1
|
Cheng X, Liu J, Liu S, Fang D, Chen X, Ding X, Zhang X, Chen Y, Li Y. Red Blood Cell-Related Parameters in Rheumatoid Arthritis: Clinical Value and Immunological Significance. J Inflamm Res 2024; 17:10641-10650. [PMID: 39677289 PMCID: PMC11638476 DOI: 10.2147/jir.s479059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024] Open
Abstract
Rheumatoid arthritis (RA) is characterized by chronic inflammation and autoimmunity. Moreover, the disease activity, co-morbidities, and prognosis of RA are closely associated with changes in red blood cell (RBC)-related parameters. The role of these parameters in RA has therefore been extensively studied. Accordingly, this article summarizes and analyzes the close relationship of RBC-related parameters such as RBC count, hemoglobin, and RBC distribution width with disease activity, co-morbidities, and prognosis in RA by reviewing the available literature. In addition, given the immunomodulatory functions of RBCs, their surface proteins, contents, and microparticles are involved in the immunomodulatory process during RA. Overall, this review aims to assess the important clinical value and immunological significance of RBCs and their related parameters in the monitoring and management of RA, thus providing a reference for the clinical diagnosis and treatment of RA and the direction for the research on RBC-related immunity.
Collapse
Affiliation(s)
- Xueni Cheng
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
- Anhui Key Laboratory of Application and Development of Internal Medicine of Modern Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
| | - Jian Liu
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
- Anhui Key Laboratory of Application and Development of Internal Medicine of Modern Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
| | - Shengfeng Liu
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
| | - Dahai Fang
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
| | - Xiaolu Chen
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
| | - Xiang Ding
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
| | - Xianheng Zhang
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
| | - Yiming Chen
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
| | - Yang Li
- Department of Rheumatology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui Province, People’s Republic of China
| |
Collapse
|
2
|
Major TC, Brisbois EJ, Meyerhoff ME, Bartlett RH. Attenuation of Thrombin-Mediated Fibrin Formation via Changes in Fibrinogen Conformation Induced by Reaction with S-nitroso- N-acetylpenicillamine, but not S-nitrosoglutathione. J Mater Chem B 2018; 6:7954-7965. [PMID: 31372222 PMCID: PMC6675453 DOI: 10.1039/c8tb02103a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Previous work in a 4 h rabbit thrombogenicity model has shown that a nitric oxide- (NO) generating polymer extracorporeal circuits (ECC) with infusion of S-nitroso-N-acetyl-penicillamine (SNAP) preserved platelets eventhough platelets were activated as shown by an increase in the glycoprotein, p-selectin. The platelet preservation mechanism was shown to be due to a changing fibrinogen structure leading to attenuation of platelet aggregation. Understanding the effects that SNAP, another RSNO, S-nitroso-glutathione (GSNO) as well as the non-RSNO, sodium nitroprusside (SNP), may have on human fibrinogen polymerization, this in vitro study evaluated the released NO effects on the thrombin-mediated fibrin formation and fibrinogen structure. Thrombin-induced fibrin formation at 300 μM SNAP (50 + 11% of baseline) was significantly reduced compared to SNAP's parent, N-acetyl-penicillamine (NAP) (95 + 13%) after 1 h of RSNO exposure. GSNO, its parent, glutathione (GSH) and 1000 ppm NO gas did not attenuate the thrombin-mediated fibrin formation. SNAP, NAP and SNP exposure for 1 h, however, did not decrease thrombin activity by directly inhibiting thrombin itself. Changes in fibrinogen conformation as measured by intrinsic tryptophan fluorescence significantly decreased in the 300 μM SNAP (38057 + 1196 mean fluorescence intensity (MFI) and SNP (368617 + 541 MFI) groups versus the NAP control (47937 + 1196 MFI). However, infused 1000 ppm NO gas had no direct effect on the ITF after 1 h incubation at 37°C. High performance liquid chromatography (HPLC) showed that fibrinogen degradation by 0.03 U/ml thrombin was concentration-dependently reduced after 1 h with SNAP but not with NAP or SNP. Western blotting showed RSNOs, SNAP, NAP and the non-RSNO, SNP-incubated fibrinogen solutions showed that the percent level of the Aγ dimer to total Aγ dimer + γ monomer was significantly reduced in the case of the SNAP group when compared to SNP group. These results suggest that NO donors such as SNAP and SNP induce fibrinogen conformational changes by potentially nitrosating fibrinogen tyrosine residues. These NO-mediated fibrinogen changes induced via NO donors may provide another mechanism of NO for improving thromboresistance in ECC.
Collapse
Affiliation(s)
- Terry C Major
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI USA
| | - Elizabeth J Brisbois
- Department of Materials Science and Engineering, University of Central Florida, FL USA
| | - Mark E Meyerhoff
- Department of Chemistry, University of Michigan, Ann Arbor, MI USA
| | - Robert H Bartlett
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, MI USA
| |
Collapse
|
3
|
Zhao Y, Wang X, Noviana M, Hou M. Nitric oxide in red blood cell adaptation to hypoxia. Acta Biochim Biophys Sin (Shanghai) 2018; 50:621-634. [PMID: 29860301 DOI: 10.1093/abbs/gmy055] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Indexed: 12/28/2022] Open
Abstract
Nitric oxide (NO) appears to be involved in virtually every aspect of cardiovascular biology. Most attention has been focused on the role of endothelial-derived NO in basal blood flow regulation by relaxing vascular smooth muscle; however, it is now known that NO derived from red blood cells (RBCs) plays a fundamental role in vascular homeostasis by enhancing oxygen (O2) release at the cellular and physiological level. Hypoxia is an often seen problem in diverse conditions; systemic adaptations to hypoxia permit people to adjust to the hypoxic environment at high altitudes and to disease processes. In addition to the cardiopulmonary and hematologic adaptations that support systemic O2 delivery in hypoxia, RBCs assist through newly described NO-based mechanisms, in line with their vital role in O2 transport and delivery. Furthermore, to increase the local blood flow in proportion to metabolic demand, NO regulates membrane mechanical properties thereby modulating RBC deformability and O2 carrying-releasing function. In this review article, we focus on the effect of NO bioactivity on RBC-based mechanisms that regulate blood flow and RBC deformability. RBC adaptations to hypoxia are summarized, with particular attention to NO-dependent S-nitrosylation of membrane proteins and hemoglobin (S-nitrosohemoglobin). The NO/S-nitrosylation/RBC vasoregulatory cascade contributes fundamentally to the molecular understanding of the role of NO in human adaptation to hypoxia and may inform novel therapeutic strategies.
Collapse
Affiliation(s)
- Yajin Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xiang Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Milody Noviana
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Man Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
4
|
Saldanha C. Human Erythrocyte Acetylcholinesterase in Health and Disease. Molecules 2017; 22:E1499. [PMID: 28885588 PMCID: PMC6151671 DOI: 10.3390/molecules22091499] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 09/04/2017] [Indexed: 01/11/2023] Open
Abstract
The biochemical properties of erythrocyte or human red blood cell (RBC) membrane acetylcholinesterase (AChE) and its applications on laboratory class and on research are reviewed. Evidence of the biochemical and the pathophysiological properties like the association between the RBC AChE enzyme activity and the clinical and biophysical parameters implicated in several diseases are overviewed, and the achievement of RBC AChE as a biomarker and as a prognostic factor are presented. Beyond its function as an enzyme, a special focus is highlighted in this review for a new function of the RBC AChE, namely a component of the signal transduction pathway of nitric oxide.
Collapse
Affiliation(s)
- Carlota Saldanha
- Instituto de Bioquímica, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
5
|
Lima C, Pinto S, Napoleão P, Pronto-Laborinho AC, Barros MA, Freitas T, de Carvalho M, Saldanha C. Identification of erythrocyte biomarkers in amyotrophic lateral sclerosis. Clin Hemorheol Microcirc 2017; 63:423-437. [PMID: 27258202 DOI: 10.3233/ch-162066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease of the motor system. It has been hypothesised that red blood cells (RBCs) may be involved in the disease process by the release of damaging molecules. OBJECTIVE The aim of this ex vivo study is to compare RBCs biochemical and hemorheological parameters between ALS patients and healthy donors to identify novel biomarkers of the ALS disease. METHODS We included 82 ALS patients and 40 gender age-matched healthy donors. We performed quantification of erythrocyte aggregation and deformability, nitric oxide (NO) efflux from RBCs, acetylcholinesterase (AChE) enzyme activity and intraerythrocytic concentration of nitrite, nitrate and S-nitrosogluthatione (GSNO). RESULTS Erythrocyte deformability and AChE activity were increased in patients with ALS in comparison to healthy donors. NO efflux from RBCs and concentration of intraerythrocytic nitrite were lower in ALS patients. In patients, we found that for higher NO range of values the respiratory function is worse and that for higher AChE range of values the RBCs nitrite content increase. CONCLUSION The results of the present study indicate that NO efflux from RBCs and RBCs AChE should be further explored as potential biomarkers for ALS.
Collapse
Affiliation(s)
- Catarina Lima
- Instituto de Bioquímica, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Susana Pinto
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Patrícia Napoleão
- Instituto de Bioquímica, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Catarina Pronto-Laborinho
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Amparo Barros
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Teresa Freitas
- Instituto de Bioquímica, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Mamede de Carvalho
- Instituto de Fisiologia, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Departamento de Neurociências. Hospital de Santa Maria-CHLN, Lisbon, Portugal
| | - Carlota Saldanha
- Instituto de Bioquímica, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
6
|
de Azevedo MI, Ferreiro L, Da Silva AS, Tonin AA, Thorstenberg ML, Catilhos LG, França RT, Leal DBR, Duarte MMMF, Lopes STA, Sangoi MB, Moresco RN, Fighera R, Santurio JM. Cholinesterase of rats experimentally infected by Cryptococcus neoformans: Relationship between inflammatory response and pathological findings. Pathol Res Pract 2015; 211:851-7. [PMID: 26376950 DOI: 10.1016/j.prp.2015.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 05/18/2015] [Accepted: 08/03/2015] [Indexed: 10/23/2022]
Abstract
The aim of this study was to assess the role of the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) as biomarkers of inflammation and tissue injury on rats experimentally infected by Cryptococcus neoformans. For this purpose, 20 male rats were divided into two groups: 10 animals representing the uninfected control group (Group A) and 10 C. neoformans var. grubii infected animals (Group B). Blood and brain samples were collected on days 10 (A10 and B10), and 30 (A30 and B30) post-infection (PI) for hematological analyses; AChE (in lymphocytes and brain) and seric BChE activity; interleukins (IL-1, IL-6, and IL-10); nitrite/nitrate (NOx) levels; and markers of protein oxidation (AOPP) and lipid peroxidation (TBARS). As a result, when animals of Group A were compared to animals of Group B, it was observed leukocytosis (P<0.05) on day 10 PI; AChE activity increase (P<0.05) in lymphocytes (day 30 PI) and in brain (days 10 and 30 PI); BChE activity decrease (P<0.05) on day 10 PI; IL-1 and IL-6 increase (P<0.01) in both periods, while IL-10 had reduced levels (P<0.01) in the same periods; NOx levels increased (P<0.05) significantly on days 10 and 30 PI, while AOPP and TBARS levels increased significantly on day 30 PI; as well as pneumonia on infected rats. Therefore, based on the results obtained, it was possible to conclude that AChE and BChE behavior lead to a proinflammatory reaction evidenced by the enhancement of IL-1, IL-6, and NOx throughout the experiment associated with reduction on IL-10 levels, and cellular damage.
Collapse
Affiliation(s)
- Maria Isabel de Azevedo
- Laboratório de Micologia, Departamento de Patologia e Clinica Animal, Faculdade de Medicina Veterinária (UFRGS), Porto Alegre, RS, Brazil; Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Laerte Ferreiro
- Laboratório de Micologia, Departamento de Patologia e Clinica Animal, Faculdade de Medicina Veterinária (UFRGS), Porto Alegre, RS, Brazil
| | | | - Alexandre A Tonin
- Universidade do Oeste de Santa Catarina (UNOESC), Xanxerê, SC, Brazil
| | - Maria Luiza Thorstenberg
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Livia Gelain Catilhos
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Raqueli T França
- Departamento de Pequenos Animais, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Daniela B R Leal
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | - Sonia T A Lopes
- Departamento de Pequenos Animais, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Manuela B Sangoi
- Departamento de Analises Clínicas Toxicológicas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Rafael N Moresco
- Departamento de Analises Clínicas Toxicológicas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Rafael Fighera
- Departamento de Patologia Veterinária, Universidade Federal de Santa Maria, Brazil
| | - Janio M Santurio
- Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
7
|
|
8
|
Olumuyiwa-Akeredolu OOO, Pretorius E. Platelet and red blood cell interactions and their role in rheumatoid arthritis. Rheumatol Int 2015; 35:1955-64. [PMID: 26059943 DOI: 10.1007/s00296-015-3300-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/26/2015] [Indexed: 12/23/2022]
Abstract
Cytokines, lymphocytes, platelets and several biomolecules have long been implicated in the pathology of rheumatoid arthritis (RA), and the influences of antibody production and tagging, and cytokine, chemokine and enzyme production at specific rheumatoid joints were thought to be exclusive to the advancement of disease parameters. Another role player in RA is red blood cells (RBCs) which, of late, have been found to be involved in RA pathobiology, as there is a positive correlation between RBC counts and joint pathology, as well as with inflammatory biomarkers in the disease. There is also an association between RBC distribution width and the incidence of myocardial infarction amongst RA patients, and there is a change in the lipid distribution within RBC membranes. Of late, certain RBC-associated factors with previously obscure roles and cell-derived particles thought to be inconsequential to the other constituents of plasma were found to be active biomolecular players. Several of these have been discovered to be present in or originating from RBCs. Their influences have been shown to involve in membrane dynamics that cause structural and functional changes in both platelets and RBCs. RBC-derived microparticles are emerging entities found to play direct roles in immunomodulation via interactions with other plasma cells. These correlations highlight the direct influences of RBCs on exacerbating RA pathology. This review will attempt to shed more light on how RBCs, in the true inflammatory milieu of RA, are playing an even greater role than previously assumed.
Collapse
Affiliation(s)
- Oore-Ofe O Olumuyiwa-Akeredolu
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag x323, Arcadia, 0007, South Africa
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Private Bag x323, Arcadia, 0007, South Africa.
| |
Collapse
|
9
|
Application of a nitric oxide sensor in biomedicine. BIOSENSORS-BASEL 2014; 4:1-17. [PMID: 25587407 PMCID: PMC4264366 DOI: 10.3390/bios4010001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 01/21/2014] [Accepted: 01/23/2014] [Indexed: 12/11/2022]
Abstract
In the present study, we describe the biochemical properties and effects of nitric oxide (NO) in intact and dysfunctional arterial and venous endothelium. Application of the NO electrochemical sensor in vivo and in vitro in erythrocytes of healthy subjects and patients with vascular disease are reviewed. The electrochemical NO sensor device applied to human umbilical venous endothelial cells (HUVECs) and the description of others NO types of sensors are also mentioned.
Collapse
|