1
|
Lv J, Ji X, Li Z, Hao H. The role of the cholinergic anti-inflammatory pathway in autoimmune rheumatic diseases. Scand J Immunol 2021; 94:e13092. [PMID: 34780075 DOI: 10.1111/sji.13092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/02/2021] [Accepted: 07/18/2021] [Indexed: 12/13/2022]
Abstract
The cholinergic anti-inflammatory pathway (CAP) is a classic neuroimmune pathway, consisting of the vagus nerve, acetylcholine (ACh)-the pivotal neurotransmitter of the vagus nerve-and its receptors. This pathway can activate and regulate the activities of immune cells, inhibit cell proliferation and differentiation, as well as suppress cytokine release, thereby playing an anti-inflammatory role, and widely involved in the occurrence and development of various diseases; recent studies have demonstrated that the CAP may be a new target for the treatment of autoimmune rheumatic diseases. In this review, we will summarize the latest progress with the view of figuring out the role of the cholinergic pathway and how it interacts with inflammatory reactions in several autoimmune rheumatic diseases, and many advances are results from a wide range of experiments performed in vitro and in vivo.
Collapse
Affiliation(s)
- Jiaqi Lv
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, China.,Tongji Shanxi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Taiyuan, China
| | - Xiaoxiao Ji
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Zhen Li
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Huiqin Hao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, China.,Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|
2
|
Hajiasgharzadeh K, Khabbazi A, Mokhtarzadeh A, Baghbanzadeh A, Asadzadeh Z, Adlravan E, Baradaran B. Cholinergic anti-inflammatory pathway and connective tissue diseases. Inflammopharmacology 2021; 29:975-986. [PMID: 34125373 DOI: 10.1007/s10787-021-00812-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 04/24/2021] [Indexed: 11/29/2022]
Abstract
Connective tissue diseases (CTDs) consist of an extensive range of heterogeneous medical conditions, which are caused by immune-mediated chronic inflammation and influences the various connective tissues of the body. They include rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis, vasculitis, Sjögren's syndrome, Behcet's disease, and many other autoimmune CTDs. To date, several anti-inflammatory approaches have been developed to reduce the severity of inflammation or its subsequent organ manifestations. As a logical mechanism to harnesses the undesired inflammation, some studies investigated the role of the intrinsic cholinergic anti-inflammatory pathway (CAP) in the modulation of chronic inflammation. Many different experimental and clinical models have been developed to evaluate the therapeutic significance of the CAP in CTDs. On the other hand, an issue that is less emphasized in this regard is the presence of autonomic neuropathy in CTDs, which influences the efficiency of CAP in such clinical settings. This condition occurs during CTDs and is a well-known complication of patients suffering from them. The advantages and limitations of CAP in the control of inflammatory responses and its possible therapeutic benefits in the treatment of CTDs are the main subjects of the current study. Therefore, this narrative review article is provided based on the recent findings of the complicated role of CAP in CTDs which were retrieved by searching Science Direct, PubMed, Google Scholar, and Web of Science. It seems that delineating the complex influences of CAP would be of great interest in designing novel surgical or pharmacological therapeutic strategies for CTDs therapy.
Collapse
Affiliation(s)
- Khalil Hajiasgharzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran.,Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614756, Tabriz, Iran
| | - Alireza Khabbazi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614756, Tabriz, Iran.
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran
| | - Elham Adlravan
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Golgasht St, Postcode: 5166614766, Tabriz, Iran. .,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Spieker J, Frieß JL, Sperling L, Thangaraj G, Vogel-Höpker A, Layer PG. Cholinergic control of bone development and beyond. Int Immunopharmacol 2020; 83:106405. [PMID: 32208165 DOI: 10.1016/j.intimp.2020.106405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/15/2022]
Abstract
There is ample evidence that cholinergic actions affect the health status of bones in vertebrates including man. Nicotine smoking, but also exposure to pesticides or medical drugs point to the significance of cholinergic effects on bone status, as reviewed here in Introduction. Then, we outline processes of endochondral ossification, and review respective cholinergic actions. In Results, we briefly summarize our in vivo and in vitro studies on bone development of chick and mouse [1,2], including (i) expressions of cholinergic components (AChE, BChE, ChAT) in chick embryo, (ii) characterisation of defects during skeletogenesis in prenatal ChE knockout mice, (iii) loss-of-function experiments with beads soaked in cholinergic components and implanted into chicken limb buds, and finally (iv) we use an in vitro mesenchymal 3D-micromass model that mimics cartilage and bone formation, which also had revealed complex crosstalks between cholinergic, radiation and inflammatory mechanisms [3]. In Discussion, we evaluate non-cholinergic actions of cholinesterases during bone formation by considering: (i) how cholinesterases could function in adhesive mechanisms; (ii) whether and how cholinesterases can form bone-regulatory complexes with alkaline phosphatase (ALP) and/or ECM components, which could regulate cell division, migration and adhesion. We conclude that cholinergic actions in bone development are driven mainly by classic cholinergic, but non-neural cycles (e.g., by acetylcholine); in addition, both cholinesterases can exert distinct ACh-independent roles. Considering their tremendous medical impact, these results bring forward novel research directions that deserve to be pursued.
Collapse
Affiliation(s)
- Janine Spieker
- Developmental Biology and Neurogenetics, Technische Universität Darmstadt, Schnittspahnstrasse 13, D-64287 Darmstadt, Germany
| | - Johannes L Frieß
- Developmental Biology and Neurogenetics, Technische Universität Darmstadt, Schnittspahnstrasse 13, D-64287 Darmstadt, Germany
| | - Laura Sperling
- Developmental Biology and Neurogenetics, Technische Universität Darmstadt, Schnittspahnstrasse 13, D-64287 Darmstadt, Germany
| | - Gopenath Thangaraj
- Developmental Biology and Neurogenetics, Technische Universität Darmstadt, Schnittspahnstrasse 13, D-64287 Darmstadt, Germany
| | - Astrid Vogel-Höpker
- Developmental Biology and Neurogenetics, Technische Universität Darmstadt, Schnittspahnstrasse 13, D-64287 Darmstadt, Germany
| | - Paul G Layer
- Developmental Biology and Neurogenetics, Technische Universität Darmstadt, Schnittspahnstrasse 13, D-64287 Darmstadt, Germany.
| |
Collapse
|
4
|
Peng C, Shi QP, Liu JY, Lv YJ, Li J, Yi L, Bai SS, Liu L, Wang PX, Zhou H, Huang KE, Dong Y. Alpha7 nAChR Expression Is Correlated with Arthritis Development and Inhibited by Sinomenine in Adjuvant-Induced Arthritic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:3759304. [PMID: 31186658 PMCID: PMC6521432 DOI: 10.1155/2019/3759304] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/08/2019] [Indexed: 12/19/2022]
Abstract
Sinomenine (SIN) is the active ingredient of the Chinese herb Sinomenium acutum that has been used to treat rheumatoid arthritis (RA) for about 30 years in China. Marked expression of the alpha7 nicotinic acetylcholine receptor (α7nAChR) in the joint synovium of RA patients suggested a relationship between α7nAChR and RA. This study investigated the relationship between α7nAChR and RA development and the effects of SIN on α7nAChR expression in vivo and in vitro. Sprague-Dawley rats were injected with complete Freund's adjuvant to induce arthritis and then treated with SIN or methotrexate (MTX) from day 0 to day 30. Four clinical parameters-paw volume, arthritic index (AI), serum TNF-α concentration, and erythrocyte sedimentation rate (ESR)-were measured. Splenic lymphocytes were isolated for Bacille Calmette Guerin (BCG) stimulation. α7nAChR expression in tissues and cells was examined by RT-PCR, western blot, immunofluorescence, flow cytometry, and immunohistochemistry. Cell proliferation was evaluated by the CCK-8 assay. The relationship between α7nAChR expression and the four clinical parameters was analyzed by single-factor correlation analysis. Our results showed that the paw volume, AI, TNF-α concentration, and ESR in adjuvant-induced arthritic (AIA) rats were reduced by SIN or MTX treatment. SIN decreased α7nAChR expression in tissues and cells compared to the model group, while MTX had no significant effect on α7nAChR expression. Moreover, there was a positive relationship between α7nAChR expression and paw swelling, AI, and TNF-α concentration. Splenic lymphocyte activation was accompanied by increased α7nAChR expression, while SIN treatment inhibited cell activation and downregulated α7nAChR expression. α7nAChR expression showed a positive correlation with the progression of RA in AIA rats that may involve lymphocyte activation. Different from MTX, the inhibition of SIN on α7nAChR expression might contribute to its antiarthritic effect, suggesting that SIN could be an important supplement to the treatment strategy for RA.
Collapse
Affiliation(s)
- Chong Peng
- Department of Immunology, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qing-ping Shi
- Department of Immunology, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jia-yan Liu
- Department of Immunology, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan-jun Lv
- Department of Immunology, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Li
- Department of Immunology, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lang Yi
- Department of Immunology, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sha-sha Bai
- Department of Immunology, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liang Liu
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Pei-xun Wang
- Department of Immunology, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hua Zhou
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
- International Institute of Translation Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ke-er Huang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Dong
- Department of Immunology, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Courties A, Sellam J, Berenbaum F. Role of the autonomic nervous system in osteoarthritis. Best Pract Res Clin Rheumatol 2017; 31:661-675. [DOI: 10.1016/j.berh.2018.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/11/2018] [Indexed: 01/15/2023]
|
6
|
Spieker J, Mudersbach T, Vogel-Höpker A, Layer PG. Endochondral Ossification Is Accelerated in Cholinesterase-Deficient Mice and in Avian Mesenchymal Micromass Cultures. PLoS One 2017; 12:e0170252. [PMID: 28118357 PMCID: PMC5261733 DOI: 10.1371/journal.pone.0170252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/30/2016] [Indexed: 01/03/2023] Open
Abstract
Most components of the cholinergic system are detected in skeletogenic cell types in vitro, yet the function of this system in skeletogenesis remains unclear. Here, we analyzed endochondral ossification in mutant murine fetuses, in which genes of the rate-limiting cholinergic enzymes acetyl- (AChE), or butyrylcholinesterase (BChE), or both were deleted (called here A-B+, A+B-, A-B-, respectively). In all mutant embryos bone growth and cartilage remodeling into mineralizing bone were accelerated, as revealed by Alcian blue (A-blu) and Alizarin red (A-red) staining. In A+B- and A-B- onset of mineralization was observed before E13.5, about 2 days earlier than in wild type and A-B+ mice. In all mutants between E18.5 to birth A-blu staining disappeared from epiphyses prematurely. Instead, A-blu+ cells were dislocated into diaphyses, most pronounced so in A-B- mutants, indicating additive effects of both missing ChEs in A-B- mutant mice. The remodeling effects were supported by in situ hybridization (ISH) experiments performed on cryosections from A-B- mice, in which Ihh, Runx2, MMP-13, ALP, Col-II and Col-X were considerably decreased, or had disappeared between E18.5 and P0. With a second approach, we applied an improved in vitro micromass model from chicken limb buds that allowed histological distinction between areas of cartilage, apoptosis and mineralization. When treated with the AChE inhibitor BW284c51, or with nicotine, there was decrease in cartilage and accelerated mineralization, suggesting that these effects were mediated through nicotinic receptors (α7-nAChR). We conclude that due to absence of either one or both cholinesterases in KO mice, or inhibition of AChE in chicken micromass cultures, there is increase in cholinergic signalling, which leads to increased chondroblast production and premature mineralization, at the expense of incomplete chondrogenic differentiation. This emphasizes the importance of cholinergic signalling in cartilage and bone formation.
Collapse
MESH Headings
- Acetylcholinesterase/deficiency
- Acetylcholinesterase/physiology
- Animals
- Apnea/physiopathology
- Benzenaminium, 4,4'-(3-oxo-1,5-pentanediyl)bis(N,N-dimethyl-N-2-propenyl-), Dibromide/pharmacology
- Benzenaminium, 4,4'-(3-oxo-1,5-pentanediyl)bis(N,N-dimethyl-N-2-propenyl-), Dibromide/toxicity
- Bone and Bones/embryology
- Bone and Bones/enzymology
- Bone and Bones/pathology
- Butyrylcholinesterase/deficiency
- Butyrylcholinesterase/physiology
- Cartilage/embryology
- Cartilage/enzymology
- Cartilage/pathology
- Chick Embryo
- Cholinesterase Inhibitors/pharmacology
- Cholinesterase Inhibitors/toxicity
- Chondrogenesis/drug effects
- GPI-Linked Proteins/deficiency
- GPI-Linked Proteins/physiology
- Mesoderm/physiology
- Metabolism, Inborn Errors/physiopathology
- Mice
- Mice, Knockout
- Nicotine/pharmacology
- Nicotine/toxicity
- Organ Culture Techniques
- Osteogenesis/physiology
- alpha7 Nicotinic Acetylcholine Receptor/drug effects
- alpha7 Nicotinic Acetylcholine Receptor/physiology
Collapse
Affiliation(s)
- Janine Spieker
- Developmental Biology and Neurogenetics, Technische Universität Darmstadt, Schnittspahnstrasse 13, Darmstadt, Germany
| | - Thomas Mudersbach
- Developmental Biology and Neurogenetics, Technische Universität Darmstadt, Schnittspahnstrasse 13, Darmstadt, Germany
| | - Astrid Vogel-Höpker
- Developmental Biology and Neurogenetics, Technische Universität Darmstadt, Schnittspahnstrasse 13, Darmstadt, Germany
| | - Paul G. Layer
- Developmental Biology and Neurogenetics, Technische Universität Darmstadt, Schnittspahnstrasse 13, Darmstadt, Germany
| |
Collapse
|
7
|
Spang C, Forsgren S. Choline acetyltransferase and the nicotinic acetylcholine receptor AChRα7 in experimental myositis. Int Immunopharmacol 2015; 29:189-94. [DOI: 10.1016/j.intimp.2015.05.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/20/2015] [Accepted: 05/27/2015] [Indexed: 12/18/2022]
|
8
|
Bertrand D, Lee CHL, Flood D, Marger F, Donnelly-Roberts D. Therapeutic Potential of α7 Nicotinic Acetylcholine Receptors. Pharmacol Rev 2015; 67:1025-73. [PMID: 26419447 DOI: 10.1124/pr.113.008581] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Progress in the fields of neuroscience and molecular biology has identified the forebrain cholinergic system as being important in many higher order brain functions. Further analysis of the genes encoding the nicotinic acetylcholine receptors (nAChRs) has highlighted, in particular, the role of α7 nAChRs in these higher order brain functions as evidenced by their peculiar physiologic and pharmacological properties. As this receptor has gained the attention of scientists from academia and industry, our knowledge of its roles in various brain and bodily functions has increased immensely. We have also seen the development of small molecules that have further refined our understanding of the roles of α7 nAChRs, and these molecules have begun to be tested in clinical trials for several indications. Although a large body of data has confirmed a role of α7 nAChRs in cognition, the translation of small molecules affecting α7 nAChRs into therapeutics has to date only progressed to the stage of testing in clinical trials. Notably, however, most recent human genetic and biochemical studies are further underscoring the crucial role of α7 nAChRs and associated genes in multiple organ systems and disease states. The aim of this review is to discuss our current knowledge of α7 nAChRs and their relevance as a target in specific functional systems and disease states.
Collapse
Affiliation(s)
- Daniel Bertrand
- HiQScreen Sàrl, Geneva, Switzerland (D.B., F.M.); AbbVie Inc., North Chicago, Illinois (C-H.L.L., D.D-R.); and FORUM Pharmaceuticals Inc., Waltham, Massachusetts (D.F.)
| | - Chih-Hung L Lee
- HiQScreen Sàrl, Geneva, Switzerland (D.B., F.M.); AbbVie Inc., North Chicago, Illinois (C-H.L.L., D.D-R.); and FORUM Pharmaceuticals Inc., Waltham, Massachusetts (D.F.)
| | - Dorothy Flood
- HiQScreen Sàrl, Geneva, Switzerland (D.B., F.M.); AbbVie Inc., North Chicago, Illinois (C-H.L.L., D.D-R.); and FORUM Pharmaceuticals Inc., Waltham, Massachusetts (D.F.)
| | - Fabrice Marger
- HiQScreen Sàrl, Geneva, Switzerland (D.B., F.M.); AbbVie Inc., North Chicago, Illinois (C-H.L.L., D.D-R.); and FORUM Pharmaceuticals Inc., Waltham, Massachusetts (D.F.)
| | - Diana Donnelly-Roberts
- HiQScreen Sàrl, Geneva, Switzerland (D.B., F.M.); AbbVie Inc., North Chicago, Illinois (C-H.L.L., D.D-R.); and FORUM Pharmaceuticals Inc., Waltham, Massachusetts (D.F.)
| |
Collapse
|
9
|
Forsgren S, Alfredson H, Andersson G. Further proof of the existence of a non-neuronal cholinergic system in the human Achilles tendon: Presence of the AChRα7 receptor in tendon cells and cells in the peritendinous tissue. Int Immunopharmacol 2015; 29:195-200. [PMID: 25981114 DOI: 10.1016/j.intimp.2015.04.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/14/2015] [Accepted: 04/29/2015] [Indexed: 10/23/2022]
Abstract
Human tendon cells have the capacity for acetylcholine (ACh) production. It is not known if the tendon cells also have the potential for ACh breakdown, nor if they show expression of the nicotinic acetylcholine receptor AChRα7 (α7nAChR). Therefore, tendon tissue specimens from patients with midportion Achilles tendinopathy/tendinosis and from normal midportion Achilles tendons were examined. Reaction for the degradative enzyme acetylcholinesterase (AChE) was found in some tenocytes in only a few tendinopathy tendons, and was never found in those of control tendons. Tenocytes displayed more regularly α7nAChR immunoreactivity. However, there was a marked heterogeneity in the degree of this reaction within and between the specimens. α7nAChR immunoreactivity was especially pronounced for tenocytes showing an oval/widened appearance. There was a tendency that the magnitude of α7nAChR immunoreactivity was higher in tendinopathy tendons as compared to control tendons. A stronger α7nAChR immunoreactivity than seen for tenocytes was observed for the cells in the peritendinous tissue. It is likely that the α7nAChR may be an important part of an auto-and paracrine loop of non-neuronal ACh that is released from the tendon cells. The effects may be related to proliferative and blood vessel regulatory functions as well as features related to collagen deposition. ACh can furthermore be of importance in leading to anti-inflammatory effects in the peritendinous tissue, a tissue nowadays considered to be of great relevance for the tendinopathy process. Overall, the findings show that tendon tissue, a tissue known to be devoid of cholinergic innervation, is a tissue in which there is a marked non-neuronal cholinergic system.
Collapse
Affiliation(s)
- Sture Forsgren
- Department of Integrative Medical Biology, Anatomy Section, Umeå University, Umeå, Sweden.
| | - Håkan Alfredson
- Department of Community Medicine and Rehabilitation, Section for Sports Medicine, Umeå University, Umeå, Sweden
| | - Gustav Andersson
- Department of Integrative Medical Biology, Anatomy Section, Umeå University, Umeå, Sweden; Department of Surgical and Perioperative Science, Section for Hand and Plastic Surgery, Umeå University, Umeå, Sweden
| |
Collapse
|
10
|
Grando SA, Kawashima K, Kirkpatrick CJ, Meurs H, Wessler I. The non-neuronal cholinergic system: Basic science, therapeutic implications and new perspectives. Life Sci 2012; 91:969-72. [DOI: 10.1016/j.lfs.2012.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|