1
|
Howlett AC, Thomas BF, Huffman JW. The Spicy Story of Cannabimimetic Indoles. Molecules 2021; 26:6190. [PMID: 34684770 PMCID: PMC8538531 DOI: 10.3390/molecules26206190] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
The Sterling Research Group identified pravadoline as an aminoalkylindole (AAI) non-steroidal anti-inflammatory pain reliever. As drug design progressed, the ability of AAI analogs to block prostaglandin synthesis diminished, and antinociceptive activity was found to result from action at the CB1 cannabinoid receptor, a G-protein-coupled receptor (GPCR) abundant in the brain. Several laboratories applied computational chemistry methods to ultimately conclude that AAI and cannabinoid ligands could overlap within a common binding pocket but that WIN55212-2 primarily utilized steric interactions via aromatic stacking, whereas cannabinoid ligands required some electrostatic interactions, particularly involving the CB1 helix-3 lysine. The Huffman laboratory identified strategies to establish CB2 receptor selectivity among cannabimimetic indoles to avoid their CB1-related adverse effects, thereby stimulating preclinical studies to explore their use as anti-hyperalgesic and anti-allodynic pharmacotherapies. Some AAI analogs activate novel GPCRs referred to as "Alkyl Indole" receptors, and some AAI analogs act at the colchicine-binding site on microtubules. The AAI compounds having the greatest potency to interact with the CB1 receptor have found their way into the market as "Spice" or "K2". The sale of these alleged "herbal products" evades FDA consumer protections for proper labeling and safety as a medicine, as well as DEA scheduling as compounds having no currently accepted medical use and a high potential for abuse. The distribution to the public of potent alkyl indole synthetic cannabimimetic chemicals without regard for consumer safety contrasts with the adherence to regulatory requirements for demonstration of safety that are routinely observed by ethical pharmaceutical companies that market medicines.
Collapse
Affiliation(s)
- Allyn C. Howlett
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Brian F. Thomas
- Department of Analytical Sciences, The Cronos Group, Toronto, ON M5V 2H1, Canada;
| | - John W. Huffman
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA;
| |
Collapse
|
2
|
Chen X, Wu X, Luan T, Jiang R, Ouyang G. Sample preparation and instrumental methods for illicit drugs in environmental and biological samples: A review. J Chromatogr A 2021; 1640:461961. [PMID: 33582515 DOI: 10.1016/j.chroma.2021.461961] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
Detection of illicit drugs in the environmental samples has been challenged as the consumption increases globally. Current review examines the recent developments and applications of sample preparation techniques for illicit drugs in solid, liquid, and gas samples. For solid samples, traditional sample preparation methods such as liquid-phase extraction, solid-phase extraction, and the ones with external energy including microwave-assisted, ultrasonic-assisted, and pressurized liquid extraction were commonly used. The sample preparation methods mainly applied for liquid samples were microextraction techniques including solid-phase microextraction, microextraction by packed sorbent, dispersive solid-phase extraction, dispersive liquid-liquid microextraction, hollow fiber-based liquid-phase microextraction, and so on. Capillary microextraction of volatiles and airborne particulate sampling were primarily utilized to extract illicit drugs from gas samples. Besides, the paper introduced recently developed instrumental techniques applied to detect illicit drugs. Liquid chromatograph mass spectrometry and gas chromatograph mass spectrometry were the most widely used methods for illicit drugs samples. In addition, the development of ambient mass spectrometry techniques, such as desorption electrospray ionization mass spectrometry and paper spray mass spectrometry, created potential for rapid in-situ analysis.
Collapse
Affiliation(s)
- Xinlv Chen
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Xinyan Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Tiangang Luan
- Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and safety, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, 100 Waihuanxi Road, Guangzhou 510006, China
| | - Ruifen Jiang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China.
| | - Gangfeng Ouyang
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangzhou, 510070, China; Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Grim TW, Morales AJ, Gonek MM, Wiley JL, Thomas BF, Endres GW, Sim-Selley LJ, Selley DE, Negus SS, Lichtman AH. Stratification of Cannabinoid 1 Receptor (CB1R) Agonist Efficacy: Manipulation of CB1R Density through Use of Transgenic Mice Reveals Congruence between In Vivo and In Vitro Assays. J Pharmacol Exp Ther 2016; 359:329-339. [PMID: 27535976 PMCID: PMC5074482 DOI: 10.1124/jpet.116.233163] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/21/2016] [Indexed: 01/16/2023] Open
Abstract
Synthetic cannabinoids (SCs) are an emerging class of abused drugs that differ from each other and the phytocannabinoid ∆9-tetrahydrocannabinol (THC) in their safety and cannabinoid-1 receptor (CB1R) pharmacology. As efficacy represents a critical parameter to understanding drug action, the present study investigated this metric by assessing in vivo and in vitro actions of THC, two well-characterized SCs (WIN55,212-2 and CP55,940), and three abused SCs (JWH-073, CP47,497, and A-834,735-D) in CB1 (+/+), (+/-), and (-/-) mice. All drugs produced maximal cannabimimetic in vivo effects (catalepsy, hypothermia, antinociception) in CB1 (+/+) mice, but these actions were essentially eliminated in CB1 (-/-) mice, indicating a CB1R mechanism of action. CB1R efficacy was inferred by comparing potencies between CB1 (+/+) and (+/-) mice [+/+ ED50 /+/- ED50], the latter of which has a 50% reduction of CB1Rs (i.e., decreased receptor reserve). Notably, CB1 (+/-) mice displayed profound rightward and downward shifts in the antinociception and hypothermia dose-response curves of low-efficacy compared with high-efficacy cannabinoids. In vitro efficacy, quantified using agonist-stimulated [35S]GTPγS binding in spinal cord tissue, significantly correlated with the relative efficacies of antinociception (r = 0.87) and hypothermia (r = 0.94) in CB1 (+/-) mice relative to CB1 (+/+) mice. Conversely, drug potencies for cataleptic effects did not differ between these genotypes and did not correlate with the in vitro efficacy measure. These results suggest that evaluation of antinociception and hypothermia in CB1 transgenic mice offers a useful in vivo approach to determine CB1R selectivity and efficacy of emerging SCs, which shows strong congruence with in vitro efficacy.
Collapse
Affiliation(s)
- T W Grim
- Virginia Commonwealth University-Pharmacology and Toxicology, Richmond, Virginia (T.W.G., A.J.M., M.M.G., L.J.S.-S., D.E.S., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (J.L.W., B.F.T.); Cayman Chemical, Ann Arbor, Michigan (G.W.E.)
| | - A J Morales
- Virginia Commonwealth University-Pharmacology and Toxicology, Richmond, Virginia (T.W.G., A.J.M., M.M.G., L.J.S.-S., D.E.S., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (J.L.W., B.F.T.); Cayman Chemical, Ann Arbor, Michigan (G.W.E.)
| | - M M Gonek
- Virginia Commonwealth University-Pharmacology and Toxicology, Richmond, Virginia (T.W.G., A.J.M., M.M.G., L.J.S.-S., D.E.S., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (J.L.W., B.F.T.); Cayman Chemical, Ann Arbor, Michigan (G.W.E.)
| | - J L Wiley
- Virginia Commonwealth University-Pharmacology and Toxicology, Richmond, Virginia (T.W.G., A.J.M., M.M.G., L.J.S.-S., D.E.S., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (J.L.W., B.F.T.); Cayman Chemical, Ann Arbor, Michigan (G.W.E.)
| | - B F Thomas
- Virginia Commonwealth University-Pharmacology and Toxicology, Richmond, Virginia (T.W.G., A.J.M., M.M.G., L.J.S.-S., D.E.S., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (J.L.W., B.F.T.); Cayman Chemical, Ann Arbor, Michigan (G.W.E.)
| | - G W Endres
- Virginia Commonwealth University-Pharmacology and Toxicology, Richmond, Virginia (T.W.G., A.J.M., M.M.G., L.J.S.-S., D.E.S., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (J.L.W., B.F.T.); Cayman Chemical, Ann Arbor, Michigan (G.W.E.)
| | - L J Sim-Selley
- Virginia Commonwealth University-Pharmacology and Toxicology, Richmond, Virginia (T.W.G., A.J.M., M.M.G., L.J.S.-S., D.E.S., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (J.L.W., B.F.T.); Cayman Chemical, Ann Arbor, Michigan (G.W.E.)
| | - D E Selley
- Virginia Commonwealth University-Pharmacology and Toxicology, Richmond, Virginia (T.W.G., A.J.M., M.M.G., L.J.S.-S., D.E.S., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (J.L.W., B.F.T.); Cayman Chemical, Ann Arbor, Michigan (G.W.E.)
| | - S S Negus
- Virginia Commonwealth University-Pharmacology and Toxicology, Richmond, Virginia (T.W.G., A.J.M., M.M.G., L.J.S.-S., D.E.S., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (J.L.W., B.F.T.); Cayman Chemical, Ann Arbor, Michigan (G.W.E.)
| | - A H Lichtman
- Virginia Commonwealth University-Pharmacology and Toxicology, Richmond, Virginia (T.W.G., A.J.M., M.M.G., L.J.S.-S., D.E.S., S.S.N., A.H.L.); RTI International, Research Triangle Park, North Carolina (J.L.W., B.F.T.); Cayman Chemical, Ann Arbor, Michigan (G.W.E.)
| |
Collapse
|
4
|
Alechaga É, Moyano E, Galceran MT. Wide-range screening of psychoactive substances by FIA-HRMS: identification strategies. Anal Bioanal Chem 2015; 407:4567-80. [PMID: 25862473 DOI: 10.1007/s00216-015-8649-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/14/2015] [Accepted: 03/18/2015] [Indexed: 11/25/2022]
Abstract
Recreational drugs (illicit drugs, human and veterinary medicines, legal highs, etc.) often contain lacing agents and adulterants which are not related to the main active ingredient. Serious side effects and even the death of the consumer have been related to the consumption of mixtures of psychoactive substances and/or adulterants, so it is important to know the actual composition of recreational drugs. In this work, a method based on flow injection analysis (FIA) coupled with high-resolution mass spectrometry (HRMS) is proposed for the fast identification of psychoactive substances in recreational drugs and legal highs. The FIA and HRMS working conditions were optimized in order to detect a wide range of psychoactive compounds. As most of the psychoactive substances are acid-base compounds, methanol-0.1 % aqueous formic acid (1:1 v/v) as a carrier solvent and electrospray in both positive ion mode and negative ion mode were used. Two data acquisition modes, full scan at high mass resolution (HRMS) and data-dependent tandem mass spectrometry (ddMS/HRMS) with a quadrupole-Orbitrap mass analyzer were used, resulting in sufficient selectivity for identification of the components of the samples. A custom-made database containing over 450 substances, including psychoactive compounds and common adulterants, was built to perform a high-throughput target and suspect screening. Moreover, online accurate mass databases and mass fragmenter software were used to identify unknowns. Some examples, selected among the analyzed samples of recreational drugs and legal highs using the FIA-HRMS(ddMS/HRMS) method developed, are discussed to illustrate the screening strategy used in this study. The results showed that many of the analyzed samples were adulterated, and in some cases the sample composition did not match that of the supposed marketed substance.
Collapse
Affiliation(s)
- Élida Alechaga
- Department of Analytical Chemistry, University of Barcelona, Diagonal 645, 08028, Barcelona, Spain
| | | | | |
Collapse
|
5
|
Znaleziona J, Ginterová P, Petr J, Ondra P, Válka I, Ševčík J, Chrastina J, Maier V. Determination and identification of synthetic cannabinoids and their metabolites in different matrices by modern analytical techniques - a review. Anal Chim Acta 2015; 874:11-25. [PMID: 25910441 DOI: 10.1016/j.aca.2014.12.055] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 12/16/2014] [Accepted: 12/31/2014] [Indexed: 10/24/2022]
Abstract
Synthetic cannabinoids have gained popularity due to their easy accessibility and psychoactive effects. Furthermore, they cannot be detected in urine by routine drug monitoring. The wide range of active ingredients in analyzed matrices hinders the development of a standard analytical method for their determination. Moreover, their possible side effects are not well known which increases the danger. This review is focused on the sample preparation and the determination of synthetic cannabinoids in different matrices (serum, urine, herbal blends, oral fluid, hair) published since 2004. The review includes separation and identification techniques, such as thin layer chromatography, gas and liquid chromatography and capillary electrophoresis, mostly coupled with mass spectrometry. The review also includes results by spectral methods like infrared spectroscopy, nuclear magnetic resonance or direct-injection mass spectrometry.
Collapse
Affiliation(s)
- Joanna Znaleziona
- Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, Olomouc CZ-77146, Czech Republic
| | - Pavlína Ginterová
- Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, Olomouc CZ-77146, Czech Republic
| | - Jan Petr
- Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, Olomouc CZ-77146, Czech Republic
| | - Peter Ondra
- Department of Forensic Medicine and Medical Law Faculty Hospital, Hněvotínská 3, Olomouc CZ-77146, Czech Republic
| | - Ivo Válka
- Department of Forensic Medicine and Medical Law Faculty Hospital, Hněvotínská 3, Olomouc CZ-77146, Czech Republic
| | - Juraj Ševčík
- Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, Olomouc CZ-77146, Czech Republic
| | - Jan Chrastina
- Institute of Special Education Studies, Faculty of Education, Palacký University, Žižkovo náměsti 5, Olomouc CZ-77146, Czech Republic
| | - Vítězslav Maier
- Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, Olomouc CZ-77146, Czech Republic.
| |
Collapse
|