1
|
Liao YC, Wang LH, Hung MC, Cheng TC, Lin YC, Chang J, Tu SH, Wu CH, Yen Y, Hsieh YC, Chen LC, Ho YS. Investigation of the α9-nicotinic receptor single nucleotide polymorphisms induced oncogenic properties and molecular mechanisms in breast cancer. Hum Mol Genet 2024; 33:1948-1965. [PMID: 39251229 DOI: 10.1093/hmg/ddae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/09/2024] [Indexed: 09/11/2024] Open
Abstract
α9-nAChR, a subtype of nicotinic acetylcholine receptor, is significantly overexpressed in female breast cancer tumor tissues compared to normal tissues. Previous studies have proposed that specific single nucleotide polymorphisms (SNPs) in the CHRNA9 (α9-nAChR) gene are associated with an increased risk of breast cancer in interaction with smoking. The study conducted a breast cancer risk assessment of the α9-nAChR SNP rs10009228 (NM_017581.4:c.1325A > G) in the Taiwanese female population, including 308 breast cancer patients and 198 healthy controls revealed that individuals with the heterozygous A/G or A/A wild genotype have an increased susceptibility to developing breast cancer in the presence of smoking compared to carriers of the G/G variant genotype. Our investigation confirmed the presence of this missense variation, resulting in an alteration of the amino acid sequence from asparagine (N442) to serine (S442) to facilitate phosphorylation within the α9-nAchR protein. Additionally, overexpression of N442 (A/A) in breast cancer cells significantly enhanced cell survival, migration, and cancer stemness compared to S442 (G/G). Four-line triple-negative breast cancer patient-derived xenograft (TNBC-PDX) models with distinct α9-nAChR rs10009228 SNP genotypes (A/A, A/G, G/G) further demonstrated that chronic nicotine exposure accelerated tumor growth through sustained activation of the α9-nAChR downstream oncogenic AKT/ERK/STAT3 pathway, particularly in individuals with the A/G or A/A genotype. Collectively, our study established the links between genetic variations in α9-nAChR and smoking exposure in promoting breast tumor development. This emphasizes the need to consider gene-environment interactions carefully while developing effective breast cancer prevention and treatment strategies.
Collapse
Affiliation(s)
- You-Cheng Liao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Lu-Hai Wang
- Chinese Medicine Research Center, China Medical University, Taichung 404328, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 404328, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung 406040, Taiwan
- Department of Biotechnology, Asia University, Taichung 413305, Taiwan
| | - Tzu-Chun Cheng
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung 406040, Taiwan
| | - Ying-Chi Lin
- Department of Biological Science & Technology, College of Life Sciences, China Medical University, Taichung 406040, Taiwan
| | - Jungshan Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Shih-Hsin Tu
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Chih-Hsiung Wu
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Yun Yen
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Yi-Chen Hsieh
- PhD Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan
| | - Li-Ching Chen
- Department of Biological Science & Technology, College of Life Sciences, China Medical University, Taichung 406040, Taiwan
| | - Yuan-Soon Ho
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung 406040, Taiwan
| |
Collapse
|
2
|
Chen J, Cheuk IWY, Shin VY, Kwong A. Acetylcholine receptors: Key players in cancer development. Surg Oncol 2019; 31:46-53. [PMID: 31536927 DOI: 10.1016/j.suronc.2019.09.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/15/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022]
Abstract
Acetylcholine (ACh) was first identified as a classic neuromodulator and transmit signals through two subgroups of receptors, namely muscarinic receptors (mAChRs) and nicotinic receptors (nAChRs). Apart from its well-established physiological role in central nervous system (CNS) and peripheral nervous system (PNS), autonomic nervous system and neuromuscular junction, the widely distributed expression of AChRs in different human organs suggests roles in other biological processes in addition to synaptic transmission. Accumulating evidence revealed that cancer cell processes such as proliferation, apoptosis, angiogenesis and even epithelial-mesenchymal transition (EMT) are mediated by overexpression of AChRs in different kinds of tumors. In breast cancer, α7-nAChR and α9-nAChR were reported to be oncogenic. On the other hand, research on the role of mAChRs in breast cancer tumorgenesis is limited and confined to M3 receptor only. Since AChRs distributed in both CNS and PNS even non-neuronal tissues, there is an urgent need for the development of subtype-specific AChR antagonist which inhibits cancer cell progression with minimal intervention on the normal acetylcholine-regulated system within human body.
Collapse
Affiliation(s)
- Jiawei Chen
- Department of Surgery, The University of Hong Kong, Hong Kong
| | | | | | - Ava Kwong
- Department of Surgery, The University of Hong Kong, Hong Kong; Department of Surgery, Hong Kong Sanatorium & Hospital, Hong Kong; Centre of Cancer Genetics Centre, Hong Kong Sanatorium & Hospital, Hong Kong.
| |
Collapse
|
3
|
Anti-hypersensitive effect of intramuscular administration of αO-conotoxin GeXIVA[1,2] and GeXIVA[1,4] in rats of neuropathic pain. Prog Neuropsychopharmacol Biol Psychiatry 2016; 66:112-119. [PMID: 26706456 DOI: 10.1016/j.pnpbp.2015.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/12/2015] [Accepted: 12/15/2015] [Indexed: 11/23/2022]
Abstract
αO-conotoxin GeXIVA (GeXIVA) is a potent antagonist of α9α10 nicotinic acetylcholine receptors (nAChRs), which has four Cys residues and three disulfide isomers. Among the 3 isomers, both GeXIVA[1,2] (bead isomer) and GeXIVA[1,4] (ribbon isomer) showed potent block on α9α10 nAChRs with close low nanomolar IC50s. Here we report that anti-hypersensitive effects of the bead and ribbon isomers in the chronic constriction injury (CCI) model of neuropathic pain and acute pain model of tail flick test. Treatment was started and continued for 7 or 14days after the development of hyperalgesia which was induced by CCI surgery. GeXIVA[1,2] and GeXIVA[1,4] significantly reduced mechanical allodynia in CCI rats without tolerance, in which GeXIVA[1,2] remained up to two weeks after intramuscular administration of the toxins was ceased. The pain reliever effect of GeXIVA[1,2] on neuropathic rats was slightly better than GeXIVA[1,4]. The two isomers did not suppress the acute thermal pain behaviors significantly when they were tested in the tail flick model by intramuscular bolus injection. Both GeXIVA[1,2] and GeXIVA[1,4] had no significant effect on performance of rats in the accelerating rotarod test after intramuscular injections. This suggests that αO-conotoxin GeXIVA[1,2] and GeXIVA[1,4] may offer new strategies to the treatment of neuropathic pain.
Collapse
|
4
|
Abstract
This Opinion article discusses emerging evidence of direct contributions of nicotine to cancer onset and growth. The list of cancers reportedly connected to nicotine is expanding and presently includes small-cell and non-small-cell lung carcinomas, as well as head and neck, gastric, pancreatic, gallbladder, liver, colon, breast, cervical, urinary bladder and kidney cancers. The mutagenic and tumour-promoting activities of nicotine may result from its ability to damage the genome, disrupt cellular metabolic processes, and facilitate growth and spreading of transformed cells. The nicotinic acetylcholine receptors (nAChRs), which are activated by nicotine, can activate several signalling pathways that can have tumorigenic effects, and these receptors might be able to be targeted for cancer therapy or prevention. There is also growing evidence that the unique genetic makeup of an individual, such as polymorphisms in genes encoding nAChR subunits, might influence the susceptibility of that individual to the pathobiological effects of nicotine. The emerging knowledge about the carcinogenic mechanisms of nicotine action should be considered during the evaluation of regulations on nicotine product manufacturing, distribution and marketing.
Collapse
Affiliation(s)
- Sergei A Grando
- Departments of Dermatology and Biological Chemistry, and Cancer Center and Research Institute, University of California, Irvine, California 92782, USA
| |
Collapse
|
5
|
Huang MY, Wang JY, Lin SR. CA9 and CHRNB1 were correlated with perineural invasion in Taiwanese colorectal cancer patients. BIOMARKERS AND GENOMIC MEDICINE 2013; 5:84-86. [DOI: 10.1016/j.bgm.2013.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|