1
|
CNP, the Third Natriuretic Peptide: Its Biology and Significance to the Cardiovascular System. BIOLOGY 2022; 11:biology11070986. [PMID: 36101368 PMCID: PMC9312265 DOI: 10.3390/biology11070986] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 11/19/2022]
Abstract
Simple Summary CNP is the third natriuretic peptide to be isolated and is widely expressed in the central nervous system, osteochondral system, and vascular system. The receptor that is mainly targeted by CNP is GC-B, which differs from GC-A, the receptor targeted by the other two natriuretic peptides, ANP and BNP. Consequently, the actions of CNP differ somewhat from those of ANP and BNP. Research into the actions of CNP has shown that CNP attenuates cardiac remodeling in animal models of cardiac hypertrophy, myocardial infarction, and myocarditis. Studies examining CNP/GC-B signaling showed that it contributes to the prevention of cardiac stiffness. Endogenous CNP, perhaps acting in part through CNP/NPR-C signaling, contributes to the regulation of vascular function and blood pressure. CNP regulates vascular remodeling and angiogenesis via CNP/GC-B/CGK signaling. CNP attenuates interstitial fibrosis and fibrosis-related gene expression in pressure overload and myocardial infarction models. The clinical application of CNP as a therapeutic agent for cardiovascular diseases is anticipated. Abstract The natriuretic peptide family consists of three biologically active peptides: ANP, BNP, and CNP. CNP is more widely expressed than the other two peptides, with significant levels in the central nervous system, osteochondral system, and vascular system. The receptor that is mainly targeted by CNP is GC-B, which differs from GC-A, the receptor targeted by ANP and BNP. Consequently, the actions of CNP differ somewhat from those of ANP and BNP. CNP knockout leads to severe dwarfism, and there has been important research into the role of CNP in the osteochondral system. As a result, a CNP analog is now available for clinical use in patients with achondroplasia. In the cardiovascular system, CNP and its downstream signaling are involved in the regulatory mechanisms underlying myocardial remodeling, cardiac function, vascular tone, angiogenesis, and fibrosis, among others. This review focuses on the roles of CNP in the cardiovascular system and considers its potential for clinical application in the treatment of cardiovascular diseases.
Collapse
|
2
|
Vang A, da Silva Gonçalves Bos D, Fernandez-Nicolas A, Zhang P, Morrison AR, Mancini TJ, Clements RT, Polina I, Cypress MW, Jhun BS, Hawrot E, Mende U, O-Uchi J, Choudhary G. α7 Nicotinic acetylcholine receptor mediates right ventricular fibrosis and diastolic dysfunction in pulmonary hypertension. JCI Insight 2021; 6:142945. [PMID: 33974567 PMCID: PMC8262476 DOI: 10.1172/jci.insight.142945] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Right ventricular (RV) fibrosis is a key feature of maladaptive RV hypertrophy and dysfunction and is associated with poor outcomes in pulmonary hypertension (PH). However, mechanisms and therapeutic strategies to mitigate RV fibrosis remain unrealized. Previously, we identified that cardiac fibroblast α7 nicotinic acetylcholine receptor (α7 nAChR) drives smoking-induced RV fibrosis. Here, we sought to define the role of α7 nAChR in RV dysfunction and fibrosis in the settings of RV pressure overload as seen in PH. We show that RV tissue from PH patients has increased collagen content and ACh expression. Using an experimental rat model of PH, we demonstrate that RV fibrosis and dysfunction are associated with increases in ACh and α7 nAChR expression in the RV but not in the left ventricle (LV). In vitro studies show that α7 nAChR activation leads to an increase in adult ventricular fibroblast proliferation and collagen content mediated by a Ca2+/epidermal growth factor receptor (EGFR) signaling mechanism. Pharmacological antagonism of nAChR decreases RV collagen content and improves RV function in the PH model. Furthermore, mice lacking α7 nAChR exhibit improved RV diastolic function and have lower RV collagen content in response to persistently increased RV afterload, compared with WT controls. These finding indicate that enhanced α7 nAChR signaling is an important mechanism underlying RV fibrosis and dysfunction, and targeted inhibition of α7 nAChR is a potentially novel therapeutic strategy in the setting of increased RV afterload.
Collapse
Affiliation(s)
- Alexander Vang
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA
| | - Denielli da Silva Gonçalves Bos
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Ana Fernandez-Nicolas
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Peng Zhang
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Alan R. Morrison
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Thomas J. Mancini
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA
| | - Richard T. Clements
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Iuliia Polina
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael W. Cypress
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bong Sook Jhun
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Edward Hawrot
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Ulrike Mende
- Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Cardiovascular Research Center, Lifespan Cardiovascular Institute, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Jin O-Uchi
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gaurav Choudhary
- Vascular Research Laboratory, Providence VA Medical Center, Providence, Rhode Island, USA.,Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
3
|
C-Type Natriuretic Peptide Ameliorates Lipopolysaccharide-Induced Cardiac Dysfunction in Rats with Pulmonary Arterial Hypertension. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2813025. [PMID: 30671449 PMCID: PMC6317089 DOI: 10.1155/2018/2813025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/30/2018] [Accepted: 11/21/2018] [Indexed: 11/18/2022]
Abstract
Lipopolysaccharide induces rapid deterioration of cardiac function in rats with pulmonary arterial hypertension. It was desired to investigate if this cardiac dysfunction could be treated by C-type natriuretic peptide. Rat pulmonary arterial hypertension was induced by intraperitoneal injection of monocrotaline. Hemodynamics and cardiac function were measured by pressure-volume (P-V) catheter before and after the rats were treated with lipopolysaccharide and C-type natriuretic peptide. Cyclic guanosine 3',5'-monophosphate (cGMP) level was determined by enzyme-linked immunosorbent assay analysis. After the rats were injected with low-dose lipopolysaccharide, they experienced left ventricle systolic function deterioration. Administration of C-type natriuretic peptide improved hemodynamics and left ventricle systolic function. cGMP level was elevated after C-type natriuretic peptide treatment. C-type natriuretic peptide could ameliorate lipopolysaccharide-induced cardiac dysfunction and restore hemodynamic deterioration in rats with pulmonary arterial hypertension.
Collapse
|
4
|
Xu J, Wang J, Shao C, Zeng X, Sun L, Kong H, Xie W, Wang H. New dynamic viewing of mast cells in pulmonary arterial hypertension (PAH): contributors or outsiders to cardiovascular remodeling. J Thorac Dis 2018; 10:3016-3026. [PMID: 29997969 DOI: 10.21037/jtd.2018.05.59] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background In patients with pulmonary arterial hypertension (PAH), mast cells (MCs) are extensively observed around pulmonary vessels. However, their temporal and spatial variation during PAH development remains obscure. This study investigated the dynamic evolution of MCs in lungs and right ventricles (RV) to illuminate their role in pulmonary vascular and RV remodeling. Methods The PAH model was established by a single intra-peritoneal injection of monocrotaline (MCT, 60 mg/kg) in rats. On day 0, 3, 7, 14, and 28 after MCT injection, lung and RV tissues were harvested for staining with hematoxylin and eosin (HE), Gomori aldehyde fuchsin (GAF), toluidine blue (TB) and picrosirius red (PSR). Immunohistochemistry was performed to evaluate the levels of α-SMA, CD68 and tryptase. A simple RV remolding model was produced as well by pulmonary artery banding (PAB). RV tissues were collected to determine the degree of MCs infiltration. Results After MCT challenge, elevated mean pulmonary arterial pressure (mPAP), increased RV systolic pressure (RVSP), pulmonary arterial media hypertrophy as well as distal vascular muscularization gradually occurred with time. MCs recruitment along with CD68+ macrophages accumulation was observed around distal pulmonary vessels and in alveolar septa. Excessive infiltration and degranulation of MCs were detected in MCT-treated group in lung tissues but not in RV. In addition, no exacerbation of MCs infiltration and degranulation in RV was noted in PAB-treated rats, suggesting few contributions of MCs to RV remodeling. Conclusions Our findings implied a crucial role of MCs in the remodeling of pulmonary vessels, not RV, which probably through releasing cytokines such as tryptase. The present study enriches the knowledge about PAH, providing a potential profile of MCs as a switch for the treatment of PAH.
Collapse
Affiliation(s)
- Jian Xu
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jingjing Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Chengjie Shao
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaoning Zeng
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lixiang Sun
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hui Kong
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Weiping Xie
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hong Wang
- Department of Respiratory & Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
5
|
Vang A, Clements RT, Chichger H, Kue N, Allawzi A, O'Connell K, Jeong EM, Dudley SC, Sakhatskyy P, Lu Q, Zhang P, Rounds S, Choudhary G. Effect of α7 nicotinic acetylcholine receptor activation on cardiac fibroblasts: a mechanism underlying RV fibrosis associated with cigarette smoke exposure. Am J Physiol Lung Cell Mol Physiol 2017; 312:L748-L759. [PMID: 28258105 PMCID: PMC5451597 DOI: 10.1152/ajplung.00393.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 02/17/2017] [Accepted: 02/23/2017] [Indexed: 01/03/2023] Open
Abstract
Right ventricular (RV) dysfunction is associated with numerous smoking-related illnesses, including chronic obstructive pulmonary disease (COPD), in which it is present even in the absence of pulmonary hypertension. It is unknown whether exposure to cigarette smoke (CS) has direct effects on RV function and cardiac fibroblast (CF) proliferation or collagen synthesis. In this study, we evaluated cardiac function and fibrosis in mice exposed to CS and determined mechanisms of smoke-induced changes in CF signaling and fibrosis. AKR mice were exposed to CS for 6 wk followed by echocardiography and evaluation of cardiac hypertrophy, collagen content, and pulmonary muscularization. Proliferation and collagen content were evaluated in primary isolated rat CFs exposed to CS extract (CSE) or nicotine. Markers of cell proliferation, fibrosis, and proliferative signaling were determined by immunoblot or Sircol collagen assay. Mice exposed to CS had significantly decreased RV function, as determined by tricuspid annular plane systolic excursion. There were no changes in left ventricular parameters. RV collagen content was significantly elevated, but there was no change in RV hypertrophy or pulmonary vascular muscularization. CSE directly increased CF proliferation and collagen content in CF. Nicotine alone reproduced these effects. CSE and nicotine-induced fibroblast proliferation and collagen content were mediated through α7 nicotinic acetylcholine receptors and were dependent on PKC-α, PKC-δ, and reduced p38-MAPK phosphorylation. CS and nicotine have direct effects on CFs to induce proliferation and fibrosis, which may negatively affect right heart function.
Collapse
MESH Headings
- Animals
- Cell Proliferation/drug effects
- Enzyme Activation/drug effects
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Heart Ventricles/drug effects
- Heart Ventricles/pathology
- Heart Ventricles/physiopathology
- Hemodynamics/drug effects
- Hypertrophy, Right Ventricular/complications
- Hypertrophy, Right Ventricular/diagnostic imaging
- Hypertrophy, Right Ventricular/pathology
- Hypertrophy, Right Ventricular/physiopathology
- MAP Kinase Signaling System/drug effects
- Male
- Mice, Inbred AKR
- Myocardium/pathology
- Nicotine/pharmacology
- Phosphorylation/drug effects
- Protein Kinase C-alpha/metabolism
- Protein Kinase C-delta/metabolism
- Rats, Sprague-Dawley
- Smoking/adverse effects
- Vascular Remodeling/drug effects
- Ventricular Dysfunction, Right/complications
- Ventricular Dysfunction, Right/diagnostic imaging
- Ventricular Dysfunction, Right/pathology
- Ventricular Dysfunction, Right/physiopathology
- alpha7 Nicotinic Acetylcholine Receptor/metabolism
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Alexander Vang
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
| | - Richard T Clements
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
- Department of Surgery, Rhode Island Hospital, Providence, Rhode Island; and
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
| | - Havovi Chichger
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Nouaying Kue
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
| | - Ayed Allawzi
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island
| | - Kelly O'Connell
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Euy-Myoung Jeong
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
| | - Samuel C Dudley
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
| | - Pavlo Sakhatskyy
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Qing Lu
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Peng Zhang
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
| | - Sharon Rounds
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Gaurav Choudhary
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island;
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
6
|
Constitutively active form of natriuretic peptide receptor 2 ameliorates experimental pulmonary arterial hypertension. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16044. [PMID: 27419193 PMCID: PMC4934588 DOI: 10.1038/mtm.2016.44] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 05/18/2016] [Accepted: 05/18/2016] [Indexed: 12/12/2022]
Abstract
We recently found a constitutively active mutant of natriuretic peptide receptor 2 (caNPR2; V883M), which synthesizes larger amounts of cyclic guanosine monophosphate (cGMP) intracellularly without any ligand stimulation than existing drugs. The aim of this study was to investigate the therapeutic effects of gene transduction using caNPR2 for pulmonary arterial hypertension (PAH). In vitro gene transduction into human pulmonary arterial smooth muscle cells using Sendai virus (SeV) vectors carrying caNPR2 induced 10,000-fold increases in the synthesis of cGMP without ligand stimulation, and the proliferation of caNPR2-expressing cells was significantly attenuated. The PAH model rats generated by hypoxia and the administration of SU5416 were then treated with SeV vectors through a direct injection into the left pulmonary artery. Right ventricular systolic pressure was significantly decreased 2 weeks after the treatment, while systemic blood pressure remained unchanged. Histological analyses revealed that the medial wall thickness and occlusion rate of pulmonary arterioles were significantly improved in caNPR2-treated lungs. Neither the systemic integration of virus vectors nor side effects were observed. The massive stimulation of cGMP synthesis by gene therapy with caNPR2 was safe and effective in a PAH rat model and, thus, has potential as a novel therapy for patients with severe progressive PAH.
Collapse
|
7
|
Zayed MA, Harring SD, Abendschein DR, Vemuri C, Lu D, Detering L, Liu Y, Woodard PK. Natriuretic Peptide Receptor-C is Up-Regulated in the Intima of Advanced Carotid Artery Atherosclerosis. JOURNAL OF MEDICAL & SURGICAL PATHOLOGY 2016; 1:131. [PMID: 27547837 PMCID: PMC4989919 DOI: 10.4172/2472-4971.1000131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Natriuretic peptide receptor-C (NPR-C/NPR-3) is a cell surface protein involved in vascular remodelling that is up-regulated in atherosclerosis. NPR-C expression has not been well characterized in human carotid artery occlusive lesions. We hypothesized that NPR-C expression correlates with intimal features of vulnerable atherosclerotic carotid artery plaque. METHODS To test this hypothesis, we evaluated NPR-C expression by immunohistochemistry (IHC) in carotid endarterectomy (CEA) specimens isolated from 18 patients. The grade, location, and co-localization of NPR-C in CEA specimens were evaluated using two tissue analysis techniques. RESULTS Relative to minimally diseased CEA specimens, we observed avid NPR-C tissue staining in the intima of maximally diseased CEA specimens (65%; p=0.06). Specifically, maximally diseased CEA specimens demonstrated increased NPR-C expression in the superficial intima (61%, p=0.17), and deep intima (138% increase; p=0.05). In the superficial intima, NPR-C expression significantly co-localized with vascular smooth muscle cells (VSMCs) and macrophages. The intensity of NPR-C expression was also higher in the superficial intima plaque shoulder and cap regions, and significantly correlated with atheroma and fibroatheroma vulnerable plaque regions (β=1.04, 95% CI=0.46, 1.64). CONCLUSION These findings demonstrate significant NPR-C expression in the intima of advanced carotid artery plaques. Furthermore, NPR-C expression was higher in vulnerable carotid plaque intimal regions, and correlate with features of advanced disease. Our findings suggest that NPR-C may serve as a potential biomarker for carotid plaque vulnerability and progression, in patients with advanced carotid artery occlusive disease.
Collapse
Affiliation(s)
- Mohamed A Zayed
- Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, USA and Department of Surgery, Veterans Affairs St. Louis Health Care System, USA
| | - Scott D Harring
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, USA
| | - Dana R Abendschein
- Center for Cardiovascular Research, Department of Internal Medicine, Washington University School of Medicine, USA
| | - Chandu Vemuri
- Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, USA and Department of Surgery, Veterans Affairs St. Louis Health Care System, USA
| | - Dongsi Lu
- Department of Pathology and Immunology, Washington University School of Medicine, USA
| | - Lisa Detering
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, USA
| | - Yongjian Liu
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, USA
| | - Pamela K Woodard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, USA
| |
Collapse
|
8
|
Maarman G, Lecour S, Butrous G, Thienemann F, Sliwa K. A comprehensive review: the evolution of animal models in pulmonary hypertension research; are we there yet? Pulm Circ 2013; 3:739-56. [PMID: 25006392 PMCID: PMC4070827 DOI: 10.1086/674770] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 06/28/2013] [Indexed: 02/06/2023] Open
Abstract
Pulmonary hypertension (PH) is a disorder that develops as a result of remodeling of the pulmonary vasculature and is characterized by narrowing/obliteration of small pulmonary arteries, leading to increased mean pulmonary artery pressure and pulmonary vascular resistance. Subsequently, PH increases the right ventricular afterload, which leads to right ventricular hypertrophy and eventually right ventricular failure. The pathophysiology of PH is not fully elucidated, and current treatments have only a modest impact on patient survival and quality of life. Thus, there is an urgent need for improved treatments or a cure. The use of animal models has contributed extensively to the current understanding of PH pathophysiology and the investigation of experimental treatments. However, PH in current animal models may not fully represent current clinical observations. For example, PH in animal models appears to be curable with many therapeutic interventions, and the severity of PH in animal models is also believed to correlate poorly with that observed in humans. In this review, we discuss a variety of animal models in PH research, some of their contributions to the field, their shortcomings, and how these have been addressed. We highlight the fact that the constant development and evolution of animal models will help us to more closely model the severity and heterogeneity of PH observed in humans.
Collapse
Affiliation(s)
- Gerald Maarman
- Hatter Institute for Cardiovascular Research in Africa (HICRA), Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa (HICRA), Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Ghazwan Butrous
- Pulmonary Vascular Research Institute, Kent Enterprise Hub, University of Kent, Canterbury, United Kingdom
| | - Friedrich Thienemann
- Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Karen Sliwa
- Hatter Institute for Cardiovascular Research in Africa (HICRA), Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|