1
|
Jiang D, Wang J, Wang R, Wu Y. Comprehensive Insights into Mechanisms for Ventricular Remodeling in Right Heart Failure. Rev Cardiovasc Med 2024; 25:426. [PMID: 39742244 PMCID: PMC11683703 DOI: 10.31083/j.rcm2512426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 01/03/2025] Open
Abstract
Ventricular remodeling in right heart failure is a complex pathological process involving interactions between multiple mechanisms. Overactivation of the neuro-hormonal pathways, activation of the oxidative stress response, expression of cytokines, apoptosis of cardiomyocytes, and alterations of the extracellular matrix (ECM) are among the major mechanisms involved in the development of ventricular remodeling in right heart failure. These mechanisms are involved in ventricular remodeling, such as myocardial hypertrophy and fibrosis, leading to the deterioration of myocardial systolic and diastolic function. A deeper understanding of these mechanisms can help develop more effective therapeutic strategies in patients with right heart failure (RHF) to improve patient survival and quality of life. Despite the importance of ventricular remodeling in RHF, there are a limited number of studies in this field. This article explores in-depth historical and current information about the specific mechanisms in ventricular remodeling in RHF, providing a theoretical rationale for recognizing its importance in health and disease.
Collapse
Affiliation(s)
- Dongmei Jiang
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, 830011 Urumchi, Xinjiang, China
| | - Jie Wang
- Department of Pharmacy, First Affiliated Hospital of Xinjiang Medical University, 830011 Urumchi, Xinjiang, China
| | - Rui Wang
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, 830011 Urumchi, Xinjiang, China
| | - Yun Wu
- Department of General Medicine, First Affiliated Hospital of Xinjiang Medical University, 830011 Urumchi, Xinjiang, China
| |
Collapse
|
2
|
Li ZY, Liu Y, Han ZN, Li X, Wang YY, Cui X, Zhang Y. The WNT/Ca 2+ pathway promotes atrial natriuretic peptide secretion by activating protein kinase C/transforming growth factor-β activated kinase 1/activating transcription factor 2 signaling in isolated beating rat atria. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:469-478. [PMID: 36302622 PMCID: PMC9614394 DOI: 10.4196/kjpp.2022.26.6.469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/16/2022] [Accepted: 08/01/2022] [Indexed: 01/24/2023]
Abstract
WNT signaling plays an important role in cardiac development, but abnormal activity is often associated with cardiac hypertrophy, myocardial infarction, remodeling, and heart failure. The effect of WNT signaling on regulation of atrial natriuretic peptide (ANP) secretion is unclear. Therefore, the purpose of this study was to investigate the effect of Wnt agonist 1 (Wnta1) on ANP secretion and mechanical dynamics in beating rat atria. Wnta1 treatment significantly increased atrial ANP secretion and pulse pressure; these effects were blocked by U73122, an antagonist of phospholipase C. U73122 also abolished the effects of Wnta1-mediated upregulation of protein kinase C (PKC) β and γ expression, and the PKC antagonist Go 6983 eliminated Wnta1-induced secretion of ANP. In addition, Wnta1 upregulated levels of phospho-transforming growth factor-β activated kinase 1 (p-TAK1), TAK1 banding 1 (TAB1) and phospho-activating transcription factor 2 (p-ATF2); these effects were blocked by both U73122 and Go 6983. Wnta1-induced ATF2 was abrogated by inhibition of TAK1. Furthermore, Wnta1 upregulated the expression of T cell factor (TCF) 3, TCF4, and lymphoid enhancer factor 1 (LEF1), and these effects were blocked by U73122 and Go 6983. Tak1 inhibition abolished the Wnta1-induced expression of TCF3, TCF4, and LEF1 and Wnta1-mediated ANP secretion and changes in mechanical dynamics. These results suggest that Wnta1 increased the secretion of ANP and mechanical dynamics in beating rat atria by activation of PKC-TAK1-ATF2-TCF3/LEF1 and TCF4/LEF1 signaling mainly via the WNT/Ca2+ pathway. It is also suggested that WNT-ANP signaling is implicated in cardiac physiology and pathophysiology.
Collapse
Affiliation(s)
- Zhi-yu Li
- Department of Physiology, School of Medicine, Yanbian University, Yanji 133-002, China,Institue of Clinical Medicine, Yanbian University, Yanji 133-002, China
| | - Ying Liu
- Department of Physiology, School of Medicine, Yanbian University, Yanji 133-002, China
| | - Zhuo-na Han
- Department of Physiology, School of Medicine, Yanbian University, Yanji 133-002, China
| | - Xiang Li
- Department of Physiology, School of Medicine, Yanbian University, Yanji 133-002, China
| | - Yue-ying Wang
- Department of Physiology, School of Medicine, Yanbian University, Yanji 133-002, China
| | - Xun Cui
- Department of Physiology, School of Medicine, Yanbian University, Yanji 133-002, China,Cellular Function Research Center, Yanbian University, Yanji 133-002, China,Correspondence Xun Cui, E-mail:
| | - Ying Zhang
- Institue of Clinical Medicine, Yanbian University, Yanji 133-002, China,Correspondence Xun Cui, E-mail:
| |
Collapse
|
3
|
Li X, Han ZN, Liu Y, Hong L, Cui BR, Cui X. Endogenous ET-1 promotes ANP secretion through activation of COX2-L-PGDS-PPARγ signaling in hypoxic beating rat atria. Peptides 2019; 122:170150. [PMID: 31541683 DOI: 10.1016/j.peptides.2019.170150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 12/29/2022]
Abstract
Endothelin-1 (ET-1) is a potent stimulus for the secretion of atrial natriuretic peptide (ANP) and hypoxia stimulates the release of ET-1, which is involved in the regulation of atrial ANP secretion. However, the precise mechanism of endogenous ET-1 in the regulation of hypoxia-induced ANP secretion is unclear. Therefore, this study aimed to investigate the mechanism of hypoxia-induced endogenous ET-1 regulation of ANP secretion in isolated perfused hypoxic beating rat atria. The results of this study showed that acute hypoxia significantly stimulated ET-1 release and upregulated the expression of its type A as well as type B receptors (ETA and ETB receptors). Endogenous ET-1 induced by hypoxia markedly upregulated the expression of cyclooxygenase 2 (COX2) through activation of its two receptors, leading to an increase in lipocalin-type prostaglandin D synthase (L-PGDS) expression and prostaglandin D2 (PGD2) production. L-PGDS-derived PGD2 activated peroxisome proliferator-activated receptor γ (PPARγ), ultimately promoting hypoxia-induced ANP secretion. Conversely, L-PGDS-derived PGD2 may in turn regulate L-PGDS expression by a nuclear factor erythroid-2-related factor 2 (NRF2)-mediated feedback mechanism. These results indicate that endogenous ET-1 induced by hypoxia promotes hypoxia-induced ANP secretion by activation of COX2-L-PGDS-PPARγ signaling in beating rat atria. In addition, the positive feedback loop between L-PGDS-derived PGD2 and L-PGDS expression induced by hypoxia is part of the mechanism of hypoxia-induced ANP secretion by endogenous ET-1.
Collapse
Affiliation(s)
- Xiang Li
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji, 133-002, China
| | - Zhuo-Na Han
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji, 133-002, China
| | - Ying Liu
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji, 133-002, China
| | - Lan Hong
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji, 133-002, China
| | - Bai-Ri Cui
- Institute of Clinical Medicine, Yanbian University, Yanji, 133-000, China.
| | - Xun Cui
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji, 133-002, China; Key Laboratory of Organism Functional Factors of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133-002, China; Cellular Function Research Center, Yanbian University, Yanji, 133-002, China.
| |
Collapse
|
4
|
Liu X, Zhang Y, Hong L, Han CJ, Zhang B, Zhou S, Wu CZ, Liu LP, Cui X. Gallic acid increases atrial natriuretic peptide secretion and mechanical dynamics through activation of PKC. Life Sci 2017; 181:45-52. [PMID: 28535942 DOI: 10.1016/j.lfs.2017.05.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 11/17/2022]
Abstract
AIMS Gallic acid (GA) protects against myocardial ischemia-reperfusion (I/R) injury, prevents cardiac hypertrophy and fibrosis, and has anti-inflammatory activity in the heart. However, its effects in regulating atrial natriuretic peptide (ANP) secretion are unknown. The aim of this study was to determine the function of GA in regulating ANP secretion and atrial dynamics in rat atria. KEY FINDINGS GA (0.01, 0.05, and 0.1μmol/L) significantly increased atrial ANP secretion and induced positive inotropy dose-dependently. GA (0.1μmol/L) also increased plasma level of ANP and hemodynamics in rats. These effects were accompanied by upregulation of atrial protein kinase C subtypes β and ε (PKCβ and PKCε), which was completely blocked by LY333531 and EAVSLKPT, antagonists of protein PKCβ and PKCε, respectively. GA-induced ANP secretion was also attenuated by Gö6983 but not rottlerin, antagonists of PKCα and PKCδ, and the positive inotropy was reversed by Gö6983. U-73122, a phospholipase C (PLC) antagonist, mitigated the effects of GA on ANP secretion and mechanical dynamics and downregulated Phospho-PLCβ at Ser537 (pPLCβ S537), Phospho-PLCβ at Ser1105 (pPLCβ S1105), PKCβ and PKCε levels, whereas KN62, an inhibitor of Ca2+/calmodulin-dependent kinase II, was not modified the GA-induced ANP secretion and suppressed GA-induced mechanical dynamics. SIGNIFICANCE GA promotes ANP secretion and effects positive inotropy with regard to mechanical dynamics through the activation of PLC-PKC signaling in rat atria.
Collapse
Affiliation(s)
- Xia Liu
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji 133-002, China
| | - Ying Zhang
- Institute of Clinical Medicine, Yanbian University, Yanji 133-000, China
| | - Lan Hong
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji 133-002, China
| | - Chun-Ji Han
- Food Research Center, Yanbian University, Yanji 133-002, China
| | - Bo Zhang
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji 133-002, China
| | - Shuai Zhou
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji 133-002, China
| | - Cheng-Zhe Wu
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji 133-002, China; Institute of Clinical Medicine, Yanbian University, Yanji 133-000, China
| | - Li-Ping Liu
- Department of Biology, School of Medicine Sciences, Dalian University, Dalian, China
| | - Xun Cui
- Department of Physiology, School of Medical Sciences, Yanbian University, Yanji 133-002, China; Key Laboratory of Organism Functional Factors of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133-002, China; Cellular Function Research Center, Yanbian University, Yanji 133-002, China.
| |
Collapse
|
5
|
Zhang Y, Li X, Liu LP, Hong L, Liu X, Zhang B, Wu CZ, Cui X. Peroxisome proliferator-activated receptor γ is essential for secretion of ANP induced by prostaglandin D 2 in the beating rat atrium. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2017; 21:293-300. [PMID: 28461771 PMCID: PMC5409115 DOI: 10.4196/kjpp.2017.21.3.293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 12/14/2022]
Abstract
Prostaglandin D2 (PGD2) may act against myocardial ischemia-reperfusion (I/R) injury and play an anti-inflammatory role in the heart. Although the effect of PGD2 in regulation of ANP secretion of the atrium was reported, the mechanisms involved are not clearly identified. The aim of the present study was to investigate whether PGD2 can regulate ANP secretion in the isolated perfused beating rat atrium, and its underlying mechanisms. PGD2 (0.1 to 10 µM) significantly increased atrial ANP secretion concomitantly with positive inotropy in a dose-dependent manner. Effects of PGD2 on atrial ANP secretion and mechanical dynamics were abolished by AH-6809 (1.0 µM) and AL-8810 (1.0 µM), PGD2 and prostaglandin F2α (PGF2α) receptor antagonists, respectively. Moreover, PGD2 clearly upregulated atrial peroxisome proliferator-activated receptor gamma (PPARγ) and the PGD2 metabolite 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2, 0.1 µM) dramatically increased atrial ANP secretion. Increased ANP secretions induced by PGD2 and 15d-PGJ2 were completely blocked by the PPARγ antagonist GW9662 (0.1 µM). PD98059 (10.0 µM) and LY294002 (1.0 µM), antagonists of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling, respectively, significantly attenuated the increase of atrial ANP secretion by PGD2. These results indicated that PGD2 stimulated atrial ANP secretion and promoted positive inotropy by activating PPARγ in beating rat atria. MAPK/ERK and PI3K/Akt signaling pathways were each partially involved in regulating PGD2-induced atrial ANP secretion.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Physiology, School of Medicine, Yanbian University, Yanji 133-002, China.,Institue of Clinical Medicine, Yanbian University, Yanji 133-002, China
| | - Xiang Li
- Department of Physiology, School of Medicine, Yanbian University, Yanji 133-002, China
| | - Li-Ping Liu
- Department of Physiology, School of Medicine, Yanbian University, Yanji 133-002, China
| | - Lan Hong
- Department of Physiology, School of Medicine, Yanbian University, Yanji 133-002, China
| | - Xia Liu
- Department of Physiology, School of Medicine, Yanbian University, Yanji 133-002, China
| | - Bo Zhang
- Department of Physiology, School of Medicine, Yanbian University, Yanji 133-002, China
| | - Cheng-Zhe Wu
- Department of Physiology, School of Medicine, Yanbian University, Yanji 133-002, China.,Institue of Clinical Medicine, Yanbian University, Yanji 133-002, China
| | - Xun Cui
- Department of Physiology, School of Medicine, Yanbian University, Yanji 133-002, China.,Key Laboratory of Organism Functional Factors of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133-002, China.,Cellular Function Research Center, Yanbian University, Yanji 133-002, China
| |
Collapse
|
6
|
Brar KS, Gao Y, El-Mallakh RS. Are endogenous cardenolides controlled by atrial natriuretic peptide. Med Hypotheses 2016; 92:21-5. [PMID: 27241248 DOI: 10.1016/j.mehy.2016.04.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/16/2016] [Indexed: 11/17/2022]
Abstract
Endogenous cardenolides are digoxin-like substances and ouabain-like substances that have been implicated in the pathogenesis of hypertension and mood disorders in clinical and pre-clinical studies. Regulatory signals for endogenous cardenolides are still unknown. These endogenous compounds are believed to be produced by the adrenal gland in the periphery and the hypothalamus in the central nervous system, and constitute part of an hormonal axis that may regulate the catalytic activity of the α subunit of Na(+)/K(+)-ATPase. A review of literature suggests that there is great overlap in physiological environments that are associated with either elevations or reductions in the levels of atrial natriuretic peptide (ANP) and endogenous cardenolides. This suggests that these two factors may share a common regulatory signal or perhaps that ANP may be involved in the regulation of endogenous cardenolides.
Collapse
Affiliation(s)
- Kanwarjeet S Brar
- Mood Disorders Research Program, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY, United States
| | - Yonglin Gao
- Mood Disorders Research Program, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY, United States
| | - Rif S El-Mallakh
- Mood Disorders Research Program, Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY, United States.
| |
Collapse
|
7
|
Peng LQ, Li P, Zhang QL, Hong L, Liu LP, Cui X, Cui BR. cAMP induction by ouabain promotes endothelin-1 secretion via MAPK/ERK signaling in beating rabbit atria. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 20:9-14. [PMID: 26807018 PMCID: PMC4722196 DOI: 10.4196/kjpp.2016.20.1.9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/31/2015] [Accepted: 04/16/2015] [Indexed: 11/20/2022]
Abstract
Adenosine 3',5'-cyclic monophosphate (cAMP) participates in the regulation of numerous cellular functions, including the Na+-K+-ATPase (sodium pump). Ouabain, used in the treatment of several heart diseases, is known to increase cAMP levels but its effects on the atrium are not understood. The aim of the present study was to examine the effect of ouabain on the regulation of atrial cAMP production and its roles in atrial endothelin-1 (ET-1) secretion in isolated perfused beating rabbit atria. Our results showed that ouabain (3.0 µmol/L) significantly increased atrial dynamics and cAMP levels during recovery period. The ouabain-increased atrial dynamics was blocked by KB-R7943 (3.0 µmol/L), an inhibitor for reverse mode of Na+-Ca2+ exchangers (NCX), but did not by L-type Ca2+ channel blocker nifedipine (1.0 µmol/L) or protein kinase A (PKA) selective inhibitor H-89 (3.0 µmol/L). Ouabain also enhanced atrial intracellular cAMP production in response to forskolin and theophyline (100.0 µmol/L), an inhibitor of phosphodiesterase, potentiated the ouabain-induced increase in cAMP. Ouabain and 8-Bromo-cAMP (0.5 µmol/L) markedly increased atrial ET-1 secretion, which was blocked by H-89 and by PD98059 (30 µmol/L), an inhibitor of extracellular-signal-regulated kinase (ERK) without changing ouabain-induced atrial dynamics. Our results demonstrated that ouabain increases atrial cAMP levels and promotes atrial ET-1 secretion via the mitogen-activated protein kinase (MAPK)/ERK signaling pathway. These findings may explain the development of cardiac hypertrophy in response to digitalis-like compounds.
Collapse
Affiliation(s)
- Li-Qun Peng
- Department of Physiology, School of Medicine, Yanbian University, Yanji 133-002, China.; KeErQinQu First People's Hospital, Tongliao, Neimenggu 028050, China
| | - Ping Li
- Department of Physiology, School of Medicine, Yanbian University, Yanji 133-002, China
| | - Qiu-Li Zhang
- Department of Physiology, School of Medicine, Yanbian University, Yanji 133-002, China
| | - Lan Hong
- Department of Physiology, School of Medicine, Yanbian University, Yanji 133-002, China
| | - Li-Ping Liu
- Department of Physiology, School of Medicine, Yanbian University, Yanji 133-002, China
| | - Xun Cui
- Department of Physiology, School of Medicine, Yanbian University, Yanji 133-002, China.; Key Laboratory of Organism Functional Factors of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133-002, China.; Cellular Function Research Center, Yanbian University, Yanji 133-002, China
| | - Bai-Ri Cui
- Department of Physiology, School of Medicine, Yanbian University, Yanji 133-002, China.; Institue of Clinical Medicine, Yanbian University, Yanji 133000, China
| |
Collapse
|
8
|
Endothelin receptor B, a candidate gene from human studies at high altitude, improves cardiac tolerance to hypoxia in genetically engineered heterozygote mice. Proc Natl Acad Sci U S A 2015; 112:10425-30. [PMID: 26240367 DOI: 10.1073/pnas.1507486112] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To better understand human adaptation to stress, and in particular to hypoxia, we took advantage of one of nature's experiments at high altitude (HA) and studied Ethiopians, a population that is well-adapted to HA hypoxic stress. Using whole-genome sequencing, we discovered that EDNRB (Endothelin receptor type B) is a candidate gene involved in HA adaptation. To test whether EDNRB plays a critical role in hypoxia tolerance and adaptation, we generated EdnrB knockout mice and found that when EdnrB (-/+) heterozygote mice are treated with lower levels of oxygen (O2), they tolerate various levels of hypoxia (even extreme hypoxia, e.g., 5% O2) very well. For example, they maintain ejection fraction, cardiac contractility, and cardiac output in severe hypoxia. Furthermore, O2 delivery to vital organs was significantly higher and blood lactate was lower in EdnrB (-/+) compared with wild type in hypoxia. Tissue hypoxia in brain, heart, and kidney was lower in EdnrB (-/+) mice as well. These data demonstrate that a lower level of EDNRB significantly improves cardiac performance and tissue perfusion under various levels of hypoxia. Transcriptomic profiling of left ventricles revealed three specific genes [natriuretic peptide type A (Nppa), sarcolipin (Sln), and myosin light polypeptide 4 (Myl4)] that were oppositely expressed (q < 0.05) between EdnrB (-/+) and wild type. Functions related to these gene networks were consistent with a better cardiac contractility and performance. We conclude that EDNRB plays a key role in hypoxia tolerance and that a lower level of EDNRB contributes, at least in part, to HA adaptation in humans.
Collapse
|
9
|
Buckalew VM. Endogenous digitalis-like factors: an overview of the history. Front Endocrinol (Lausanne) 2015; 6:49. [PMID: 25918512 PMCID: PMC4394700 DOI: 10.3389/fendo.2015.00049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/24/2015] [Indexed: 12/22/2022] Open
Abstract
The sodium pump is a ubiquitous cell surface enzyme, a Na, K ATPase, which maintains ion gradients between cells and the extracellular fluid (ECF). The extracellular domain of this enzyme contains a highly conserved binding site, a receptor for a plant derived family of compounds, the digitalis glycosides. These compounds inhibit the enzyme and are used in the treatment of congestive heart failure and certain cardiac arrhythmias. The highly conserved nature of this enzyme and its digitalis receptor led to early suggestions that endogenous regulators might exist. Recent examination of this hypothesis emerged from research in two separate areas: the regulation of ECF volume by a natriuretic hormone (NH), and the regulation of peripheral vascular resistance by a circulating inhibitor of vascular Na, K ATPase. These two areas merged with the hypothesis that NH and the vascular Na, K ATPase inhibitor were in fact the same entity, and that it played a causative role in the pathophysiology of certain types of hypertension. The possibility that multiple endogenous digitalis-like factors (EDLFs) exist emerged from efforts to characterize the circulating enzyme inhibitory activity. In this review, the development of this field from its beginnings is traced, the current status of the structure of EDLFs is briefly discussed, and areas for future development are suggested.
Collapse
Affiliation(s)
- Vardaman M. Buckalew
- Medical Center Boulevard, Wake Forest School of Medicine, Winston Salem, NC, USA
- *Correspondence: Vardaman M. Buckalew, Medical Center Boulevard, Wake Forest School of Medicine, Winston Salem, NC 27157, USA e-mail:
| |
Collapse
|
10
|
Hodes A, Lichtstein D. Natriuretic hormones in brain function. Front Endocrinol (Lausanne) 2014; 5:201. [PMID: 25506340 PMCID: PMC4246887 DOI: 10.3389/fendo.2014.00201] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/12/2014] [Indexed: 01/11/2023] Open
Abstract
Natriuretic hormones (NH) include three groups of compounds: the natriuretic peptides (ANP, BNP and CNP), the gastrointestinal peptides (guanylin and uroguanylin), and endogenous cardiac steroids. These substances induce the kidney to excrete sodium and therefore participate in the regulation of sodium and water homeostasis, blood volume, and blood pressure (BP). In addition to their peripheral functions, these hormones act as neurotransmitters or neuromodulators in the brain. In this review, the established information on the biosynthesis, release and function of NH is discussed, with particular focus on their role in brain function. The available literature on the expression patterns of each of the NH and their receptors in the brain is summarized, followed by the evidence for their roles in modulating brain function. Although numerous open questions exist regarding this issue, the available data support the notion that NH participate in the central regulation of BP, neuroprotection, satiety, and various psychiatric conditions, including anxiety, addiction, and depressive disorders. In addition, the interactions between the different NH in the periphery and the brain are discussed.
Collapse
Affiliation(s)
- Anastasia Hodes
- Faculty of Medicine, Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Lichtstein
- Faculty of Medicine, Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
11
|
Gonick HC. Evidence for a 12 kDa "Carrier Protein" for Natriuretic Hormone. Front Endocrinol (Lausanne) 2014; 5:196. [PMID: 25477863 PMCID: PMC4237141 DOI: 10.3389/fendo.2014.00196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/30/2014] [Indexed: 11/21/2022] Open
Abstract
The search for the elusive Na-K-ATPase-inhibiting natriuretic hormone continues. In this review, evidence is presented that isolating the carrier protein for natriuretic hormone from hypertensive plasma is a necessary first step before splitting off the final hormone. The carrier protein has a molecular weight of 12 kDa while the final hormone has a molecular weight of 408 Da. Both compounds inhibit Na-K-ATPase but the compound containing the carrier protein predominates. The question has been raised as to whether the carrier protein is in actuality proANF, a 17 kDa protein that can be split between a 14 kDa protein (the presumptive proANF) and the 3 kDa ANF.
Collapse
Affiliation(s)
- Harvey C. Gonick
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- *Correspondence: Harvey C. Gonick, 201 Tavistock Avenue, Los Angeles, CA 90049, USA e-mail:
| |
Collapse
|
12
|
MAPK and PI3K pathways regulate hypoxia-induced atrial natriuretic peptide secretion by controlling HIF-1 alpha expression in beating rabbit atria. Biochem Biophys Res Commun 2013; 438:507-12. [PMID: 23916614 DOI: 10.1016/j.bbrc.2013.07.106] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 07/23/2013] [Indexed: 11/21/2022]
Abstract
Mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) signaling pathways are pivotal and intensively studied signaling pathways in hypoxic conditions. However, the roles of MAPK and PI3K in the regulation of hypoxia-induced atrial natriuretic peptide (ANP) secretion are not well understood. The purpose of the present study was to investigate the mechanism by which the MAPK/ERK (extracellular signal-regulated kinase) and PI3K signaling pathways regulate the acute hypoxia-induced ANP secretion in isolated beating rabbit atria. An acute hypoxic perfused beating rabbit atrial model was used. The ANP levels in the atrial perfusates were measured by radioimmunoassay, and the hypoxia-inducible factor-1α (HIF-1α) mRNA and protein levels in the atrial tissue were determined by RT-PCR and Western blot. Acute hypoxia significantly increased ANP secretion and HIF-1α mRNA and protein levels. Hypoxia-induced ANP secretion was markedly attenuated by the HIF-1α inhibitors, rotenone (0.5μmol/L) and CAY10585 (10μmol/L), concomitantly with downregulation of the hypoxia-induced HIF-1α mRNA and protein levels. PD098059 (30μmol/L) and LY294002 (30μmol/L), inhibitors of MAPK and PI3K, markedly abolished the hypoxia-induced ANP secretion and atrial HIF-1α mRNA and protein levels. The hypoxia-suppressed atrial dynamics were significantly attenuated by PD098059 and LY294002. Acute hypoxia in isolated perfused beating rabbit atria, markedly increased ANP secretion through HIF-1α upregulation, which was regulated by the MAPK/ERK and PI3K pathways. ANP appears to be part of the protective program regulated by HIF-1α in the response to acute hypoxic conditions.
Collapse
|
13
|
Bueno-Orovio A, Sánchez C, Pueyo E, Rodriguez B. Na/K pump regulation of cardiac repolarization: insights from a systems biology approach. Pflugers Arch 2013; 466:183-93. [PMID: 23674099 DOI: 10.1007/s00424-013-1293-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 11/26/2022]
Abstract
The sodium-potassium pump is widely recognized as the principal mechanism for active ion transport across the cellular membrane of cardiac tissue, being responsible for the creation and maintenance of the transarcolemmal sodium and potassium gradients, crucial for cardiac cell electrophysiology. Importantly, sodium-potassium pump activity is impaired in a number of major diseased conditions, including ischemia and heart failure. However, its subtle ways of action on cardiac electrophysiology, both directly through its electrogenic nature and indirectly via the regulation of cell homeostasis, make it hard to predict the electrophysiological consequences of reduced sodium-potassium pump activity in cardiac repolarization. In this review, we discuss how recent studies adopting the systems biology approach, through the integration of experimental and modeling methodologies, have identified the sodium-potassium pump as one of the most important ionic mechanisms in regulating key properties of cardiac repolarization and its rate dependence, from subcellular to whole organ levels. These include the role of the pump in the biphasic modulation of cellular repolarization and refractoriness, the rate control of intracellular sodium and calcium dynamics and therefore of the adaptation of repolarization to changes in heart rate, as well as its importance in regulating pro-arrhythmic substrates through modulation of dispersion of repolarization and restitution. Theoretical findings are consistent across a variety of cell types and species including human, and widely in agreement with experimental findings. The novel insights and hypotheses on the role of the pump in cardiac electrophysiology obtained through this integrative approach could eventually lead to novel therapeutic and diagnostic strategies.
Collapse
Affiliation(s)
- Alfonso Bueno-Orovio
- Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK,
| | | | | | | |
Collapse
|