agroalimentario de Aragón CITA‐Universidad de Zaragoza Zaragoza 50013 Spain
- Departamento de Farmacología y Fisiología Instituto de Investigación Sanitaria de Aragón (IISA) Facultad de Veterinaria Universidad de Zaragoza Zaragoza 50013 Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN) Instituto de Salud Carlos III Madrid 28029 Spain
| | - Cristina Andrés‐Lacueva
- Biomarkers and Nutrimetabolomics Laboratory Department of Nutrition Food Sciences and Gastronomy Faculty of Pharmacy and Food Sciences University of Barcelona Barcelona 08028 Spain
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES) Instituto de Salud Carlos III Madrid 28029 Spain
| | - Jesús Osada
- Departamento Bioquímica y Biología Molecular y Celular Facultad de Veterinaria Instituto de Investigación Sanitaria de Aragón (IISA) Universidad de Zaragoza Zaragoza 50013 Spain
- Instituto Agroalimentario de Aragón CITA‐Universidad de Zaragoza Zaragoza 50013 Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN) Instituto de Salud Carlos III Madrid 28029 Spain
| |
Collapse
|
20
|
Stanke-Labesque F, Gautier-Veyret E, Chhun S, Guilhaumou R. Inflammation is a major regulator of drug metabolizing enzymes and transporters: Consequences for the personalization of drug treatment. Pharmacol Ther 2020; 215:107627. [PMID: 32659304 PMCID: PMC7351663 DOI: 10.1016/j.pharmthera.2020.107627] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022]
Abstract
Inflammation is an evolutionary process that allows survival against acute infection or injury. Inflammation is also a pathophysiological condition shared by numerous chronic diseases. In addition, inflammation modulates important drug-metabolizing enzymes and transporters (DMETs), thus contributing to intra- and interindividual variability of drug exposure. A better knowledge of the impact of inflammation on drug metabolism and its related clinical consequences would help to personalize drug treatment. Here, we summarize the kinetics of inflammatory mediators and the underlying transcriptional and post-transcriptional mechanisms by which they contribute to the inhibition of important DMETs. We also present an updated overview of the effect of inflammation on the pharmacokinetic parameters of most of the drugs that are DMET substrates, for which therapeutic drug monitoring is recommended. Furthermore, we provide opinions on how to integrate the inflammatory status into pharmacogenetics, therapeutic drug monitoring, and population pharmacokinetic strategies to improve the personalization of drug treatment for each patient.
Collapse
Affiliation(s)
- Françoise Stanke-Labesque
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, Grenoble 38000, France; Laboratory of Pharmacology-Pharmacogenetics-Toxicology, Pôle de Biologie et Pathologie, CHU Grenoble Alpes, France.
| | - Elodie Gautier-Veyret
- Univ. Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, Grenoble 38000, France; Laboratory of Pharmacology-Pharmacogenetics-Toxicology, Pôle de Biologie et Pathologie, CHU Grenoble Alpes, France
| | - Stephanie Chhun
- Faculty of Medicine, Paris University, Paris, France; Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Paris, France; AP-HP, Paris Centre, Laboratory of Immunology, Necker-Enfants Malades Hospital, Paris, France
| | - Romain Guilhaumou
- Clinical Pharmacology and Pharmacovigilance Unit, AP-HM, Marseille, France; Aix Marseille Univ, INSERM, INS Inst Neurosci Syst, Marseille, France
| |
Collapse
|
21
|
He Y, Yang T, Du Y, Qin L, Ma F, Wu Z, Ling H, Yang L, Wang Z, Zhou Q, Ge G, Lu Y. High fat diet significantly changed the global gene expression profile involved in hepatic drug metabolism and pharmacokinetic system in mice. Nutr Metab (Lond) 2020; 17:37. [PMID: 32489392 PMCID: PMC7245748 DOI: 10.1186/s12986-020-00456-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 05/07/2020] [Indexed: 12/25/2022] Open
Abstract
Background High fat diet impact transcription of hepatic genes responsible for drug metabolism and pharmacokinetics. Until now, researches just focused on a couple specific genes without a global profile showing. Age-dependent manner was also not noted well. This study aims to investigate the high fat diet effect on transcriptome of drug metabolism and pharmacokinetic system in mouse livers and show the age-dependent evidence. Methods C57BL/6 male mice were used in this experiment. High fat diet was used to treat mice for 16 and 38 weeks. Serum total cholesterol, low density lipoprotein cholesterol, aspartate transaminase, and alanine transaminaselevels were measured. Meanwhile, Histology, RNA-Seq, RT-PCR analysis and fourteen major hepatic bile acids quantification were performed for the liver tissues. Data was mined at levels of genes, drug metabolism and pharmacokinetic sysem, and genome wide. Results Treatment with high fat diet for 38 weeks significantly increased levels of serum lipids as well as aspartate transaminase, and alanine transaminase. Meanwhile, lipid accumulation in livers was observed. At week 38 of the experiment, the profile of 612 genes involved in drug metabolism and pharmacokinetics was significantly changed, indicated by a heatmap visulization and a principal component analysis. In total 210 genes were significantly regulated. Cyp3a11, Cyp4a10, and Cyp4a14 were down-regulated by 10–35 folds, while these three genes also were highly expressed in the liver. High fat diet regulated 11% of genome-wide gene while 30% of genes involved in the hepatic drug metabolism and pharmacokinetic system. Genes, including Adh4, Aldh1b1, Cyp3a11, Cyp4a10, Cyp8b1, Fmo2, Gsta3, Nat8f1, Slc22a7, Slco1a4, Sult5a1, and Ugt1a9, were regulated by high fat diet as an aging-dependent manner. Bile acids homeostasis, in which many genes related to metabolism and transportation were enriched, was also changed by high fat diet with an aging-dependet manner. Expression of genes in drug metabolism and disposition system significantly correlated to serum lipid profiles, and frequently correlated with each other. Conclusions High fat diet changed the global transcription profile of hepatic drug metabolism and pharmacokinetic system with a age-dependent manner.
Collapse
Affiliation(s)
- Yuqi He
- The Key Laboratory of the Minstry of Education of the Basic Pharmacology and the Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi City, 563009 Guizhou China.,Institute of Chinese Materia Medica, Shanghai Key Laboratory of Complex Prescription and the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines , Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Yang
- The Key Laboratory of the Minstry of Education of the Basic Pharmacology and the Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi City, 563009 Guizhou China
| | - Yimei Du
- The Key Laboratory of the Minstry of Education of the Basic Pharmacology and the Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi City, 563009 Guizhou China
| | - Lin Qin
- The Key Laboratory of the Minstry of Education of the Basic Pharmacology and the Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi City, 563009 Guizhou China
| | - Feifei Ma
- The Key Laboratory of the Minstry of Education of the Basic Pharmacology and the Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi City, 563009 Guizhou China
| | - Zunping Wu
- The Key Laboratory of the Minstry of Education of the Basic Pharmacology and the Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi City, 563009 Guizhou China
| | - Hua Ling
- School of Pharmacy, Philadelphia College of Osteopathic Medicine, Suwanee, GA USA
| | - Li Yang
- Institute of Chinese Materia Medica, Shanghai Key Laboratory of Complex Prescription and the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines , Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengtao Wang
- Institute of Chinese Materia Medica, Shanghai Key Laboratory of Complex Prescription and the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines , Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingdi Zhou
- School of Chemistry, The University of Sydney, Camperdown, NSW2006 Australia
| | - Guangbo Ge
- The Key Laboratory of the Minstry of Education of the Basic Pharmacology and the Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi City, 563009 Guizhou China.,Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanliu Lu
- The Key Laboratory of the Minstry of Education of the Basic Pharmacology and the Joint International Research Laboratory of Ethnomedicine of the Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xue-Fu Road, Zunyi City, 563009 Guizhou China.,Institute of Chinese Materia Medica, Shanghai Key Laboratory of Complex Prescription and the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines , Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
22
|
Chen KF, Chan LN, Senn TD, Oelschlager BK, Flum DR, Shen DD, Horn JR, Lin YS. The Impact of Proximal Roux-en-Y Gastric Bypass Surgery on Acetaminophen Absorption and Metabolism. Pharmacotherapy 2020; 40:191-203. [PMID: 31960977 DOI: 10.1002/phar.2368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Roux-en-Y gastric bypass (RYGBS), a surgery that creates a smaller stomach pouch and reduces the length of small intestine, is one of the most common medical interventions for the treatment of obesity. AIM The aim of this study was to determine how RYGBS affects the absorption and metabolism of acetaminophen. MATERIALS AND METHODS Ten morbidly obese patients received 1.5 g of liquid acetaminophen (APAP) orally on three separate pharmacokinetic study days (i.e., pre-RYGBS baseline and 3 and 12 months post-RYGBS). Plasma was collected at pre-specified timepoints over 24 hours, and the samples were analyzed using liquid chromatography-mass spectrometry for APAP, APAPglucuronide (APAP-gluc), APAP-sulfate (APAP-sulf), APAP-cysteine (APAP-cys), and APAP-Nacetylcysteine (APAP-nac). RESULT Following RYGBS, peak APAP concentrations at the 3-month and 12-month visits increased by 2.0-fold compared to baseline (p=0.0039 and p=0.0078, respectively) and the median time to peak concentration decreased from 35 to 10 minutes. In contrast, peak concentrations of APAP-gluc, APAP-sulf, APAP-cys, and APAP-nac were unchanged following RYGBS. The apparent oral clearance of APAP and the ratios of metabolite area under the curve (AUC)-to-APAP AUC for all four metabolites decreased at 3 and 12 months post-RYGBS compared to the presurgical baseline. In a simulation of expected steady-state plasma concentrations following multiple dosing of 650 mg APAP every 4 hours, post-RYGBS patients had higher steady-state peak APAP concentrations compared to healthy individuals and obese pre-RYGBS patients, though APAP exposure was unchanged compared to healthy individuals. CONCLUSION Following RYGBS, the rate and extent of APAP absorption increased and decreased formation of APAP metabolites was observed, possibly due to downregulation of Phase II and cytochrome P450 2E1 enzymes.
Collapse
Affiliation(s)
- Kuan-Fu Chen
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | | | - Taurence D Senn
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington
| | | | - David R Flum
- Department of Surgery, University of Washington, Seattle, Washington
| | - Danny D Shen
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| | - John R Horn
- Department of Pharmacy, University of Washington, Seattle, Washington
| | - Yvonne S Lin
- Department of Pharmaceutics, University of Washington, Seattle, Washington
| |
Collapse
|
23
|
Background Diet Influences TMAO Concentrations Associated with Red Meat Intake without Influencing Apparent Hepatic TMAO-Related Activity in a Porcine Model. Metabolites 2020; 10:metabo10020057. [PMID: 32041174 PMCID: PMC7074160 DOI: 10.3390/metabo10020057] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
Red meat has been associated with an increased cardiovascular disease (CVD) risk, possibly through gut microbial-derived trimethylamine-N-oxide (TMAO). However, previous reports are conflicting, and influences from the background diet may modulate the impact of meat consumption. This study investigated the effect of red and white meat intake combined with two different background diets on urinary TMAO concentration and its association with the colon microbiome in addition to apparent hepatic TMAO-related activity. For 4 weeks, 32 pigs were fed chicken or red and processed meat combined with a prudent or western background diet. 1H NMR-based metabolomics analysis was conducted on urine samples and hepatic Mrna expression of TMAO-related genes determined. Lower urinary TMAO concentrations were observed after intake of red and processed meat when consumed with a prudent compared to a western background diet. In addition, correlation analyses between urinary TMAO concentrations and relative abundance of colon bacterial groups suggested an association between TMAO and specific bacterial taxa. Diet did not affect the hepatic Mrna expression of genes related to TMAO formation. The results suggest that meat-induced TMAO formation is regulated by mechanisms other than alterations at the hepatic gene expression level, possibly involving modulations of the gut microbiota.
Collapse
|
24
|
Wang P, Shao X, Bao Y, Zhu J, Chen L, Zhang L, Ma X, Zhong XB. Impact of obese levels on the hepatic expression of nuclear receptors and drug-metabolizing enzymes in adult and offspring mice. Acta Pharm Sin B 2020; 10:171-185. [PMID: 31993314 PMCID: PMC6976990 DOI: 10.1016/j.apsb.2019.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/30/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022] Open
Abstract
The prevalence of obesity-associated conditions raises new challenges in clinical medication. Although altered expression of drug-metabolizing enzymes (DMEs) has been shown in obesity, the impacts of obese levels (overweight, obesity, and severe obesity) on the expression of DMEs have not been elucidated. Especially, limited information is available on whether parental obese levels affect ontogenic expression of DMEs in children. Here, a high-fat diet (HFD) and three feeding durations were used to mimic different obese levels in C57BL/6 mice. The hepatic expression of five nuclear receptors (NRs) and nine DMEs was examined. In general, a trend of induced expression of NRs and DMEs (except for Cyp2c29 and 3a11) was observed in HFD groups compared to low-fat diet (LFD) groups. Differential effects of HFD on the hepatic expression of DMEs were found in adult mice at different obese levels. Family-based dietary style of an HFD altered the ontogenic expression of DMEs in the offspring older than 15 days. Furthermore, obese levels of parental mice affected the hepatic expression of DMEs in offspring. Overall, the results indicate that obese levels affected expression of the DMEs in adult individuals and that of their children. Drug dosage might need to be optimized based on the obese levels.
Collapse
Key Words
- 18-HA, adult mice fed with 18 weeks HFD
- 18-LA, adult mice fed with 18 weeks LFD
- 4-HA, adult mice fed with 4 weeks HFD
- 4-LA, adult mice fed with 4 weeks LFD
- 7-ER, 7-ethoxyresorufin
- 8-HA, adult mice fed with 8 weeks HFD
- 8-LA, adult mice fed with 8 weeks LFD
- AhR, aryl hydrocarbon receptor
- BMI, body mass index
- CAR, constitutive androstane receptor
- CHZ, chlorzoxazone
- CYP2E1, cytochrome P450 2E1
- DIO, diet-induced obesity
- DMEs, drug-metabolizing enzymes
- Diet-induced obesity
- Drug-metabolizing enzymes
- EFV, efavirenz
- Gapdh, glyceraldehyde-3-phosphate dehydrogenase
- HFD, high-fat diet
- HNF4α, hepatocyte nuclear factor 4 alpha
- High-fat diet
- LFD, low-fat diet
- MDZ, midazolam
- MPA, mobile phase A
- MPB, mobile phase B
- NADPH, nicotinamide adenine dinucleotide phosphate
- NAFLD, non-alcoholic fatty liver disease
- NRs, nuclear receptors
- Nuclear receptors
- O-18-HA, offspring from parental mice fed with 18 weeks HFD
- O-18-LA, offspring from parental mice fed with 18 weeks LFD
- O-4-HA, offspring from parental mice fed with 4 weeks HFD
- O-4-LA, offspring from parental mice fed with 4 weeks LFD
- O-8-HA, offspring from parental mice fed with 8 weeks HFD
- O-8-LA, offspring from parental mice fed with 8 weeks LFD
- Ontogenic expression
- Overweight
- PBS, phosphate-buffered saline
- PPARα, peroxisome proliferator-activated receptor alpha
- PXR, pregnane X receptor
- RSF, resorufin
- RT-qPCR, real-time quantitative PCR
- SD, standard deviation
- SULT1A1, sulfotransferase 1A1
- UGT1A1, uridine diphosphate glucuronosyltransferase 1A1
Collapse
Affiliation(s)
- Pei Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Xueyan Shao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Yifan Bao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Junjie Zhu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Liming Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| | - Lirong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaochao Ma
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiao-bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
25
|
Hepatic PGC-1α is not essential for fasting-induced cytochrome p450 regulation in mouse liver. Biochem Pharmacol 2019; 172:113736. [PMID: 31786263 DOI: 10.1016/j.bcp.2019.113736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/20/2019] [Indexed: 12/22/2022]
Abstract
Fasting has been shown to regulate the expression of the cytochrome p450 (CYP) enzyme system in the liver. However, the exact mechanism behind the fasting-induced regulation of the CYP's remains unknown. In the present study we tested the hypothesis that the peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), which is a key-regulator of energy metabolism, is responsible for the fasting-induced regulation of the CYP's. Lox/lox and liver specific PGC-1α (LKO) mice of both sexes, fasted for 18 h and the content of the CYP's as well as the hepatic metabolome was assessed. Fasting increased the mRNA content of Cyp2a4, Cyp2e1, Cyp3a11 and Cyp4a10. The fasting-induced response in Cyp4a10 mRNA content was different between lox/lox and LKO mice, while the absence of PGC-1α had no effect on the fasting-induced response for the other Cyp's. Moreover, the fasting-induced response in mRNA content of Sirtinus 1 and Perilipin 2 was different between lox/lox and LKO mice. Only the CYP1A isoform showed a fasting-induced response at the protein level. Absence of hepatic PGC-1α had no effect on the apparent metabolome, where fasting vs fed was the only discriminate in the following multivariate analysis. In conclusion, hepatic PGC-1α is not essential for the fasting-induced regulation of hepatic CYP's.
Collapse
|
26
|
Dittmann A, Kennedy NJ, Soltero NL, Morshed N, Mana MD, Yilmaz ÖH, Davis RJ, White FM. High-fat diet in a mouse insulin-resistant model induces widespread rewiring of the phosphotyrosine signaling network. Mol Syst Biol 2019; 15:e8849. [PMID: 31464373 PMCID: PMC6674232 DOI: 10.15252/msb.20198849] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
Obesity-associated type 2 diabetes and accompanying diseases have developed into a leading human health risk across industrialized and developing countries. The complex molecular underpinnings of how lipid overload and lipid metabolites lead to the deregulation of metabolic processes are incompletely understood. We assessed hepatic post-translational alterations in response to treatment of cells with saturated and unsaturated free fatty acids and the consumption of a high-fat diet by mice. These data revealed widespread tyrosine phosphorylation changes affecting a large number of enzymes involved in metabolic processes as well as canonical receptor-mediated signal transduction networks. Targeting two of the most prominently affected molecular features in our data, SRC-family kinase activity and elevated reactive oxygen species, significantly abrogated the effects of saturated fat exposure in vitro and high-fat diet in vivo. In summary, we present a comprehensive view of diet-induced alterations of tyrosine signaling networks, including proteins involved in fundamental metabolic pathways.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diet, High-Fat/adverse effects
- Disease Models, Animal
- Fatty Acids/pharmacology
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Obesity/etiology
- Obesity/genetics
- Obesity/metabolism
- Obesity/pathology
- Phosphorylation/drug effects
- Phosphotyrosine/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Processing, Post-Translational
- Proteomics/methods
- Rats
- Reactive Oxygen Species/agonists
- Reactive Oxygen Species/metabolism
- Signal Transduction
- src-Family Kinases/genetics
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Antje Dittmann
- The David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMAUSA
- Center for Precision Cancer MedicineMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Norman J Kennedy
- Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Nina L Soltero
- The David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Nader Morshed
- The David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMAUSA
- Center for Precision Cancer MedicineMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Miyeko D Mana
- The David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMAUSA
- Broad Institute of Harvard and MITCambridgeMAUSA
| | - Ömer H Yilmaz
- The David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMAUSA
- Broad Institute of Harvard and MITCambridgeMAUSA
- Department of PathologyMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| | - Roger J Davis
- Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
- Howard Hughes Medical InstituteWorcesterMAUSA
| | - Forest M White
- The David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMAUSA
- Center for Precision Cancer MedicineMassachusetts Institute of TechnologyCambridgeMAUSA
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
| |
Collapse
|
27
|
A Pilot Study towards the Impact of Type 2 Diabetes on the Expression and Activities of Drug Metabolizing Enzymes and Transporters in Human Duodenum. Int J Mol Sci 2019; 20:ijms20133257. [PMID: 31269743 PMCID: PMC6651059 DOI: 10.3390/ijms20133257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/13/2019] [Accepted: 06/21/2019] [Indexed: 12/24/2022] Open
Abstract
To characterize effects of type 2 diabetes (T2D) on mRNA expression levels for 10 Cytochromes P450 (CYP450s), two carboxylesterases, and three drug transporters (ABCB1, ABCG2, SLCO2B1) in human duodenal biopsies. To compare drug metabolizing enzyme activities of four CYP450 isoenzymes in duodenal biopsies from patients with or without T2D. mRNA levels were quantified (RT-qPCR) in human duodenal biopsies obtained from patients with (n = 20) or without (n = 16) T2D undergoing a scheduled gastro-intestinal endoscopy. CYP450 activities were determined following incubation of biopsy homogenates with probe substrates for CYP2B6 (bupropion), CYP2C9 (tolbutamide), CYP2J2 (ebastine), and CYP3A4/5 (midazolam). Covariables related to inflammation, T2D, demographic, and genetics were investigated. T2D had no major effects on mRNA levels of all enzymes and transporters assessed. Formation rates of metabolites (pmoles mg protein−1 min−1) determined by LC-MS/MS for CYP2C9 (0.48 ± 0.26 vs. 0.41 ± 0.12), CYP2J2 (2.16 ± 1.70 vs. 1.69 ± 0.93), and CYP3A (5.25 ± 3.72 vs. 5.02 ± 4.76) were not different between biopsies obtained from individuals with or without T2D (p > 0.05). No CYP2B6 specific activity was measured. TNF-α levels were higher in T2D patients but did not correlate with any changes in mRNA expression levels for drug metabolizing enzymes or transporters in the duodenum. T2D did not modulate expression or activity of tested drug metabolizing enzymes and transporters in the human duodenum. Previously reported changes in drug oral clearances in patients with T2D could be due to a tissue-specific disease modulation occurring in the liver and/or in other parts of the intestines.
Collapse
|
28
|
Zhang L, Xu P, Cheng Y, Wang P, Ma X, Liu M, Wang X, Xu F. Diet-induced obese alters the expression and function of hepatic drug-metabolizing enzymes and transporters in rats. Biochem Pharmacol 2019; 164:368-376. [PMID: 31063713 DOI: 10.1016/j.bcp.2019.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/02/2019] [Indexed: 01/16/2023]
Abstract
Obesity increases the incidences of metabolic syndrome, including type 2 diabete, fatty liver, dyslipidemia, hyperglycemia, heart disease, hypertension and cancer. In particular, pharmacokinetics and pharmacodynamics of many drugs have changed in obese patients. However, little is known about the hepatic drug-metabolizing enzymes and transporters that are influenced by diet-induced obese. In this report, we established obesity and fatty liver models in male rats by high-fat diet. The expression profiles of drug-metabolizing enzymes and transporters were studied by quantitative real-timePCR and Western blotting analysis. The function of these enzymes and transporters were assessed by their substrates and cocktail methods. The expression and activity of phase I enzymes (CYP1A2, CYP2B1, CYP2C11, CYP3A1, CYP4A1 and FMO1) and phase II enzymes (UGT1A1, UGT1A3, UGT1A6, UGT1A9, UGT2B7, NAT1 and GSTT1) were decreased in the liver of obese rats. In addition, the mRNA levels of hepatic transporter Slco1a2, Slco1b2, Slc22a5, Abcc2, Abcc3, Abcb1a and Abcg2 decreased significantly in obese animals, while Abcb1b increased significantly. Furthermore, the decreased expression of hepatic phase I and II enzymes and transporter may be due to changes of Hnf4α, LXRα and FXR. In conclusion, the diet-induced obese altered the expression and function of hepatic drug-metabolizing enzymes and transporters in male rats, thereby impacting drug metabolism and pharmacokinetics.
Collapse
Affiliation(s)
- Lei Zhang
- Fengxian Hospital and East China Normal University Joint Research Centre for Translational Medicine, Department of Pharmacy, Fengxian Hospital, Shanghai, China; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Peipei Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yi Cheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Peili Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xinrun Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China; Department of Molecular and Cellular Medicine, Institute of Biosciences and Technology, Texas A&M University Health Science Centre, Houston, TX, USA
| | - Xin Wang
- Fengxian Hospital and East China Normal University Joint Research Centre for Translational Medicine, Department of Pharmacy, Fengxian Hospital, Shanghai, China; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| | - Feng Xu
- Fengxian Hospital and East China Normal University Joint Research Centre for Translational Medicine, Department of Pharmacy, Fengxian Hospital, Shanghai, China.
| |
Collapse
|
29
|
The transcription factor E4bp4 regulates the expression and activity of Cyp3a11 in mice. Biochem Pharmacol 2019; 163:215-224. [DOI: 10.1016/j.bcp.2019.02.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/19/2019] [Indexed: 11/17/2022]
|
30
|
Lammers LA, Achterbergh R, Romijn JA, Mathôt RAA. Nutritional Status Differentially Alters Cytochrome P450 3A4 (CYP3A4) and Uridine 5'-Diphospho-Glucuronosyltransferase (UGT) Mediated Drug Metabolism: Effect of Short-Term Fasting and High Fat Diet on Midazolam Metabolism. Eur J Drug Metab Pharmacokinet 2019; 43:751-767. [PMID: 29876844 PMCID: PMC6244726 DOI: 10.1007/s13318-018-0487-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND OBJECTIVES Previous studies have shown that nutritional status can alter drug metabolism which may result in treatment failure or untoward side effects. This study assesses the effect of two nutritional conditions, short-term fasting, and a short-term high fat diet (HFD) on cytochrome P450 3A4 (CYP3A4) and uridine 5'-diphospho-glucuronosyltransferase (UGT) mediated drug metabolism by studying the pharmacokinetics of midazolam and its main metabolites. METHODS In a randomized-controlled cross-over trial, nine healthy subjects received a single intravenous administration of 0.015 mg/kg midazolam after: (1) an overnight fast (control); (2) 36 h of fasting; and (3) an overnight fast after 3 days of a HFD consisting of 500 ml of cream supplemented to their regular diet. Pharmacokinetic parameters were analyzed simultaneously using non-linear mixed-effects modeling. RESULTS Short-term fasting increased CYP3A4-mediated midazolam clearance by 12% (p < 0.01) and decreased UGT-mediated metabolism apparent 1-OH-midazolam clearance by 13% (p < 0.01) by decreasing the ratio of clearance and the fraction metabolite formed (ΔCL1-OH-MDZ/f1-OH-MDZ). Furthermore, short-term fasting decreased apparent clearance of 1-OH-midazolam-O-glucuronide (CL1-OH-MDZ-glucuronide/(f1-OH-MDZ-glucuronide × f1-OH-MDZ)) by 20% (p < 0.01). The HFD did not affect systemic clearance of midazolam or metabolites. CONCLUSIONS Short-term fasting differentially alters midazolam metabolism by increasing CYP3A4-mediated metabolism but by decreasing UGT-mediated metabolism. In contrast, a short-term HFD did not affect systemic clearance of midazolam.
Collapse
Affiliation(s)
- Laureen A Lammers
- Department of Hospital Pharmacy, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Roos Achterbergh
- Department of Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Johannes A Romijn
- Department of Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ron A A Mathôt
- Department of Hospital Pharmacy, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
31
|
Jones S, Yarbrough AL, Shoeib A, Bush JM, Fantegrossi WE, Prather PL, Radominska-Pandya A, Fujiwara R. Enzymatic analysis of glucuronidation of synthetic cannabinoid 1-naphthyl 1-(4-fluorobenzyl)-1H-indole-3-carboxylate (FDU-PB-22). Xenobiotica 2019; 49:1388-1395. [PMID: 30739533 DOI: 10.1080/00498254.2019.1580403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recently, there has been a rise in abuse of synthetic cannabinoids (SCBs). The consumption of SCBs results in various effects and can induce toxic reactions, including paranoia, seizures, tachycardia and even death. 1-Naphthyl 1-(4-fluorobenzyl)-1H-indole-3-carboxylate (FDU-PB-22) is a third generation SCB whose metabolic pathway has not been fully characterized. In this study, we conducted in vitro pharmacokinetic analysis of FDU-PB-22 metabolism. Metabolic reactions containing FDU-PB-22 and human liver microsomes (HLMs) were independent of NADPH but not UDP-glucuronic acid (UDPGA), suggesting that UDP-glucuronosyltransferases (UGTs) are the primary enzymes involved in this metabolism. It was further determined that the metabolite extensively formed after incubating FDU-PB-22 with UDPGA in HLMs was the glucuronide of FDU-PB-22 3-carboxyindole (FBI-COOH). Various hepatic UGTs showed enzymatic activity for FBI-COOH. A series of UGT inhibitors showed moderate to strong inhibition of FBI-COOH-glucuronidation in HLMs, suggesting that multiple UGT isoforms are involved in FBI-COOH-glucuronidation in the liver. Interestingly, an extra-hepatic isoform, UGT1A10, exhibited the highest activity with a Km value of 38 µM and a Vmax value of 5.90 nmol/min/mg. Collectively, these results suggest that both genetic mutations of and the co-administration of inhibitors for FDU-PB-22-metabolizing UGTs will likely increase the risk of FDU-PB-22-induced toxicity.
Collapse
Affiliation(s)
- Sabrina Jones
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences , Little Rock , AR , USA.,Department of Physics and Department of Biological Sciences, University of Arkansas Fay etteville , Fayetteville , AR , USA
| | - Azure L Yarbrough
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences , Little Rock , AR , USA.,Department of Biology, University of Arkansas Little Rock , Little Rock , AR , USA
| | - Amal Shoeib
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - John M Bush
- Department of Biology, University of Arkansas Little Rock , Little Rock , AR , USA
| | - William E Fantegrossi
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Paul L Prather
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Anna Radominska-Pandya
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Ryoichi Fujiwara
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences , Little Rock , AR , USA
| |
Collapse
|
32
|
Yang JS, Qi W, Farias-Pereira R, Choi S, Clark JM, Kim D, Park Y. Permethrin and ivermectin modulate lipid metabolism in steatosis-induced HepG2 hepatocyte. Food Chem Toxicol 2019; 125:595-604. [PMID: 30738135 PMCID: PMC6527113 DOI: 10.1016/j.fct.2019.02.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/09/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023]
Abstract
Recent studies have reported the positive association between exposure to insecticides and increased risk of obesity and type 2 diabetes, which are closely associated with non-alcoholic fatty liver disease (NAFLD). However, it is not known if insecticide exposure can contribute to NAFLD. Thus, the goal of the current study was to determine if insecticide exposures can exacerbate the physiological conditions of NAFLD by modulating hepatic lipid metabolism. The effects of 12 insecticides on triglycerides (TG) accumulation were tested using palmitic acid (PA)-induced HepG2 hepatoma steatosis model. Results showed that among tested insecticides, permethrin and ivermectin significant interacted with palmitic acid to potentiate (permethrin) or decrease (ivermectin) TG accumulation. Further study showed that permethrin significantly promoted fatty acid synthesis, while suppressed lipid oxidation-related genes only under steatosis conditions. In comparison, ivermectin inhibited lipogenesis-related genes and promoted farnesoid X receptor, which upregulates fatty acid oxidation. Results in this study suggested that hepatic lipid metabolism may be more susceptible to insecticide exposure in the presence of excessive fatty acids, which can be associated with the development of NAFLD.
Collapse
Affiliation(s)
- Jason S Yang
- Department of Food Science, University of Massachusetts, Amherst, USA
| | - Weipeng Qi
- Department of Food Science, University of Massachusetts, Amherst, USA
| | | | - Stephanie Choi
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, USA
| | - John M Clark
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, USA
| | - Daeyoung Kim
- Department of Mathematics and Statistics, University of Massachusetts, Amherst, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, USA.
| |
Collapse
|
33
|
Knudsen JG, Bertholdt L, Gudiksen A, Gerbal-Chaloin S, Rasmussen MK. Skeletal Muscle Interleukin-6 Regulates Hepatic Cytochrome P450 Expression: Effects of 16-Week High-Fat Diet and Exercise. Toxicol Sci 2019; 162:309-317. [PMID: 29177473 DOI: 10.1093/toxsci/kfx258] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
High-fat diet (HFD) induces several changes to the pathways regulating energy homeostasis and changes the expression of the hepatic cytochrome p450 (Cyp) enzyme-system. Despite these pervious findings, it is still unclear how the effects of HFD and especially HFD in combination with treadmill running affect hepatic Cyp expression. In this study, we investigated the mRNA and protein expression of selected Cyp's in mice subjected to 16 weeks of HFD and treadmill running. To understand the regulatory mechanisms behind the exercise-induced reversion of the HFD-induced changes in Cyp expression, we used a model in which the exercise-induced myokine and known regulator of hepatic Cyp's, interleukin-6 (IL-6), were knocked out specifically in skeletal muscle. We found that HFD increased the mRNA expression of Cyp1a1 and Cyp4a10, and decreased the expression of Cyp2a4, Cyp2b10, Cyp2e1, and Cyp3a11. HFD in combination with treadmill running reversed the HFD increase in Cyp4a10 mRNA expression. In addition, we observed increased Cyp1a and Cyp3a protein expression as an effect of exercise, whereas Cyp2b expression was lowered as an effect of HFD. IL-6 effected the response in Cyp3a11 and Cyp1a expression. We observed no changes in the content of the aryl hydrocarbon receptor, constitutive androstane receptor, pregnane X receptor, or peroxisome proliferation activator receptor alpha. In conclusion, we show that both HFD and exercise in HFD-fed animals can regulate hepatic Cyp expression and that changes in Cyp3a in response to HFD and exercise are dependent on skeletal muscular IL-6.
Collapse
Affiliation(s)
- Jakob G Knudsen
- Department of Biology, Copenhagen University, DK-2200 Copenhagen, Denmark
| | - Lærke Bertholdt
- Department of Biology, Copenhagen University, DK-2200 Copenhagen, Denmark
| | - Anders Gudiksen
- Department of Biology, Copenhagen University, DK-2200 Copenhagen, Denmark
| | | | | |
Collapse
|
34
|
Wu KC, Lin CJ. The regulation of drug-metabolizing enzymes and membrane transporters by inflammation: Evidences in inflammatory diseases and age-related disorders. J Food Drug Anal 2018; 27:48-59. [PMID: 30648594 PMCID: PMC9298621 DOI: 10.1016/j.jfda.2018.11.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/15/2018] [Accepted: 11/20/2018] [Indexed: 01/02/2023] Open
Abstract
Drug-metabolizing enzymes (DMEs) and membrane transporters play important roles in the absorption, distribution, metabolism, and excretion processes that determine the pharmacokinetics of drugs. Inflammation has been shown to regulate the expression and function of these drug-processing proteins. Given that inflammation is a common feature of many diseases, in this review, the general mechanisms for inflammation-mediated regulation of DMEs and transporters are described. Also, evidences regarding the aberrant expression of these drug-processing proteins in several inflammatory diseases and age-related disorders are provided.
Collapse
Affiliation(s)
- Kuo-Chen Wu
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Chun-Jung Lin
- School of Pharmacy, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
35
|
Li X, Wang Z, Klaunig JE. Modulation of xenobiotic nuclear receptors in high-fat diet induced non-alcoholic fatty liver disease. Toxicology 2018; 410:199-213. [DOI: 10.1016/j.tox.2018.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/06/2018] [Accepted: 08/13/2018] [Indexed: 02/07/2023]
|
36
|
Yang JS, Park Y. Insecticide Exposure and Development of Nonalcoholic Fatty Liver Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10132-10138. [PMID: 30193066 DOI: 10.1021/acs.jafc.8b03177] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the prevalent liver disease resulting from metabolic disorder, which is highly associated with obesity and type 2 diabetes. Emerging evidence has shown that insecticide exposure disrupts lipid and glucose metabolism and results in obesity and type 2 diabetes. However, the potential impact of insecticide exposure on the liver functions related to NAFLD development is largely unknown. Thus, this perspective focused on the current knowledge of the effect of insecticides on the liver functions, particularly lipid and glucose metabolism, as well as other liver functions to correlate insecticide exposure and the development of NAFLD.
Collapse
Affiliation(s)
- Jason S Yang
- Department of Food Science , University of Massachusetts Amherst , 102 Holdsworth Way , Amherst , Massachusetts 01003 , United States
| | - Yeonhwa Park
- Department of Food Science , University of Massachusetts Amherst , 102 Holdsworth Way , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
37
|
Analysis of diet-induced differential methylation, expression, and interactions of lncRNA and protein-coding genes in mouse liver. Sci Rep 2018; 8:11537. [PMID: 30069000 PMCID: PMC6070528 DOI: 10.1038/s41598-018-29993-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/29/2018] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate expression of protein-coding genes in cis through chromatin modifications including DNA methylation. Here we interrogated whether lncRNA genes may regulate transcription and methylation of their flanking or overlapping protein-coding genes in livers of mice exposed to a 12-week cholesterol-rich Western-style high fat diet (HFD) relative to a standard diet (STD). Deconvolution analysis of cell type-specific marker gene expression suggested similar hepatic cell type composition in HFD and STD livers. RNA-seq and validation by nCounter technology revealed differential expression of 14 lncRNA genes and 395 protein-coding genes enriched for functions in steroid/cholesterol synthesis, fatty acid metabolism, lipid localization, and circadian rhythm. While lncRNA and protein-coding genes were co-expressed in 53 lncRNA/protein-coding gene pairs, both were differentially expressed only in 4 lncRNA/protein-coding gene pairs, none of which included protein-coding genes in overrepresented pathways. Furthermore, 5-methylcytosine DNA immunoprecipitation sequencing and targeted bisulfite sequencing revealed no differential DNA methylation of genes in overrepresented pathways. These results suggest lncRNA/protein-coding gene interactions in cis play a minor role mediating hepatic expression of lipid metabolism/localization and circadian clock genes in response to chronic HFD feeding.
Collapse
|
38
|
Achterbergh R, Lammers LA, Kuijsten L, Klümpen HJ, Mathôt RAA, Romijn JA. Effects of nutritional status on acetaminophen measurement and exposure. Clin Toxicol (Phila) 2018; 57:42-49. [DOI: 10.1080/15563650.2018.1487563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- R. Achterbergh
- Departments of Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - L. A. Lammers
- Hospital Pharmacy, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - L. Kuijsten
- Hospital Pharmacy, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - H. J. Klümpen
- Department of Medical Oncology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - R. A. A. Mathôt
- Hospital Pharmacy, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - J. A. Romijn
- Departments of Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
39
|
van Rongen A, Brill MJE, Vaughns JD, Välitalo PAJ, van Dongen EPA, van Ramshorst B, Barrett JS, van den Anker JN, Knibbe CAJ. Higher Midazolam Clearance in Obese Adolescents Compared with Morbidly Obese Adults. Clin Pharmacokinet 2018; 57:601-611. [PMID: 28785981 PMCID: PMC5904241 DOI: 10.1007/s40262-017-0579-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The clearance of cytochrome P450 (CYP) 3A substrates is reported to be reduced with lower age, inflammation and obesity. As it is unknown what the overall influence is of these factors in the case of obese adolescents vs. morbidly obese adults, we studied covariates influencing the clearance of the CYP3A substrate midazolam in a combined analysis of data from obese adolescents and morbidly obese adults. METHODS Data from 19 obese adolescents [102.7 kg (62-149.5 kg)] and 20 morbidly obese adults [144 kg (112-186 kg)] receiving intravenous midazolam were analysed, using population pharmacokinetic modelling (NONMEM 7.2). In the covariate analysis, the influence of study group, age, total body weight (TBW), developmental weight (WTfor age and length) and excess body weight (WTexcess = TBW - WTfor age and length) was evaluated. RESULTS The population mean midazolam clearance was significantly higher in obese adolescents than in morbidly obese adults [0.71 (7%) vs. 0.44 (11%) L/min; p < 0.01]. Moreover, clearance in obese adolescents increased with TBW (p < 0.01), which seemed mainly explained by WTexcess, and for which a so-called 'excess weight' model scaling WTfor age and length to the power of 0.75 and a separate function for WTexcess was proposed. DISCUSSION We hypothesise that higher midazolam clearance in obese adolescents is explained by less obesity-induced suppression of CYP3A activity, while the increase with WTexcess is explained by increased liver blood flow. The approach characterising the influence of obesity in the paediatric population we propose here may be of value for use in future studies in obese adolescents.
Collapse
Affiliation(s)
- Anne van Rongen
- Department of Clinical Pharmacy, St. Antonius Hospital, Koekoekslaan 1, 3435 CM, Nieuwegein, The Netherlands
- Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Department of Clinical Pharmacy, Reinier de Graaf Hospital, Delft, The Netherlands
| | - Margreke J E Brill
- Department of Clinical Pharmacy, St. Antonius Hospital, Koekoekslaan 1, 3435 CM, Nieuwegein, The Netherlands
- Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Janelle D Vaughns
- Division of Anesthesiology and Pain Medicine, Children's National Health System, Washington, DC, USA
- Division of Clinical Pharmacology, Children's National Health System, Washington, DC, USA
| | - Pyry A J Välitalo
- Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Eric P A van Dongen
- Department of Anesthesiology and Intensive Care, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Bert van Ramshorst
- Department of Surgery, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Jeffrey S Barrett
- Laboratory for Applied PK/PD, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Johannes N van den Anker
- Division of Clinical Pharmacology, Children's National Health System, Washington, DC, USA
- Division of Pediatric Pharmacology and Pharmacometrics, University Children's Hospital, Basel, Switzerland
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Catherijne A J Knibbe
- Department of Clinical Pharmacy, St. Antonius Hospital, Koekoekslaan 1, 3435 CM, Nieuwegein, The Netherlands.
- Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
40
|
Smit C, De Hoogd S, Brüggemann RJM, Knibbe CAJ. Obesity and drug pharmacology: a review of the influence of obesity on pharmacokinetic and pharmacodynamic parameters. Expert Opin Drug Metab Toxicol 2018; 14:275-285. [PMID: 29431542 DOI: 10.1080/17425255.2018.1440287] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION The rising prevalence of obesity confronts clinicians with dosing problems in the (extreme) overweight population. Obesity has a great impact on key organs that play a role in the pharmacokinetics (PK) and pharmacodynamics (PD) of drugs, however the ultimate impact of these changes on how to adapt the dose may not always be known. Areas covered: In this review, physiological changes associated with obesity are discussed. An overview is provided on the alterations in absorption, distribution, drug metabolism and clearance in (morbid) obesity focusing on general principles that can be extracted from pharmacokinetic studies. Also, relevant pharmacodynamic considerations in obesity are discussed. Expert opinion: Over the last two decades, increased knowledge is generated on PK and PD in obesity. Future research should focus on filling in the knowledge gaps that remain, especially in connecting obesity-related physiological changes with changes in PK and/or PD and vice versa. Ultimately, this knowledge can be used to develop physiologically based PK and PD models on the basis of quantitative systems pharmacology principles. Moreover, efforts should focus on thorough prospective evaluation of developed model-based doses with subsequent implementation of these dosing recommendations in clinical practice.
Collapse
Affiliation(s)
- Cornelis Smit
- a Department of Clinical Pharmacy , St. Antonius Hospital , Nieuwegein , The Netherlands.,b Division of Pharmacology , Leiden Academic Centre for Drug Research, Leiden University , Leiden , the Netherlands
| | - Sjoerd De Hoogd
- a Department of Clinical Pharmacy , St. Antonius Hospital , Nieuwegein , The Netherlands
| | - Roger J M Brüggemann
- c Department of Pharmacy , Radboud University Medical Center , Nijmegen , The Netherlands
| | - Catherijne A J Knibbe
- a Department of Clinical Pharmacy , St. Antonius Hospital , Nieuwegein , The Netherlands.,b Division of Pharmacology , Leiden Academic Centre for Drug Research, Leiden University , Leiden , the Netherlands
| |
Collapse
|
41
|
Mentoor I, Engelbrecht AM, van Jaarsveld PJ, Nell T. Chemoresistance: Intricate Interplay Between Breast Tumor Cells and Adipocytes in the Tumor Microenvironment. Front Endocrinol (Lausanne) 2018; 9:758. [PMID: 30619088 PMCID: PMC6297254 DOI: 10.3389/fendo.2018.00758] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/29/2018] [Indexed: 12/24/2022] Open
Abstract
Excess adipose tissue is a hallmark of an overweight and/or obese state as well as a primary risk factor for breast cancer development and progression. In an overweight/obese state adipose tissue becomes dysfunctional due to rapid hypertrophy, hyperplasia, and immune cell infiltration which is associated with sustained low-grade inflammation originating from dysfunctional adipokine synthesis. Evidence also supports the role of excess adipose tissue (overweight/obesity) as a casual factor for the development of chemotherapeutic drug resistance. Obesity-mediated effects/modifications may contribute to chemotherapeutic drug resistance by altering drug pharmacokinetics, inducing chronic inflammation, as well as altering tumor-associated adipocyte adipokine secretion. Adipocytes in the breast tumor microenvironment enhance breast tumor cell survival and decrease the efficacy of chemotherapeutic agents, resulting in chemotherapeutic resistance. A well-know chemotherapeutic agent, doxorubicin, has shown to negatively impact adipose tissue homeostasis, affecting adipose tissue/adipocyte functionality and storage. Here, it is implied that doxorubicin disrupts adipose tissue homeostasis affecting the functionality of adipose tissue/adipocytes. Although evidence on the effects of doxorubicin on adipose tissue/adipocytes under obesogenic conditions are lacking, this narrative review explores the potential role of obesity in breast cancer progression and treatment resistance with inflammation as an underlying mechanism.
Collapse
Affiliation(s)
- Ilze Mentoor
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Paul J. van Jaarsveld
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Theo Nell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
- *Correspondence: Theo Nell
| |
Collapse
|
42
|
Ning R, Zhan Y, He S, Hu J, Zhu Z, Hu G, Yan B, Yang J, Liu W. Interleukin-6 Induces DEC1, Promotes DEC1 Interaction with RXRα and Suppresses the Expression of PXR, CAR and Their Target Genes. Front Pharmacol 2017; 8:866. [PMID: 29234281 PMCID: PMC5712319 DOI: 10.3389/fphar.2017.00866] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 11/09/2017] [Indexed: 12/17/2022] Open
Abstract
Inflammatory burden is a primary cellular event in many liver diseases, and the overall capacity of drug elimination is decreased. PXR (pregnane X receptor) and CAR (constitutive androstane receptor) are two master regulators of genes encoding drug-metabolizing enzymes and transporters. DEC1 (differentiated embryonic chondrocyte-expressed gene 1) is a ligand-independent transcription factor and reportedly is induced by many inflammatory cytokines including IL-6. In this study, we used primary hepatocytes (human and mouse) as well as HepG2 cell line and demonstrated that IL-6 increased DEC1 expression and decreased the expressions of PXR, CAR, and their target genes. Overexpression of DEC1 had similar effect as IL-6 on the expression of these genes, and knockdown of DEC1 reversed their downregulation by IL-6. Interestingly, neither IL-6 nor DEC1 altered the expression of RXRα, a common dimerization partner for many nuclear receptors including PXR and CAR. Instead, DEC1 was found to interact with RXRα and IL-6 enhanced the interaction. These results conclude that DEC1 uses diverse mechanisms of action and supports IL-6 downregulation of drug-elimination genes and their regulators.
Collapse
Affiliation(s)
- Rui Ning
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Yunran Zhan
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Shuangcheng He
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Jinhua Hu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Zhu Zhu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Gang Hu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Bingfang Yan
- Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, University of Rhode Island, Kingston, RI, United States
| | - Jian Yang
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Wei Liu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
43
|
Effects of meal composition and meal timing on the expression of genes involved in hepatic drug metabolism in rats. PLoS One 2017; 12:e0185520. [PMID: 28968417 PMCID: PMC5624615 DOI: 10.1371/journal.pone.0185520] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/14/2017] [Indexed: 12/22/2022] Open
Abstract
Introduction With chronotherapy, drug administration is synchronized with daily rhythms in drug clearance and pharmacokinetics. Daily rhythms in gene expression are centrally mastered by the suprachiasmatic nucleus of the hypothalamus as well as by tissue clocks containing similar molecular mechanisms in peripheral organs. The central timing system is sensitive to changes in the external environment such as those of the light-dark cycle, meal timing and meal composition. We investigated how changes in diet composition and meal timing would affect the daily hepatic expression rhythms of the nuclear receptors PXR and CAR and of enzymes involved in P450 mediated drug metabolism, as such changes could have consequences for the practice of chronotherapy. Materials and methods Rats were subjected to either a regular chow or a free choice high-fat-high-sugar (fcHFHS) diet. These diets were provided ad libitum, or restricted to either the light phase or the dark phase. In a second experiment, rats had access to chow either ad libitum or in 6 meals equally distributed over 24 hours. Results Pxr, Alas1 and Por displayed significant day-night rhythms under ad libitum chow fed conditions, which for Pxr was disrupted under fcHFHS diet conditions. Although no daily rhythms were detected in expression of CAR, Cyp2b2 and Cyp3a2, the fcHFHS diet did affect basal expression of these genes. In chow fed rats, dark phase feeding induced a diurnal rhythm in Cyp2b2 expression while light phase feeding induced a diurnal rhythm in Car expression and completely shifted the peak expression of Pxr, Car, Cyp2b2, Alas1 and Por. The 6-meals-a-day feeding only abolished the Pxr rhythm but not the rhythms of the other genes. Conclusion We conclude that although nuclear receptors and enzymes involved in the regulation of hepatic drug metabolism are sensitive to meal composition, changes in meal timing are mainly effectuated via changes in the molecular clock.
Collapse
|
44
|
Tissue Specific Modulation of cyp2c and cyp3a mRNA Levels and Activities by Diet-Induced Obesity in Mice: The Impact of Type 2 Diabetes on Drug Metabolizing Enzymes in Liver and Extra-Hepatic Tissues. Pharmaceutics 2017; 9:pharmaceutics9040040. [PMID: 28954402 PMCID: PMC5750646 DOI: 10.3390/pharmaceutics9040040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/18/2017] [Accepted: 09/22/2017] [Indexed: 12/16/2022] Open
Abstract
Various diseases such as type 2 diabetes (T2D) may alter drug clearance. The objective of this study was to evaluate the effects of T2D on CYP450 expressions and activities using high-fat diet (HFD) as a model of obesity-dependent diabetes in C57BL6 mice. The cyp450 mRNA expression levels for 15 different isoforms were determined in the liver and extra-hepatic tissues (kidneys, lungs and heart) of HFD-treated animals (n = 45). Modulation of cyp450 metabolic activities by HFD was assessed using eight known substrates for specific human ortholog CYP450 isoforms: in vitro incubations were conducted with liver and extra-hepatic microsomes. Expression levels of cyp3a11 and cyp3a25 mRNA were decreased in the liver (>2-14-fold) and kidneys (>2-fold) of HFD groups which correlated with a significant reduction in midazolam metabolism (by 21- and 5-fold in hepatic and kidney microsomes, respectively, p < 0.001). HFD was associated with decreased activities of cyp2b and cyp2c subfamilies in all organs tested except in the kidneys (for tolbutamide). Other cyp450 hepatic activities were minimally or not affected by HFD. Taken together, our data suggest that substrate-dependent and tissue-dependent modulation of cyp450 metabolic capacities by early phases of T2D are observed, which could modulate drug disposition and pharmacological effects in various tissues.
Collapse
|
45
|
Vivarelli F, Canistro D, Babot Marquillas C, Cirillo S, De Nicola GR, Iori R, Biagi G, Pinna C, Gentilini F, Pozzo L, Longo V, Paolini M. The combined effect of Sango sprout juice and caloric restriction on metabolic disorders and gut microbiota composition in an obesity model. Int J Food Sci Nutr 2017; 69:192-204. [PMID: 28770644 DOI: 10.1080/09637486.2017.1350940] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The main purpose of this study was to compare the benefits of SSJ supplementation in obese rats with those achieved only by switching the alimentary regimen from high-fat (HFD) to the regular one (RD) in liver, ileum and prostate. Furthermore, changings in caecal chime microbiota were investigated. SSJ was administered to rats in combination with a RD (HFD-RD + SSJ). The switch from HFD to RD led to a weight loss of almost 9.8 g, and the total cholesterol was found to be significantly lower. In the HFD-RD + SSJ group, all values were improved compared with the HFD control, and the weight decrement was higher (-23.29 g) with respect to HFD-RD. HFD led to a widespread increment of oxidative stress (OS) markers in liver, ileum and prostate. SSJ has shown to improve the results achieved by the suspension of HFD and it has proven effective wherever the only switch in diet regimen failed.
Collapse
Affiliation(s)
- Fabio Vivarelli
- a Department of Pharmacy and Biotechnology , Alma Mater Studiorum-University of Bologna , Bologna , Italy
| | - Donatella Canistro
- a Department of Pharmacy and Biotechnology , Alma Mater Studiorum-University of Bologna , Bologna , Italy
| | - Clara Babot Marquillas
- a Department of Pharmacy and Biotechnology , Alma Mater Studiorum-University of Bologna , Bologna , Italy
| | - Silvia Cirillo
- a Department of Pharmacy and Biotechnology , Alma Mater Studiorum-University of Bologna , Bologna , Italy
| | - Gina R De Nicola
- b Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria-Centro di Ricerca Agricoltura e Ambiente (CREA-AA) , Bologna , Italy
| | - Renato Iori
- b Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria-Centro di Ricerca Agricoltura e Ambiente (CREA-AA) , Bologna , Italy
| | - Giacomo Biagi
- c Department of Veterinary Medical Sciences , Alma Mater Studiorum-University of Bologna , Bologna , Italy
| | - Carlo Pinna
- c Department of Veterinary Medical Sciences , Alma Mater Studiorum-University of Bologna , Bologna , Italy
| | - Fabio Gentilini
- c Department of Veterinary Medical Sciences , Alma Mater Studiorum-University of Bologna , Bologna , Italy
| | - Luisa Pozzo
- d Institute of Agricultural Biology and Biotechnology , CNR , Pisa , Italy
| | - Vincenzo Longo
- d Institute of Agricultural Biology and Biotechnology , CNR , Pisa , Italy
| | - Moreno Paolini
- a Department of Pharmacy and Biotechnology , Alma Mater Studiorum-University of Bologna , Bologna , Italy
| |
Collapse
|
46
|
Dalesio NM, Hendrix CW, McMichael DH, Thompson CB, Lee CKK, Pho H, Arias RS, Lynn RR, Galinkin J, Yaster M, Brown RH, Schwartz AR. Effects of Obesity and Leptin Deficiency on Morphine Pharmacokinetics in a Mouse Model. Anesth Analg 2017; 123:1611-1617. [PMID: 27782940 DOI: 10.1213/ane.0000000000001578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Obesity causes multiorgan dysfunction, specifically metabolic abnormalities in the liver. Obese patients are opioid-sensitive and have high rates of respiratory complications after surgery. Obesity also has been shown to cause resistance to leptin, an adipose-derived hormone that is key in regulating hunger, metabolism, and respiratory stimulation. We hypothesized that obesity and leptin deficiency impair opioid pharmacokinetics (PK) independently of one another. METHODS Morphine PK were characterized in C57BL/6J wild-type (WT), diet-induced obese (DIO), and leptin-deficient (ob/ob) mice, and in ob/ob mice given leptin-replacement (LR) therapy. WT mice received several dosing regimens of morphine. Obese mice (30 g) received one 80 mg/kg bolus of morphine. Blood was collected at fixed times after morphine injection for quantification of plasma morphine and morphine 3-glucuronide (M3G) levels. PK parameters used to evaluate morphine metabolism included area-under the curve (AUC150), maximal morphine concentration (CMAX), and M3G-to-morphine ratio, and drug elimination was determined by clearance (Cl/F), volume of distribution, and half-life (T1/2). PK parameters were compared between mouse groups by the use of 1-way analysis of variance, with P values less than .05 considered significant. RESULTS DIO compared with WT mice had significantly decreased morphine metabolism with lower M3G-to-morphine ratio (mean difference [MD]: -4.9; 95% confidence interval [CI]: -8.8 to -0.9) as well as a decreased Cl/F (MD: -4.0; 95% CI: -8.9 to -0.03) Ob/ob compared with WT mice had a large increase in morphine exposure with a greater AUC150 (MD: 980.4; 95% CI: 630.1-1330.6), CMAX (MD: 6.8; 95% CI: 2.7-10.9), and longer T1/2 (MD: 23.1; 95% CI: 10.5-35.6), as well as a decreased Cl/F (MD: -7.0; 95% CI: -11.6 to -2.7). Several PK parameters were significantly greater in ob/ob compared with DIO mice, including AUC150 (MD: 636.4; 95% CI: 207.4-1065.4), CMAX (MD: 5.3; 95% CI: 3.2-10.3), and T1/2 (MD: 18.3; 95% CI: 2.8-33.7). When leptin was replaced in ob/ob mice, PK parameters began to approach DIO and WT levels. LR compared with ob/ob mice had significant decreases in AUC150 (MD: -779.9; 95% CI: -1229.8 to -330), CMAX (MD: -6.1; 95% CI: -11.4 to -0.9), and T1/2 (MD: -19; 95% CI: -35.1 to -2.8). Metabolism increased with LR, with LR mice having a greater M3G-to-morphine ratio compared with DIO (MD: 5.3; 95% CI: 0.3-10.4). CONCLUSIONS Systemic effects associated with obesity decrease morphine metabolism and excretion. A previous study from our laboratory demonstrated that obesity and leptin deficiency decrease the sensitivity of central respiratory control centers to carbon dioxide. Obesity and leptin deficiency substantially decreased morphine metabolism and clearance, and replacing leptin attenuated the PK changes associated with leptin deficiency, suggesting leptin has a direct role in morphine metabolism.
Collapse
Affiliation(s)
- Nicholas M Dalesio
- From the *Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland; †Department of Otolaryngology/ Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, Maryland; ‡Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland; §Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; ‖Department of Pharmacy, and Department of Pediatrics, Johns Hopkins Hospital, Baltimore, Maryland ¶Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland; and #Department of Anesthesiology, University of Colorado, Aurora, Colorado
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Yu H, Shao H, Wu Q, Sun X, Li L, Li K, Li X, Li Y, Zhang Q, Wu J, Chen H. Altered gene expression of hepatic cytochrome P450 in a rat model of intermittent hypoxia with emphysema. Mol Med Rep 2017; 16:881-886. [PMID: 28560400 DOI: 10.3892/mmr.2017.6642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 03/28/2017] [Indexed: 02/05/2023] Open
Abstract
Patients with respiratory overlap syndrome (OS), defined as concomitant chronic obstructive pulmonary disease and obstructive sleep apnea syndrome, may exhibit an increased blood concentration of ingested drugs. This poor elimination of drugs is primarily attributed to downregulated gene expression of the drug‑metabolizing cytochrome P450 enzymes (CYPs) in the liver. However, the underlying mechanisms of the decreased expression of CYPs in OS are poorly understood. In order to address this, a rat model of intermittent hypoxia with emphysema was evaluated in the present study, by analyzing liver gene expression using the reverse transcription‑quantitative polymerase chain reaction. Intermittent hypoxia and cigarette smoke exposure caused upregulation of hepatic inflammatory cytokines, while CYPs were downregulated. This downregulation of CYPs was associated with an increase in nuclear factor (NF)‑κB expression and a decrease in the expression of nuclear receptors pregnane X receptor, constitutive androstane receptor and glucocorticoid receptor, which are the upstream regulatory molecules of CYPs. The results of the present study indicated that, during the development of OS, systematic inflammatory reactions may downregulate hepatic CYP gene expression via the NF‑κB signaling pathway.
Collapse
Affiliation(s)
- Hongzhi Yu
- Department of Respiration, Tianjin Institute of Respiratory Diseases, Tianjin Haihe Hospital, Tianjin Medical University, Tianjin 300350, P.R. China
| | - Hongxia Shao
- Department of Respiration, Tianjin Institute of Respiratory Diseases, Tianjin Haihe Hospital, Tianjin Medical University, Tianjin 300350, P.R. China
| | - Qi Wu
- Department of Respiration, Tianjin Institute of Respiratory Diseases, Tianjin Haihe Hospital, Tianjin Medical University, Tianjin 300350, P.R. China
| | - Xin Sun
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin Haihe Hospital, Tianjin Medical University, Tianjin 300350, P.R. China
| | - Li Li
- Department of Respiration, Tianjin Institute of Respiratory Diseases, Tianjin Haihe Hospital, Tianjin Medical University, Tianjin 300350, P.R. China
| | - Kuan Li
- Department of Basic Medicine, Tianjin Institute of Respiratory Diseases, Tianjin Haihe Hospital, Tianjin Medical University, Tianjin 300350, P.R. China
| | - Xue Li
- Department of Basic Medicine, Tianjin Institute of Respiratory Diseases, Tianjin Haihe Hospital, Tianjin Medical University, Tianjin 300350, P.R. China
| | - Yu Li
- Department of Basic Medicine, Tianjin Institute of Respiratory Diseases, Tianjin Haihe Hospital, Tianjin Medical University, Tianjin 300350, P.R. China
| | - Qiuyang Zhang
- Department of Basic Medicine, Tianjin Institute of Respiratory Diseases, Tianjin Haihe Hospital, Tianjin Medical University, Tianjin 300350, P.R. China
| | - Junping Wu
- Department of Respiration, Tianjin Institute of Respiratory Diseases, Tianjin Haihe Hospital, Tianjin Medical University, Tianjin 300350, P.R. China
| | | |
Collapse
|
48
|
Ning M, Jeong H. High-Fat Diet Feeding Alters Expression of Hepatic Drug-Metabolizing Enzymes in Mice. Drug Metab Dispos 2017; 45:707-711. [PMID: 28442500 PMCID: PMC5452677 DOI: 10.1124/dmd.117.075655] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/19/2017] [Indexed: 02/01/2023] Open
Abstract
Medical conditions accompanying obesity often require drug therapy, but whether and how obesity alters the expression of drug-metabolizing enzymes and thus drug pharmacokinetics is poorly defined. Previous studies have shown that high-fat diet (HFD) feeding and subsequent obesity in mice lead to altered expression of transcriptional regulators for cytochrome P450 CYP2D6, including hepatocyte nuclear factor 4α (HNF4α, a transcriptional activator of CYP2D6) and small heterodimer partner (SHP, a transcriptional repressor of CYP2D6). The objective of this study was to examine whether diet-induced obesity alters CYP2D6 expression by modulating HNF4α and SHP expression. Male CYP2D6-humanized transgenic (Tg-CYP2D6) mice were fed with HFD or matching control diet for 18 weeks. Hepatic mRNA expression of CYP2D6 decreased to a small extent in the HFD group (by 31%), but the differences in CYP2D6 protein and activity levels in hepatic S9 fractions were found insignificant between the groups. Although hepatic SHP expression did not differ between the groups, HNF4α mRNA and protein levels decreased by ∼30% in the HFD group. Among major mouse endogenous cytochrome P450 genes, Cyp1a2 and Cyp2c37 showed significant decreases in the HFD group, whereas Cyp2e1 expression did not differ between groups. Cyp2b10 and Cyp3a11 expression was higher in the HFD group, with corresponding 2.9-fold increases in hepatic CYP3A activities in HFD-fed mice. Together, these results suggest that obesity has minimal effects on CYP2D6-mediated drug metabolism, although it modulates the expression of mouse endogenous P450s in a gene-specific manner.
Collapse
Affiliation(s)
- Miaoran Ning
- Department of Pharmacy Practice (H.J.) and Department of Biopharmaceutical Sciences (M.N., H.J.), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Hyunyoung Jeong
- Department of Pharmacy Practice (H.J.) and Department of Biopharmaceutical Sciences (M.N., H.J.), College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
49
|
Tomankova V, Anzenbacher P, Anzenbacherova E. Effects of obesity on liver cytochromes P450 in various animal models. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2017; 161:144-151. [DOI: 10.5507/bp.2017.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 05/11/2017] [Indexed: 01/24/2023] Open
|
50
|
Abdussalam A, Elshenawy OH, bin Jardan YA, El-Kadi AO, Brocks DR. The Obesogenic Potency of Various High-Caloric Diet Compositions in Male Rats, and Their Effects on Expression of Liver and Kidney Proteins Involved in Drug Elimination. J Pharm Sci 2017; 106:1650-1658. [DOI: 10.1016/j.xphs.2017.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/12/2017] [Accepted: 02/01/2017] [Indexed: 12/15/2022]
|