1
|
Zou Z, Pan S, Sun C, Wei J, Xu Y, Xiao K, Zhao J, Gu R. AM1241 inhibits chondrocyte inflammation and ECM degradation through the Nrf2/HO-1 and NF-κB pathways and alleviates osteoarthritis in mice. Mol Med 2025; 31:9. [PMID: 39794700 PMCID: PMC11721480 DOI: 10.1186/s10020-024-01012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 11/25/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND This study aimed to investigate the impact of AM1241 on lipopolysaccharide (LPS)-induced chondrocyte inflammation in mice and its potential mechanism for improving osteoarthritis (OA). METHODS The OA mice model was established employing the refined Hulth method. The impact of different concentrations of AM1241 on mice chondrocyte activity was detected using CCK-8. Changes in the levels of LPS-induced inflammatory factors and cartilage extracellular matrix (ECM) degradation in chondrocytes were determined by western blot, RT-qPCR, ELISA, and immunofluorescence assays, respectively. The specific action modes and binding sites of AM1241 with NEMO/IκB kinases (IKKs) in the NF-κB pathway and Keap1 protein in the Nrf2 pathway were predicted via molecular docking and molecular dynamics simulation, and the NF-κB and Nrf2 pathways were detected using western blot and immunofluorescence. In vivo, the impact of AM1241 on OA mice was analyzed through safranin-fast green staining, IHC staining, Mankin score, and microCT. RESULTS AM1241 inhibited the levels of LPS-induced transforming growth factor-β (TGF-β1), tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), matrix metalloproteinase-13 (MMP-13), and a disintegrin and metalloproteinase with thrombospondin motif 5 (ADAMTS-5) and diminished the degradation of type II collagen and Aggrecan. For the mechanism, AM1241 regulated the NF-kB and Nrf2/HO-1 signaling pathways by binding to NEMO/IKKβ and Keap1 target proteins and suppressed the activation of the NF-κB signaling pathway by activating the Nrf2 in chondrocytes. In vivo, AM1241 inhibited bone anabolism, mitigated articular cartilage hyperplasia and wear, and reduced the Mankin score in mice, thereby hindering the development of OA. CONCLUSION AM1241 inhibited activation of the NF-κB signaling pathway via activating Nrf2. It suppressed the expression of inflammation factors and the degradation of ECM in vitro, and improved OA in mice in vivo, suggesting its potential as an effective drug candidate for the treatment of OA. The remarkable efficacy of AM1241 in alleviating murine OA positions it as a potential therapeutic strategy in the clinical management of OA diseases.
Collapse
Affiliation(s)
- Zhuan Zou
- Department of Spine Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, 89 Qixing Road, Nanning, Guangxi, 530022, China
| | - Songmu Pan
- Department of Spine Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, 89 Qixing Road, Nanning, Guangxi, 530022, China
| | - Changzheng Sun
- Department of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jiyong Wei
- Department of Spine Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, 89 Qixing Road, Nanning, Guangxi, 530022, China
| | - Yi Xu
- Department of Pharmacy, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Kaizhen Xiao
- Department of Spine Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, 89 Qixing Road, Nanning, Guangxi, 530022, China
| | - Jinmin Zhao
- School of Basic Medical Sciences, Guangxi Medical University, No. 22, Shuangyou Road, Qingxiu District, Nanning, Guangxi, 530021, China.
| | - Ronghe Gu
- Department of Spine Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, 89 Qixing Road, Nanning, Guangxi, 530022, China.
- School of Basic Medical Sciences, Guangxi Medical University, No. 22, Shuangyou Road, Qingxiu District, Nanning, Guangxi, 530021, China.
| |
Collapse
|
2
|
Malamas MS, Lamani M, Farah SI, Mohammad KA, Miyabe CY, Rajarshi G, Wu S, Zvonok N, Chandrashekhar H, Wood JT, Makriyannis A. Design and Synthesis of Highly Potent and Specific ABHD6 Inhibitors. ChemMedChem 2023; 18:e202100406. [PMID: 34486233 PMCID: PMC8898323 DOI: 10.1002/cmdc.202100406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/22/2021] [Indexed: 01/15/2023]
Abstract
Fine-tuning than complete disruption of 2-arachidonoylglycerol (2-AG) metabolism in the brain represents a promising pharmacological approach to limit potential untoward effects associated with complete blockade of monoacylglycerol lipase (MGL), the primary hydrolase of 2-AG. This could be achieved through a/b-hydrolase domain containing 6 (ABHD6) inhibition, which will provide a smaller and safer contribution to 2-AG regulation in the brain. Pharmacological studies with ABHD6 inhibitors have recently been reported, where modulation of ABHD6 activity either through CB1R-dependent or CB1R-independent processes showed promise in preclinical models of epilepsy, neuropathic pain and inflammation. Furthermore in the periphery, ABHD6 modulates 2-AG and other fatty acid monoacylglycerols (MAGs) and is implicated in Type-2 diabetes, metabolic syndrome and potentially other diseases. Herein, we report the discovery of single-digit nanomolar potent and highly specific ABHD6 inhibitors with >1000-fold selectivity against MGL and FAAH. The new ABHD6 inhibitors provide early leads to develop therapeutics for neuroprotection and the treatment of inflammation and diabetes.
Collapse
Affiliation(s)
- Michael S. Malamas
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Manjunath Lamani
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Shrouq I. Farah
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Khadijah A. Mohammad
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Christina Yume Miyabe
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Girija Rajarshi
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Simiao Wu
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Nikolai Zvonok
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Honrao Chandrashekhar
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - JodiAnne T. Wood
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
3
|
WITHDRAWN: Design and synthesis of highly potent dual ABHD6/MGL inhibitors. Bioorg Med Chem 2021. [DOI: 10.1016/j.bmc.2021.116244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Malamas MS, Pavlopoulos S, Alapafuja SO, Farah SI, Zvonok A, Mohammad KA, West J, Perry NT, Pelekoudas DN, Rajarshi G, Shields C, Chandrashekhar H, Wood J, Makriyannis A. Design and Structure-Activity Relationships of Isothiocyanates as Potent and Selective N-Acylethanolamine-Hydrolyzing Acid Amidase Inhibitors. J Med Chem 2021; 64:5956-5972. [PMID: 33900772 DOI: 10.1021/acs.jmedchem.1c00076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-Acylethanolamines are signaling lipid molecules implicated in pathophysiological conditions associated with inflammation and pain. N-Acylethanolamine acid amidase (NAAA) favorably hydrolyzes lipid palmitoylethanolamide, which plays a key role in the regulation of inflammatory and pain processes. The synthesis and structure-activity relationship studies encompassing the isothiocyanate pharmacophore have produced potent low nanomolar inhibitors for hNAAA, while exhibiting high selectivity (>100-fold) against other serine hydrolases and cysteine peptidases. We have followed a target-based structure-activity relationship approach, supported by computational methods and known cocrystals of hNAAA. We have identified systemically active inhibitors with good plasma stability (t1/2 > 2 h) and microsomal stability (t1/2 ∼ 15-30 min) as pharmacological tools to investigate the role of NAAA in inflammation, pain, and drug addiction.
Collapse
Affiliation(s)
| | - Spiro Pavlopoulos
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Shakiru O Alapafuja
- MAK Scientific LLC, 151 South Bedford Street, Burlington, Massachusetts 01803, United States
| | - Shrouq I Farah
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Alexander Zvonok
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Khadijah A Mohammad
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jay West
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Nicholas Thomas Perry
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Dimitrios N Pelekoudas
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Girija Rajarshi
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Christina Shields
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Honrao Chandrashekhar
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jodi Wood
- Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
5
|
Malamas MS, Farah SI, Lamani M, Pelekoudas DN, Perry NT, Rajarshi G, Miyabe CY, Chandrashekhar H, West J, Pavlopoulos S, Makriyannis A. Design and synthesis of cyanamides as potent and selective N-acylethanolamine acid amidase inhibitors. Bioorg Med Chem 2019; 28:115195. [PMID: 31761726 DOI: 10.1016/j.bmc.2019.115195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 10/25/2022]
Abstract
N-acylethanolamine acid amidase (NAAA) inhibition represents an exciting novel approach to treat inflammation and pain. NAAA is a cysteine amidase which preferentially hydrolyzes the endogenous biolipids palmitoylethanolamide (PEA) and oleoylethanolamide (OEA). PEA is an endogenous agonist of the nuclear peroxisome proliferator-activated receptor-α (PPAR-α), which is a key regulator of inflammation and pain. Thus, blocking the degradation of PEA with NAAA inhibitors results in augmentation of the PEA/PPAR-α signaling pathway and regulation of inflammatory and pain processes. We have prepared a new series of NAAA inhibitors exploring the azetidine-nitrile (cyanamide) pharmacophore that led to the discovery of highly potent and selective compounds. Key analogs demonstrated single-digit nanomolar potency for hNAAA and showed >100-fold selectivity against serine hydrolases FAAH, MGL and ABHD6, and cysteine protease cathepsin K. Additionally, we have identified potent and selective dual NAAA-FAAH inhibitors to investigate a potential synergism between two distinct anti-inflammatory molecular pathways, the PEA/PPAR-α anti-inflammatory signaling pathway,1-4 and the cannabinoid receptors CB1 and CB2 pathways which are known for their antiinflammatory and antinociceptive properties.5-8 Our ligand design strategy followed a traditional structure-activity relationship (SAR) approach and was supported by molecular modeling studies of reported X-ray structures of hNAAA. Several inhibitors were evaluated in stability assays and demonstrated very good plasma stability (t1/2 > 2 h; human and rodents). The disclosed cyanamides represent promising new pharmacological tools to investigate the potential role of NAAA inhibitors and dual NAAA-FAAH inhibitors as therapeutic agents for the treatment of inflammation and pain.
Collapse
Affiliation(s)
- Michael S Malamas
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States.
| | - Shrouq I Farah
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Manjunath Lamani
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Dimitrios N Pelekoudas
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Nicholas Thomas Perry
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Girija Rajarshi
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Christina Yume Miyabe
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Honrao Chandrashekhar
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Jay West
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Spiro Pavlopoulos
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, United States
| |
Collapse
|
6
|
Buchheim JI, Hoskyns S, Moser D, Han B, Deindl E, Hörl M, Biere K, Feuerecker M, Schelling G, Choukèr A. Oxidative burst and Dectin-1-triggered phagocytosis affected by norepinephrine and endocannabinoids: implications for fungal clearance under stress. Int Immunol 2019; 30:79-89. [PMID: 29329391 DOI: 10.1093/intimm/dxy001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 01/06/2018] [Indexed: 12/12/2022] Open
Abstract
A prolonged stress burden is known to hamper the efficiency of both the innate and the adaptive immune systems and to attenuate the stress responses by the catecholaminergic and endocannabinoid (EC) systems. Key mechanisms of innate immunity are the eradication of pathogens through phagocytosis and the respiratory burst. We tested the concentration-dependent, spontaneous and stimulated (via TNFα and N-formylmethionine-leucyl-phenylalanine) release of reactive oxygen species (ROS) by human polymorphonuclear leukocytes (PMNs) in vitro in response to norepinephrine (NE) and AM1241, a pharmacological ligand for the EC receptor CB2. We evaluated phagocytosis of Dectin-1 ligating zymosan particles and tested the cytokine response against Candida antigen in an in vitro cytokine release assay. Increasing concentrations of NE did not affect phagocytosis, yet stimulated ROS release was attenuated gradually reaching maximum suppression at 500 nM. Adrenergic receptor (AR) mechanisms using non-AR-selective (labetalol) as well as specific α-(prazosin) and β-(propranolol) receptor antagonists were tested. Results show that only labetalol and propranolol were able to recuperate cytotoxicity in the presence of NE, evidencing a β-receptor-mediated effect. The CB2 agonist, AM1241, inhibited phagocytosis at 10 µM and spontaneous peroxide release by PMNs. Use of the inverse CB2 receptor agonist SR144528 led to partial recuperation of ROS production, confirming the functional role of CB2. Additionally, AM1241 delayed early activation of monocytes and induced suppression of IL-2 and IL-6 levels in response to Candida via lower activity of mammalian target of rapamycin (mTOR). These findings provide new insights into key mechanisms of innate immunity under stressful conditions where ligands to the sympatho-adrenergic and EC system are released.
Collapse
Affiliation(s)
- Judith-Irina Buchheim
- Laboratory of Translational Research 'Stress and Immunity', Department of Anaesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University, Germany
| | - Spencer Hoskyns
- Laboratory of Translational Research 'Stress and Immunity', Department of Anaesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University, Germany.,Centre of Human and Aerospace Physiological Sciences, Kings College London, UK
| | - Dominique Moser
- Laboratory of Translational Research 'Stress and Immunity', Department of Anaesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University, Germany
| | - Bing Han
- Laboratory of Translational Research 'Stress and Immunity', Department of Anaesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University, Germany
| | | | - Marion Hörl
- Laboratory of Translational Research 'Stress and Immunity', Department of Anaesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University, Germany
| | - Katharina Biere
- Laboratory of Translational Research 'Stress and Immunity', Department of Anaesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University, Germany
| | - Matthias Feuerecker
- Laboratory of Translational Research 'Stress and Immunity', Department of Anaesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University, Germany
| | - Gustav Schelling
- Laboratory of Translational Research 'Stress and Immunity', Department of Anaesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University, Germany
| | - Alexander Choukèr
- Laboratory of Translational Research 'Stress and Immunity', Department of Anaesthesiology, Hospital of the University of Munich, Ludwig-Maximilians-University, Germany.,Centre of Human and Aerospace Physiological Sciences, Kings College London, UK
| |
Collapse
|
7
|
Alapafuja SO, Malamas MS, Shukla V, Zvonok A, Miller S, Daily L, Rajarshi G, Miyabe CY, Chandrashekhar H, Wood J, Tyukhtenko S, Straiker A, Makriyannis A. Synthesis and evaluation of potent and selective MGL inhibitors as a glaucoma treatment. Bioorg Med Chem 2019; 27:55-64. [PMID: 30446439 DOI: 10.1016/j.bmc.2018.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 12/22/2022]
Abstract
Monoacylglycerol lipase (MGL) inhibition provides a potential treatment approach to glaucoma through the regulation of ocular 2-arachidonoylglycerol (2-AG) levels and the activation of CB1 receptors. Herein, we report the discovery of new series of carbamates as highly potent and selective MGL inhibitors. The new inhibitors showed potent nanomolar inhibitory activity against recombinant human and purified rat MGL, were selective (>1000-fold) against serine hydrolases FAAH and ABHD6 and lacked any affinity for the cannabinoid receptors CB1 and CB2. Protein-based 1H NMR experiments indicated that inhibitor 2 rapidly formed a covalent adduct with MGL with a residence time of about 6 h. This interconversion process "intrinsic reversibility" was exploited by modifications of the ligand's size (length and bulkiness) to generate analogs with "tunable' adduct residence time (τ). Inhibitor 2 was evaluated in a normotensive murine model for assessing intraocular pressure (IOP), which could lead to glaucoma, a major cause of blindness. Inhibitor 2 was found to decrease ocular pressure by ∼4.5 mmHg in a sustained manner for at least 12 h after a single ocular application, underscoring the potential for topically-administered MGL inhibitors as a novel therapeutic target for the treatment of glaucoma.
Collapse
Affiliation(s)
| | - Michael S Malamas
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA.
| | - Vidyanand Shukla
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Alexander Zvonok
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Sally Miller
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Laura Daily
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Girija Rajarshi
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Christina Yume Miyabe
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Honrao Chandrashekhar
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - JodiAnne Wood
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Sergiy Tyukhtenko
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Alex Straiker
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
8
|
Watanabe S, Kuzhiumparambil U, Fu S. In vitro metabolism of synthetic cannabinoid AM1220 by human liver microsomes and Cunninghamella elegans using liquid chromatography coupled with high resolution mass spectrometry. Forensic Toxicol 2018; 36:435-446. [PMID: 29963209 PMCID: PMC6002424 DOI: 10.1007/s11419-018-0424-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/21/2018] [Indexed: 01/12/2023]
Abstract
Purpose Identifying intake of synthetic cannabinoids generally requires the metabolism data of the drugs so that appropriate metabolite markers can be targeted in urine testing. However, the continuous appearance of new cannabinoids during the last decade has made it difficult to keep up with all the compounds including {1-[(1-methylpiperidin-2-yl)methyl]-1H-indol-3-yl}(naphthalen-1-yl)methanone (AM1220). In this study, metabolism of AM1220 was investigated with human liver microsomes and the fungus Cunninghamella elegans. Methods Metabolic stability of AM1220 was analysed by liquid chromatography–tandem mass spectrometry in multiple reaction monitoring mode after 1 µM incubation in human liver microsomes for 30 min. Tentative structure elucidation of metabolites was performed on both human liver microsome and fungal incubation samples using liquid chromatography–high-resolution mass spectrometry. Results Half-life of AM1220 was estimated to be 3.7 min, indicating a high clearance drug. Nine metabolites were detected after incubating human liver microsomes while seven were found after incubating Cunninghamella elegans, leading to 11 metabolites in total (five metabolites were common to both systems). Demethylation, dihydrodiol formation, combination of the two, hydroxylation and dihydroxylation were the observed biotransformations. Conclusions Three most abundant metabolites in both human liver microsomes and Cunninghamella elegans were desmethyl, dihydrodiol and hydroxy metabolites, despite different isomers of dihydrodiol and hydroxy metabolites in each model. These abundant metabolites can potentially be useful markers in urinalysis for AM1220 intake.
Collapse
Affiliation(s)
- Shimpei Watanabe
- Centre for Forensic Science, School of Mathematical and Physical Sciences, University of Technology Sydney (UTS), PO Box 123, Broadway, NSW 2007 Australia
| | - Unnikrishnan Kuzhiumparambil
- Centre for Forensic Science, School of Mathematical and Physical Sciences, University of Technology Sydney (UTS), PO Box 123, Broadway, NSW 2007 Australia
- Climate Change Cluster, University of Technology Sydney (UTS), PO Box 123, Broadway, NSW 2007 Australia
| | - Shanlin Fu
- Centre for Forensic Science, School of Mathematical and Physical Sciences, University of Technology Sydney (UTS), PO Box 123, Broadway, NSW 2007 Australia
| |
Collapse
|
9
|
Nikas SP, Sharma R, Paronis CA, Kulkarni S, Thakur GA, Hurst D, Wood JT, Gifford RS, Rajarshi G, Liu Y, Raghav JG, Guo JJ, Järbe TUC, Reggio PH, Bergman J, Makriyannis A. Probing the carboxyester side chain in controlled deactivation (-)-δ(8)-tetrahydrocannabinols. J Med Chem 2014; 58:665-81. [PMID: 25470070 PMCID: PMC4306527 DOI: 10.1021/jm501165d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
![]()
We
recently reported on a controlled deactivation/detoxification approach
for obtaining cannabinoids with improved druggability. Our design
incorporates a metabolically labile ester group at strategic positions
within the THC structure. We have now synthesized a series of (−)-Δ8-THC analogues encompassing a carboxyester group within the
3-alkyl chain in an effort to explore this novel cannabinergic chemotype
for CB receptor binding affinity, in vitro and in vivo potency and
efficacy, as well as controlled deactivation by plasma esterases.
We have also probed the chain’s polar characteristics with
regard to fast onset and short duration of action. Our lead molecule,
namely 2-[(6aR,10aR)-6a,7,10,10a-tetrahydro-1-hydroxy-6,6,9-trimethyl-6H-dibenzo[b,d]pyran-3-yl]-2-methyl-propanoic
acid 3-cyano-propyl ester (AM7438), showed picomolar affinity for
CB receptors and is deactivated by plasma esterases while the respective
acid metabolite is inactive. In further in vitro and in vivo experiments,
the compound was found to be a remarkably potent and efficacious CB1
receptor agonist with relatively fast onset/offset of action.
Collapse
Affiliation(s)
- Spyros P Nikas
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University , Boston, Massachusetts 02115, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sharma R, Nikas SP, Paronis CA, Wood JT, Halikhedkar A, Guo JJ, Thakur GA, Kulkarni S, Benchama O, Raghav JG, Gifford RS, Järbe TUC, Bergman J, Makriyannis A. Controlled-deactivation cannabinergic ligands. J Med Chem 2013; 56:10142-57. [PMID: 24286207 DOI: 10.1021/jm4016075] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We report an approach for obtaining novel cannabinoid analogues with controllable deactivation and improved druggability. Our design involves the incorporation of a metabolically labile ester group at the 2'-position on a series of (-)-Δ(8)-THC analogues. We have sought to introduce benzylic substituents α to the ester group which affect the half-lives of deactivation through enzymatic activity while enhancing the affinities and efficacies of individual ligands for the CB1 and CB2 receptors. The 1'-(S)-methyl, 1'-gem-dimethyl, and 1'-cyclobutyl analogues exhibit remarkably high affinities for both CB receptors. The novel ligands are susceptible to enzymatic hydrolysis by plasma esterases in a controllable manner, while their metabolites are inactive at the CB receptors. In further in vitro and in vivo experiments key analogues were shown to be potent CB1 receptor agonists and to exhibit CB1-mediated hypothermic and analgesic effects.
Collapse
Affiliation(s)
- Rishi Sharma
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University , Boston, Massachusetts 02115, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|