1
|
Zhang Y, Zhao H, Su Y, Yang S, Kang T, Li L. Hypoxic human adipose mesenchymal stem cells-derived extracellular vesicles induce P311 expression and inhibit activation and injury of human brain microvascular endothelial cells. Clin Hemorheol Microcirc 2025; 89:205-216. [PMID: 39973441 DOI: 10.1177/13860291241291326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
ObjectiveStem cell therapy can modify angiogenic pathways. Neural protein 3.1 (P311) possesses the pro-angiogenic property. This study strived to explore the action and mechanism of human adipose mesenchymal stem cells (hADSCs) in human brain microvascular endothelial cell (hBMEC) injury by regulating P311.MethodsThe hADSCs of the 3rd passage were stained with oil red O, Alizarin red, and Alcian blue to assess adipogenic, osteogenic, and chondrogenic differentiation, followed by an analysis of immune phenotype via flow cytometry. After culturing hADSCs in hypoxic (5% oxygen) and normoxic (20% oxygen) conditions, extracellular vesicles (EVs) were extracted via ultracentrifugation, followed by morphology observation by microscopy, size distribution analysis via Nanoparticle tracking analysis, and surface marker determination by Western blot. hBMECs were treated with lipopolysaccharide (LPS) and cultured with normoxia or hypoxic hADSC-EVs. The effects of normoxia and hypoxic hADSC-EVs on proliferation, migration, and tube formation of hBMECs were assessed via CCK-8, Transwell, and tube formation assays. hBMECs were transfected with pcDNA3.0-P311 or P311 siRNA to evaluate the action of P311 on hBMEC injury.ResultsHypoxic hADSC-EVs had a larger mean diameter, a wider diameter distribution range, and a higher particle concentration than normoxic hADSC-EVs. Hypoxia and normoxic hADSC-EVs were internalized by hBMECs, and hypoxic hADSC-EVs were more internalized. LPS suppressed hBMEC proliferation, migration, and tube formation and induced hBMEC injury. Hypoxia and normoxic hADSC-EVs ameliorated hBMEC injury, and hypoxic hADSC-EVs were superior to normoxic hADSC-EVs. P311 overexpression mitigated hBMEC injury, whereas P311 knockdown partly averted hypoxic hADSC-EV-exerted suppression on hBMEC injury.ConclusionHypoxic hADSC-EVs can protect against LPS-induced hBMEC injury by upregulating P311.
Collapse
Affiliation(s)
- Yun Zhang
- Hospital for Chronic Neurological diseases, Xi'an International Medical Center Hospital Affiliated to Northwest University, Xi'an, China
| | - Hanghang Zhao
- Hospital for Chronic Neurological diseases, Xi'an International Medical Center Hospital Affiliated to Northwest University, Xi'an, China
| | - Yu Su
- Hospital for Chronic Neurological diseases, Xi'an International Medical Center Hospital Affiliated to Northwest University, Xi'an, China
| | - Shudong Yang
- Hospital for Chronic Neurological diseases, Xi'an International Medical Center Hospital Affiliated to Northwest University, Xi'an, China
| | - Tao Kang
- Hospital for Chronic Neurological diseases, Xi'an International Medical Center Hospital Affiliated to Northwest University, Xi'an, China
| | - Li Li
- Hospital for Chronic Neurological diseases, Xi'an International Medical Center Hospital Affiliated to Northwest University, Xi'an, China
| |
Collapse
|
2
|
Yousefi Z, Nourbakhsh M, Sahebghadam Lotfi A. Pirfenidone Downregulates eIF6, P311, and TGF-β Expression and Improves Liver Fibrosis Induced by Bile Duct Ligation in Wistar Rats: Evidence for Liver Regeneration. DNA Cell Biol 2025; 44:109-124. [PMID: 39681345 DOI: 10.1089/dna.2024.0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
Liver fibrosis (LF) is a clinical disorder characterized by inflammation and excessive accumulation of extracellular matrix (ECM). This study investigates the effects of the antifibrotic compound pirfenidone (PFD) on improving LF through histological changes and modulation of eukaryotic translation initiation factor 6 (eIF6), P311, and transforming growth factor beta (TGF-β) in rats with bile duct ligation (BDL)-induced LF. Rats received daily doses of PFD (200 and 500 mg/kg) for 4 weeks. The study encompassed biochemical, pathological, and immunohistochemical (IHC) analyses. mRNA levels of eIF6, P311, TGF-β, ECM deposition, hepatic stellate cell (HSC) activation, and inflammatory mediator genes were measured by RT-qPCR. Protein levels of eIF6, P311, and TGF-β were detected by western blotting. Compared with the BDL group, PFD dose-dependently reduced hydroxyproline content, liver index, biochemical parameters, fibrosis score, and fibrosis area. PFD also modulated BDL-induced hepatic inflammation, ECM accumulation, and HSC activation. IHC staining of Ki-67 and hepatocyte paraffin-1 revealed that PFD enhanced liver regeneration. The research confirmed that PFD gradually downregulated elevated eIF6, P311, and TGF-β levels in BDL-induced LF. These findings suggest that PFD could be a potential treatment for LF, as it may help attenuate fibrosis and enhance liver regeneration, possibly through the modulation of these specific markers.
Collapse
Affiliation(s)
- Zeynab Yousefi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mitra Nourbakhsh
- Department of Clinical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Sahebghadam Lotfi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
3
|
Wang S, Zhang X, Hao F, Li Y, Sun C, Zhan R, Wang Y, He W, Li H, Luo G. Reconstruction and Functional Annotation of P311 Protein-Protein Interaction Network Reveals Its New Functions. Front Genet 2019; 10:109. [PMID: 30838032 PMCID: PMC6390203 DOI: 10.3389/fgene.2019.00109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/30/2019] [Indexed: 12/24/2022] Open
Abstract
P311 is a highly conserved multifunctional protein. However, it does not belong to any established family of proteins, and its biological function has not been entirely determined. This study aims to reveal the unknown molecular and cellular function of P311. OCG (Overlapping Cluster Generator) is a clustering method used to partition a protein-protein network into overlapping clusters. Multifunctional proteins are at the intersection of relevant clusters. DAVID is an analytic tool used to extract biological meaning from a large protein list. Here we presented OD2 (OCG + DAVID + 2 human PPI datasets), a novel strategy to increase the likelihood to identify biological functions most pertinent to the multifunctional proteins. The principle of OD2 is that OCG prepares the protein lists from multifunctional protein relevant overlapping clusters, for a functional enrichment analysis by DAVID, and the similar functional enrichments, which occurs simultaneously when analyzing two human PPI datasets, are supposed to be the predicted functions. By applying OD2 to two reconstructed human PPI datasets, we supposed the function of the P311 in inflammatory responses, cell proliferation and coagulation, which were confirmed by the following biological experiments. Collectively, our study preliminarily found that P311 could play a role in inflammatory responses, cell proliferation and coagulation. Further studies are required to validate and elucidate the underlying mechanism.
Collapse
Affiliation(s)
- Song Wang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaorong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fen Hao
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yan Li
- Laboratory Center of Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chao Sun
- The Sixth Resignation Cadre Sanatorium of Shandong Province Military Region, Qingdao, China
| | - Rixing Zhan
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ying Wang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Weifeng He
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Haisheng Li
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China.,The 324th Hospital of Chinese People's Liberation Army, Chongqing, China
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
4
|
Choudhary A, Vanichkina DP, Ender C, Crawford J, Baillie GJ, Calcino AD, Ru K, Taft RJ. Identification of miR-29b targets using 3-cyanovinylcarbazole containing mimics. RNA (NEW YORK, N.Y.) 2018; 24:597-608. [PMID: 29246928 PMCID: PMC5855958 DOI: 10.1261/rna.064923.117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
MicroRNAs (miRNAs) are highly conserved ∼22 nt small noncoding RNAs that bind partially complementary sequences in target transcripts. MicroRNAs regulate both translation and transcript stability, and play important roles in development, cellular homeostasis, and disease. There are limited approaches available to agnostically identify microRNA targets transcriptome-wide, and methods using miRNA mimics, which in principle identify direct miRNA:transcript pairs, have low sensitivity and specificity. Here, we describe a novel method to identify microRNA targets using miR-29b mimics containing 3-cyanovinylcarbazole (CNVK), a photolabile nucleoside analog. We demonstrate that biotin-tagged, CNVK-containing miR-29b (CNVK-miR-29b) mimics are nontoxic in cell culture, associate with endogenous mammalian Argonaute2, are sensitive for known targets and recapitulate endogenous transcript destabilization. Partnering CNVK-miR-29b with ultra-low-input RNA sequencing, we recover ∼40% of known miR-29b targets and find conservation of the focal adhesion and apoptotic target pathways in mouse and human. We also identify hundreds of novel targets, including NRAS, HOXA10, and KLF11, with a validation rate of 71% for a subset of 73 novel target transcripts interrogated using a high-throughput luciferase assay. Consistent with previous reports, we show that both endogenous miR-29b and CNVK-miR-29b are trafficked to the nucleus, but find no evidence of nuclear-specific miR-29b transcript binding. This may indicate that miR-29b nuclear sequestration is a regulatory mechanism in itself. We suggest that CNVK-containing small RNA mimics may find applicability in other experimental models.
Collapse
Affiliation(s)
- Anupma Choudhary
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- CSIRO Health and Biosecurity, Australian Animal Health Laboratory, Newcomb 3220, Australia
| | - Darya P Vanichkina
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Gene and Stem Cell Therapy Program, Centenary Institute, University of Sydney, Sydney 2050, Australia
| | - Christine Ender
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Joanna Crawford
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Gregory J Baillie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Andrew D Calcino
- Department of Integrative Zoology, University of Vienna, Vienna 1090, Austria
| | - Kelin Ru
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ryan J Taft
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Medicine and Health Services, Departments of Integrated Systems Biology and of Pediatrics, George Washington University, Washington DC 20052, USA
- Illumina, Inc., San Diego, California 92122, USA
| |
Collapse
|
5
|
Potential role for Ext1-dependent heparan sulfate in regulating P311 gene expression in A549 carcinoma cells. Biochim Biophys Acta Gen Subj 2018; 1862:1472-1481. [PMID: 29580921 DOI: 10.1016/j.bbagen.2018.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/14/2018] [Accepted: 03/21/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Exostosin-1 (EXT1), a member of the EXT protein family, is indispensable for synthesis of heparan sulfate (HS) chains that bind to and modulate the signaling efficiency of numerous growth factor activities. We have previously shown that Ext1 mutated mouse embryonic fibroblasts produce short sulfated HS chains which dramatically influence tumor cell behavior in a 3-dimensional (3D) heterospheroid system composed of tumor cells and fibroblasts. METHODS In this study, we have used both 2D co-culture and 3D heterospheroid models, consisting of human A549 carcinoma cells co-cultured with wild-type or Ext1-mutated mouse embryonic fibroblasts. RESULTS AND CONCLUSIONS Gene expression profiling of differentially expressed genes in fibroblast/A549 heterospheroids identified P311 as a gene substantially down-regulated in A549 cells co-cultured with Ext1-mutated fibroblasts. In addition, we observed that the Ext1 mutants displayed reduced Tgf-β1 mRNA levels and lower levels of secreted active TGF-β protein. Re-introduction of Ext1 in the Ext1 mutant fibroblasts rescued the levels of Tgf-β1 mRNA, increased the amounts of secreted active TGF-β in these cells, as well as P311 mRNA levels in adjacent A549 cells. Accordingly, small interfering RNAs (siRNAs) against fibroblast Tgf-β1 reduced P311 expression in neighboring A549 tumor cells. Our data raises the possibility that fibroblast Ext1 levels play a role in P311 expression in A549/fibroblast co-culture through TGF-β1. GENERAL SIGNIFICANCE This study considers a possible novel mechanism of Ext1-regulated heparan sulfate structure in modifying tumor-stroma interactions through altering stromal tgf-ß1 expression.
Collapse
|
6
|
Tan J, Wu J. Current progress in understanding the molecular pathogenesis of burn scar contracture. BURNS & TRAUMA 2017; 5:14. [PMID: 28546987 PMCID: PMC5441009 DOI: 10.1186/s41038-017-0080-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/17/2017] [Indexed: 01/17/2023]
Abstract
Abnormal wound healing is likely to induce scar formation, leading to dysfunction, deformity, and psychological trauma in burn patients. Despite the advancement of medical care treatment, scar contracture in burn patients remains a challenge. Myofibroblasts play a key role in scar contracture. It has been demonstrated that myofibroblasts, as well as inflammatory cells, fibroblasts, endothelial cells, and epithelial cells, secrete transforming growth factor-β1 (TGF-β1) and other cytokines, which can promote persistent myofibroblast activation via a positive regulation loop. In addition to the cellular contribution, the microenvironments, including the mechanical tension and integrin family, are also involved in scar contracture. Most recently, eukaryotic initiation factor 6 (eIF6), an upstream regulator of TGF-β1, has been demonstrated to be involved in myofibroblast differentiation and contraction in both in vitro fibroblast-populated collagen lattice (FPCL) and in vivo external mechanical stretch models. Moreover, the data showed that P311 could induce the transdifferentiation of epidermal stem cells to myofibroblasts by upregulating TGF-β1 expression, which mediated myofibroblast contraction. In this review, we briefly described the most current progress on the biological function of myofibroblasts in scar contracture and subsequently summarized the molecular events that initiated contracture. This would help us better understand the molecular basis of scar contracture as well as to find a comprehensive strategy for preventing/managing scar contracture.
Collapse
Affiliation(s)
- Jianglin Tan
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injuries, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University, Chongqing, 400038 China
| | - Jun Wu
- Department of Burns, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 China
| |
Collapse
|
7
|
Yang QQ, Yang SS, Tan JL, Luo GX, He WF, Wu J. Process of Hypertrophic Scar Formation: Expression of Eukaryotic Initiation Factor 6. Chin Med J (Engl) 2016; 128:2787-91. [PMID: 26481747 PMCID: PMC4736889 DOI: 10.4103/0366-6999.167359] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Hypertrophic scar is one of the most common complications and often causes the disfigurement or deformity in burn or trauma patients. Therapeutic methods on hypertrophic scar treatment have limitations due to the poor understanding of mechanisms of hypertrophic scar formation. To throw light on the molecular mechanism of hypertrophic scar formation will definitely improve the outcome of the treatment. This study aimed to illustrate the negative role of eukaryotic initiation factor 6 (eIF6) in the process of human hypertrophic scar formation, and provide a possible indicator of hypertrophic scar treatment and a potential target molecule for hypertrophic scar. Methods: In the present study, we investigated the protein expression of eIF6 in the human hypertrophic scar of different periods by immunohistochemistry and Western blot analysis. Results: In the hypertrophic scar tissue, eIF6 expression was significantly decreased and absent in the basal layer of epidermis in the early period, and increased slowly and began to appear in the basal layer of epidermis by the scar formation time. Conclusions: This study confirmed that eIF6 expression was significantly related to the development of hypertrophic scar, and the eIF6 may be a target molecule for hypertrophic scar control or could be an indicator of the outcomes for other treatment modalities.
Collapse
Affiliation(s)
| | | | | | | | | | - Jun Wu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing 400038; Chongqing Key Laboratory for Disease Proteomics, The Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
8
|
Yang SS, Tan JL, Liu DS, Loreni F, Peng X, Yang QQ, He WF, Yao ZH, Zhang XR, Dal Prà I, Luo GX, Wu J. eIF6 modulates myofibroblast differentiation at TGF-β1 transcription level via H2A.Z occupancy and Sp1 recruitment. J Cell Sci 2015; 128:3977-89. [PMID: 26395397 DOI: 10.1242/jcs.174870] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/13/2015] [Indexed: 12/20/2022] Open
Abstract
Eukaryotic initiation factor 6 (eIF6) is a pivotal regulator of ribosomal function, participating in translational control. Previously our data suggest that eIF6 acts as a key binding protein of P311 (a hypertrophic scar-related protein). However, a comprehensive investigation of its functional role and the underlying mechanisms in modulation myofibroblast (a key effector of hypertrophic scar formation) differentiation remains unclear. Here, we identified that eIF6 is a novel regulator of the TGF-β1 expression at transcription level, which has a key role in myofibroblast differentiation. Mechanistically, this effect is associated with eIF6 altering the occupancy of the TGF-β1 promoter by H2A.Z and Sp1. Accordingly, modulation of eIF6 expression in myofibroblasts significantly affects their differentiation via the TGF-β/Smad signaling pathway, which was verified in vivo by the observation that heterozygote eIF6+/− mice exhibited enhanced TGF-β1 production coupled with increased α-SMA+ myofibroblasts after skin injury. Overall, our data reveal that a novel transcriptional regulatory mechanism of eIF6 that acts on facilitating Sp1 recruitment to TGF-β1 promoter via H2A.Z depletion and thus results in increased TGF-β1 transcription, which contributes to myofibroblast differentiation.
Collapse
Affiliation(s)
- Si-si Yang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Jiang-lin Tan
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Dai-song Liu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Fabrizio Loreni
- Department of Biology, University ‘Tor Vergata’, Via Ricerca Scientifica, Roma 00133, Italy
| | - Xu Peng
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Qing-qing Yang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Wei-feng He
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Zhi-hui Yao
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Xiao-rong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Ilaria Dal Prà
- Histology and Embryology Section, Department of Life and Reproduction Sciences, University of Verona Medical School, Verona, Venetia, Italy
| | - Gao-xing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Jun Wu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| |
Collapse
|