1
|
Cardiovascular protection associated with cilostazol, colchicine and target of rapamycin inhibitors. J Cardiovasc Pharmacol 2022; 80:31-43. [PMID: 35384911 DOI: 10.1097/fjc.0000000000001276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/06/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT An alteration in extracellular matrix production by vascular smooth muscle cells is a crucial event in the pathogenesis of vascular diseases such as aging-related, atherosclerosis and allograft vasculopathy. The human target of rapamycin (TOR) is involved in the synthesis of extracellular matrix by vascular smooth muscle cells. TOR inhibitors reduce arterial stiffness, blood pressure, and left ventricle hypertrophy and decrease cardiovascular risk in kidney graft recipients and patients with coronary artery disease and heart allograft vasculopathy. Other drugs that modulate extracellular matrix production such as cilostazol and colchicine have also demonstrated a beneficial cardiovascular effect. Clinical studies have consistently shown that cilostazol confers cardiovascular protection in peripheral vascular disease, coronary artery disease, and cerebrovascular disease. In patients with type 2 diabetes, cilostazol prevents the progression of subclinical coronary atherosclerosis. Colchicine reduces arterial stiffness in patients with Familial Mediterranean Fever and patients with coronary artery disease. Pathophysiological mechanisms underlying the cardioprotective effect of these drugs may be related to interactions between the cytoskeleton, TOR signaling and cyclic AMP synthesis that remain to be fully elucidated. Adult vascular smooth muscle cells exhibit a contractile phenotype and produce little extracellular matrix. Conditions that upregulate extracellular matrix synthesis induce a phenotypic switch toward a synthetic phenotype. TOR inhibition with rapamycin reduces extracellular matrix production by promoting the change to the contractile phenotype. Cilostazol increases the cytosolic level of cyclic AMP, which in turn leads to a reduction in extracellular matrix synthesis. Colchicine is a microtubule-destabilizing agent that may enhance the synthesis of cyclic AMP.
Collapse
|
2
|
Ito T, Zhang E, Omori A, Kabwe J, Kawai M, Maruyama J, Okada A, Yokochi A, Sawada H, Mitani Y, Maruyama K. Model difference in the effect of cilostazol on the development of experimental pulmonary hypertension in rats. BMC Pulm Med 2021; 21:377. [PMID: 34801000 PMCID: PMC8605570 DOI: 10.1186/s12890-021-01710-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 10/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Preventing pulmonary vascular remodeling is a key strategy for pulmonary hypertension (PH). Causes of PH include pulmonary vasoconstriction and inflammation. This study aimed to determine whether cilostazol (CLZ), a phosphodiesterase-3 inhibitor, prevents monocrotaline (MCT)- and chronic hypoxia (CH)-induced PH development in rats. METHODS Fifty-one male Sprague-Dawley rats were fed rat chow with (0.3% CLZ) or without CLZ for 21 days after a single injection of MCT (60 mg/kg) or saline. Forty-eight rats were fed rat chow with and without CLZ for 14 days under ambient or hypobaric (air at 380 mmHg) CH exposure. The mean pulmonary artery pressure (mPAP), the right ventricle weight-to-left ventricle + septum weight ratio (RV/LV + S), percentages of muscularized peripheral pulmonary arteries (%Muscularization) and medial wall thickness of small muscular arteries (%MWT) were assessed. Levels of the endothelial nitric oxide synthase (eNOS), phosphorylated eNOS (peNOS), AKT, pAKT and IκB proteins in lung tissue were measured using Western blotting. Monocyte chemotactic protein (MCP)-1 mRNA in lung tissue was also assessed. RESULTS mPAP [35.1 ± 1.7 mmHg (MCT) (n = 9) vs. 16.6 ± 0.7 (control) (n = 9) (P < 0.05); 29.1 ± 1.5 mmHg (CH) (n = 10) vs. 17.5 ± 0.5 (control) (n = 10) (P < 0.05)], RV/LV + S [0.40 ± 0.01 (MCT) (n = 18) vs. 0.24 ± 0.01 (control) (n = 10) (P < 0.05); 0.41 ± 0.03 (CH) (n = 13) vs. 0.27 ± 0.06 (control) (n = 10) (P < 0.05)], and %Muscularization and %MWT were increased by MCT injection and CH exposure. CLZ significantly attenuated these changes in the MCT model [mPAP 25.1 ± 1.1 mmHg (n = 11) (P < 0.05), RV/LV + S 0.30 ± 0.01 (n = 14) (P < 0.05)]. In contrast, these CLZ effects were not observed in the CH model. Lung eNOS protein expression was unchanged in the MCT model and increased in the CH model. Lung protein expression of AKT, phosphorylated AKT, and IκB was downregulated by MCT, which was attenuated by CLZ; the CH model did not change these proteins. Lung MCP-1 mRNA levels were increased in MCT rats but not CH rats. CONCLUSIONS We found model differences in the effect of CLZ on PH development. CLZ might exert a preventive effect on PH development in an inflammatory PH model but not in a vascular structural change model of PH preceded by vasoconstriction. Thus, the preventive effect of CLZ on PH development might depend on the PH etiology.
Collapse
Affiliation(s)
- Toshikazu Ito
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Erquan Zhang
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.,Fuzhou Children's Hospital of Fujian Province Affiliated with Fujian Medical University, 145-817-Middle Road, Gulou, Fuzhou, 350005, Fujian, China
| | - Ayaka Omori
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Jane Kabwe
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Masako Kawai
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.,Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Mie, 510-0293, Japan
| | - Junko Maruyama
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.,Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Mie, 510-0293, Japan
| | - Amphone Okada
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Ayumu Yokochi
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hirofumi Sawada
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.,Department of Pediatrics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yoshihide Mitani
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kazuo Maruyama
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
3
|
Guo L, Qi J, Du D, Liu Y, Jiang X. Current advances of Dendrobium officinale polysaccharides in dermatology: a literature review. PHARMACEUTICAL BIOLOGY 2021; 58:664-673. [PMID: 32657196 PMCID: PMC7470034 DOI: 10.1080/13880209.2020.1787470] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Context Dendrobium officinale Kimura et Migo (Orchidaceae) is a naturally occurring precious traditional Chinese medicine (TCM) originally used in treating yin-deficiency diseases. The main active substances of Dendrobium officinale are polysaccharides (DOP). Recent findings highlighted the potential of DOP as a promising natural material for medical use with a diversity of pharmaceutical effects. Objective In this review, we provide a systematic discussion of the current development and potential pharmacological effects of Dendrobium officinale polysaccharides in dermatology. Methods English and Chinese literature from 1987 to 2019 indexed in databases including PubMed, PubMed Central, Web of Science, ISI, Scopus and CNKI (Chinese) was used. Dendrobium officinale, Dendrobium officinale polysaccharides, phytochemistry, chemical constituents, biological activities, and pharmacological activities were used as the key words. Results Dendrobium officinale polysaccharides have been found to possess hair growth promoting, skin moisturising and antioxidant effects, which are highly valued by doctors and cosmetic engineers. We highlighted advances in moisturising and antioxidant properties from in vivo and in vitro studies. Dendrobium officinale polysaccharides exhibited strong antioxidant effects by decreasing free radicals, enhancing antioxidant system, inhibiting nuclear factor-kappa B and down-regulating inflammatory response. Conclusions Our review is a foundation to inspire further research to facilitate the application of Dendrobium officinale polysaccharides in dermatology and promote active research of the use of TCM in dermatology.
Collapse
Affiliation(s)
- Linghong Guo
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinxin Qi
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan Du
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yin Liu
- Department of Pharmacology, West China School of Basic Sciences & Forensic Medicine, Animal Research Institute, Sichuan University, Chengdu, Sichuan, China.,Department of Dermatology, The First People's Hospital of Zigong, Zigong, Sichuan, China.,Department of Basic Medical Sciences, Sichuan Vocational College of Health and Rehabilitation, Zigong, Sichuan, China.,Department of Anesthesiology, School of Medicine, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Bravo K, Duque L, Ferreres F, Moreno DA, Osorio E. Passiflora tarminiana fruits reduce UVB-induced photoaging in human skin fibroblasts. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 168:78-88. [DOI: 10.1016/j.jphotobiol.2017.01.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 12/18/2022]
|
5
|
Kim HN, Gil CH, Kim YR, Shin HK, Choi BT. Anti-photoaging properties of the phosphodiesterase 3 inhibitor cilostazol in ultraviolet B-irradiated hairless mice. Sci Rep 2016; 6:31169. [PMID: 27484958 PMCID: PMC4971469 DOI: 10.1038/srep31169] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/13/2016] [Indexed: 12/27/2022] Open
Abstract
We investigated whether cilostazol, an activator of cyclic adenosine monophosphate (cAMP)-dependent intracellular signaling, could inhibit ultraviolet B (UVB) irradiation-induced photoaging in HR-1 hairless mice. Cilostazol decreased wrinkle formation and skin thickness in UVB-irradiated mice, as well as increased staining of collagen fibers and inhibition of reactive oxygen species (ROS) formation in the skin. Moreover, the proteolytic activities of gelatinase matrix metalloproteinase (MMP)-9 and collagenase MMP-3 were significantly decreased in UVB-irradiated mice treated with cilostazol. Western blotting showed that UVB-induced activation of p38 mitogen-activated protein kinases (MAPK) and nuclear factor (NF)-κB was significantly inhibited by cilostazol, whereas the activation of Akt was significantly enhanced by cilostazol. Confirmation of localized protein expression in the skin revealed marked p38 MAPK and NF-κB activation that was mainly detected in the dermis. Marked Akt activation was mainly detected in the epidermis. Our results suggest that cilostazol may have anti-photoaging effects on UVB-induced wrinkle formation by maintaining the extracellular matrix density in the dermis, which occurs via regulation of ROS and related p38 MAPK and NF-κB signaling, and subsequent down-regulation of MMPs. Therefore, cilostazol may protect against photoaging-induced wrinkle formation.
Collapse
Affiliation(s)
- Ha Neui Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea.,Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan 50612, Korea
| | - Chan Hee Gil
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea
| | - Yu Ri Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea.,Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan 50612, Korea
| | - Hwa Kyoung Shin
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea.,Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan 50612, Korea.,Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea
| | - Byung Tae Choi
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea.,Korean Medical Science Research Center for Healthy-Aging, Pusan National University, Yangsan 50612, Korea.,Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea
| |
Collapse
|
6
|
Park JE, Lee KE, Jung E, Kang S, Kim YJ. Sclareol isolated from Salvia officinalis improves facial wrinkles via an antiphotoaging mechanism. J Cosmet Dermatol 2016; 15:475-483. [PMID: 27466023 DOI: 10.1111/jocd.12239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Ultraviolet (UV) irradiation triggers skin photoaging processes, which disrupt the normal three-dimensional integrity of skin. UV-induced oxidative stress, both directly and indirectly, stimulates complex signaling pathways. UV radiation activates skin cell surface receptors on a molecular level and triggers severe changes in extracellular matrix (ECM) proteins, resulting in skin photoaging. AIMS Sclareol isolated from Salvia officinalis is widely used as a fragrance material. Sclareol is known to exert various biological activities, but its antiphotoaging effect has not been elucidated to date. Therefore, we evaluated wrinkle improvement efficacy of sclareol. METHODS Human dermal fibroblast cell line (Hs68) and a reconstructed human epidermis (RHE) model were used to evaluate the antiphotoaging effect of sclareol in vitro. A clinical study treated with 0.02% sclareol-containing cream was conducted to identify the ability of sclareol to improve wrinkles. RESULTS First, sclareol enhanced cellular proliferation and blocked UVB-induced cell death. Sclareol inhibited the UVB-induced mRNA expression of matrix metalloproteinases (MMPs) by regulating the protein expression of AP-1 constituents. In RHE model, sclareol recovered the UVB-induced decrease in epidermal thickness and the expression of proliferating cell nuclear antigen (PCNA). In clinical trial, visually assessed changes and several wrinkle parameters were considered to be statistically different between the test and control groups at 12 weeks. CONCLUSIONS In this study, sclareol inhibited various photoaging phenomena in human fibroblasts and RHE model. In addition, sclareol-containing cream improved wrinkles in a clinical trial. Taken together, sclareol alleviates facial wrinkle formation via an antiphotoaging mechanism and may be an effective candidate ingredient.
Collapse
Affiliation(s)
- Ji-Eun Park
- COSMAX R&I Center, Seongnam-si, Gyeonggi-do, Korea
| | | | - Eunsun Jung
- Biospectrum Life Science Institute, Jeju Island, Korea
| | | | | |
Collapse
|
7
|
Hong-Brown LQ, Brown CR, Navaratnarajah M, Lang CH. Adamts1 mediates ethanol-induced alterations in collagen and elastin via a FoxO1-sestrin3-AMPK signaling cascade in myocytes. J Cell Biochem 2016; 116:91-101. [PMID: 25142777 DOI: 10.1002/jcb.24945] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 08/15/2014] [Indexed: 12/11/2022]
Abstract
A variety of stressors including alcohol (EtOH) are known to induce collagen production and fibrotic diseases. Matrix metalloproteinases (MMP) play an important role in regulating fibrosis, but little is known regarding the relationship between EtOH and MMPs. In addition, the signaling cascades involved in this process have not been elucidated. We have identified the MMP Adamts1 as a target of EtOH regulation. To characterize the function of Adamts1, we examined EtOH-induced alterations in collagen I and elastin protein levels in C2C12 myocytes. Incubation of myocytes with 100 mM EtOH decreased elastin and increased collagen content, respectively, and these changes were associated with increased O-GLcNAc modification of Adamts1. Conversely, silencing of Adamts1 by siRNA blocked the adverse effects of EtOH on collagen and elastin levels. Similar results were obtained after treatment with a pharmacological inhibitor of MMP. Changes in collagen were due, at least in part, to a decreased interaction of Adamts1 with its endogenous inhibitor TIMP3. The AMPK inhibitor compound C blocked the EtOH-induced stimulation of collagen and O-GLcNAc Adamts1 protein. Changes in AMPK appear linked to FoxO1, since inhibition of FoxO1 blocked the effects of EtOH on AMPK phosphorylation and O-GLcNAc levels. These FoxO-dependent modifications were associated with an upregulation of the FoxO1 transcription target sestrin 3, as well as increased binding of sestrin 3 with AMPK. Collectively, these data indicate that EtOH regulates the collagen I and elastin content in an Adamts1-dependent manner in myocytes. Furthermore, Adamts1 appears to be controlled by the FoxO1-sestrin 3-AMPK signaling cascade.
Collapse
Affiliation(s)
- Ly Q Hong-Brown
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania, 17033, USA
| | | | | | | |
Collapse
|
8
|
Amin M, Pushpakumar S, Muradashvili N, Kundu S, Tyagi SC, Sen U. Regulation and involvement of matrix metalloproteinases in vascular diseases. FRONT BIOSCI-LANDMRK 2016; 21:89-118. [PMID: 26709763 PMCID: PMC5462461 DOI: 10.2741/4378] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc dependent endopeptidases whose main function is to degrade and deposit structural proteins within the extracellular matrix (ECM). A dysregulation of MMPs is linked to vascular diseases. MMPs are classified into collagenases, gelatinases, membrane-type, metalloelastase, stromelysins, matrilysins, enamelysins, and unclassified subgroups. The production of MMPs is stimulated by factors such as oxidative stress, growth factors and inflammation which lead to its up- or down-regulation with subsequent ECM remodeling. Normally, excess activation of MMPs is controlled by their endogenous inhibitors, tissue inhibitors of metalloproteinases (TIMPs). An imbalance of MMPs and TIMPs has been implicated in hypertension, atherosclerotic plaque formation and instability, aortic aneurysms and varicose vein wall remodeling. Also, recent evidence suggests epigenetic regulation of some MMPs in angiogenesis and atherosclerosis. Over the years, pharmacological inhibitors of MMPs have been used to modify or prevent the development of the disease with some success. In this review, we discuss recent advances in MMP biology, and their involvement in the manifestation of vascular disease.
Collapse
Affiliation(s)
- Matthew Amin
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Sathnur Pushpakumar
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Nino Muradashvili
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Sourav Kundu
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Utpal Sen
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202,
| |
Collapse
|
9
|
Ko SC, Lee DS, Park WS, Yoo JS, Yim MJ, Qian ZJ, Lee CM, Oh J, Jung WK, Choi IW. Anti-allergic effects of a nonameric peptide isolated from the intestine gastrointestinal digests of abalone (Haliotis discus hannai) in activated HMC-1 human mast cells. Int J Mol Med 2015; 37:243-50. [PMID: 26718326 DOI: 10.3892/ijmm.2015.2420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/20/2015] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to examine whether the intestine gastrointestinal (GI) digests of abalone [Haliotis discus hannai (H. discus hannai)] modulate inflammatory responses and to elucidate the mechanisms involved. The GI digests of the abalone intestines were fractionated into fractions I (>10 kDa), II (5-10 kDa) and Ⅲ (<5 kDa). Of the abalone intestine GI digests (AIGIDs), fraction Ⅲ inhibited the passive cutaneous anaphylaxis (PCA) reaction in mice. Subsequently, a bioactive peptide [abalone intestine GI digest peptide (AIGIDP)] isolated from fraction Ⅲ was determined to be 1175.2 Da, and the amino acid sequence was found to be PFNQGTFAS. We noted that the purified nonameric peptide (AIGIDP) attenuated the phorbol‑12‑myristate 13-acetate plus calcium ionophore A23187 (PMACI)-induced histamine release and the production of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 in human mast cells (HMC-1 cells). In addition, we also noted that AIGIDP inhibited the PMACI‑induced activation of nuclear factor‑κB (NF-κB) by suppressing IκBα phosphorylation and that it suppressed the production of cytokines by decreasing the phosphorylation of JNK. The findings of our study indicate that AIGIDP exerts a modulatory, anti-allergic effect on mast cell-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Seok-Chun Ko
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
| | - Dae-Sung Lee
- Converging Research Division, National Marine Biodiversity Institute of Korea, Seochun, Chungcheongnam-do, Republic of Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, Gangwon, Republic of Korea
| | - Jong Su Yoo
- Converging Research Division, National Marine Biodiversity Institute of Korea, Seochun, Chungcheongnam-do, Republic of Korea
| | - Mi-Jin Yim
- Converging Research Division, National Marine Biodiversity Institute of Korea, Seochun, Chungcheongnam-do, Republic of Korea
| | - Zhong-Ji Qian
- Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong, P.R. China
| | - Chang-Min Lee
- Department of Molecular Microbiology and Immunology, Warren Alpert School of Medicine Box G-L, Providence, RI, USA
| | - Junghwan Oh
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
| | - Won-Kyo Jung
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
| | - Il-Whan Choi
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
10
|
Park H, Lee DS, Yim MJ, Choi YH, Park S, Seo SK, Choi JS, Jang WH, Yea SS, Park WS, Lee CM, Jung WK, Choi IW. 3,3'-Diindolylmethane inhibits VEGF expression through the HIF-1α and NF-κB pathways in human retinal pigment epithelial cells under chemical hypoxic conditions. Int J Mol Med 2015; 36:301-8. [PMID: 25955241 DOI: 10.3892/ijmm.2015.2202] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/30/2015] [Indexed: 11/06/2022] Open
Abstract
Oxidative stress in the retinal pigment epithelium (RPE) can lead to the pathological causes of age-related macular degeneration (AMD). Hypoxia induces oxidative damage in retinal pigment epithelial cells (RPE cells). In this study, we investigated the capacity of 3,3'-diindolylmethane (DIM) to reduce the expression of vascular endothelial growth factor (VEGF) under hypoxic conditions, as well as the molecular mechanisms involved. Human RPE cells (ARPE-19 cells) were treated with cobalt chloride (CoCl2, 200 µM) and/or DIM (10 and 20 µM). The production of VEGF was measured by enzyme-linked immunosorbent assay. The translocation of hypoxia-inducible factor-1α (HIF-1α) and nuclear factor-κB (NF-κB) was determined by western blot analysis. The binding activity of HIF-1α and NF-κB was analyzed by electrophoretic mobility shift assay. The phosphorylation levels of mitogen-activated protein kinases (MAPKs) were measured by western blot analysis. The levels of mitochondrial reactive oxygen species (ROS) were detected by fluorescence microplate assay. The results revealed that DIM significantly attenuated the CoCl2-induced expression of VEGF in the ARPE-19 cells. The CoCl2-induced translocation and activation of HIF-1α and NF-κB were also attenuated by treatment with DIM. In addition, DIM inhibited the CoCl2-induced activation of p38 MAPK in the ARPE-19 cells. Pre-treatment with YCG063, a mitochondrial ROS inhibitor, led to the downregulation of the CoCl2-induced production of VEGF by suppressing HIF-1α and NF-κB activity. Taken together, the findings of our study demonstrate that DIM inhibits the CoCl2-induced production of VEGF by suppressing mitochondrial ROS production, thus attenuating the activation of HIF-1α and p38 MAPK/NF-κB.
Collapse
Affiliation(s)
- Hongzoo Park
- Department of Urology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, Republic of Korea
| | - Dae-Sung Lee
- Marine Biodiversity Institute of Korea, Seocheon, Chungcheongnam-do, Republic of Korea
| | - Mi-Jin Yim
- Marine Biodiversity Institute of Korea, Seocheon, Chungcheongnam-do, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan, Republic of Korea
| | - Saegwang Park
- Department of Microbiology, College of Medicine, Inje University, Busan, Republic of Korea
| | - Su-Kil Seo
- Department of Microbiology, College of Medicine, Inje University, Busan, Republic of Korea
| | - Jung Sik Choi
- Department of Internal Medicine, Busan Paik Hospital, College of Medicine, Inje University, Busan, Republic of Korea
| | - Won Hee Jang
- Department of Biochemistry, College of Medicine, Inje University, Busan, Republic of Korea
| | - Sung Su Yea
- Department of Biochemistry, College of Medicine, Inje University, Busan, Republic of Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, Republic of Korea
| | - Chang-Min Lee
- Department of Molecular Microbiology and Immunology, Warren Alpert School of Medicine, Providence, RI, USA
| | - Won-Kyo Jung
- Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, Republic of Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan, Republic of Korea
| |
Collapse
|
11
|
Paeng SH, Jung WK, Park WS, Lee DS, Kim GY, Choi YH, Seo SK, Jang WH, Choi JS, Lee YM, Park S, Choi IW. Caffeic acid phenethyl ester reduces the secretion of vascular endothelial growth factor through the inhibition of the ROS, PI3K and HIF-1α signaling pathways in human retinal pigment epithelial cells under hypoxic conditions. Int J Mol Med 2015; 35:1419-26. [PMID: 25738890 DOI: 10.3892/ijmm.2015.2116] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/24/2015] [Indexed: 11/06/2022] Open
Abstract
Choroidal neovascularization (CNV) can lead to progressive and severe visual loss. Vascular endothelial growth factor (VEGF) promotes the development of CNV. Caffeic acid phenethyl ester (CAPE), a biologically active component of the honeybee (Apis mellifera) propolis, has been demonstrated to have several interesting biological regulatory properties. The objective of this study was to determine whether treatment with CAPE results in the inhibition of the production of vascular endothelial growth factor (VEGF) in retinal pigment epithelial cells (RPE cells) under hypoxic conditions and to explore the possible underlying mechanisms. An in vitro experimental model of hypoxia was used to mimic an ischemic microenvironment for the RPE cells. Human RPE cells (ARPE-19) were exposed to hypoxia with or without CAPE pre-treatment. ARPE-19 cells were used to investigate the pathway involved in the regulation of VEGF production under hypoxic conditions, based on western blot analysis, enzyme-linked immunosorbent assay (ELISA) and electrophoretic mobility shift assay (EMSA). The amount of VEGF released from the hypoxia-exposed cells was significantly higher than that of the normoxic controls. Pre-treatment with CAPE suppressed the hypoxia-induced production of VEGF in the ARPE-19 cells, and this effect was inhibited through the attenuation of reactive oxygen species (ROS) production, and the inhibition of phosphoinositide 3-kinase (PI3K)/AKT and hypoxia-inducible factor-1α (HIF-1α) expression. These in vitro findings suggest that CAPE may prove to be a novel anti-angiogenic agent for the treatment of diseases associated with CNV.
Collapse
Affiliation(s)
- Sung Hwa Paeng
- Department of Neurosurgery, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Won-Kyo Jung
- Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, Republic of Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, Gangwon, Republic of Korea
| | - Dae-Sung Lee
- Marine Biodiversity Institute of Korea, Seocheon, Chungcheongnam-do, Republic of Korea
| | - Gi-Young Kim
- Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan, Republic of Korea
| | - Su-Kil Seo
- Department of Microbiology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Won Hee Jang
- Department of Biochemistry, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Jung Sik Choi
- Department of Internal Medicine, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Young-Min Lee
- Department of Internal Medicine, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Saegwang Park
- Department of Microbiology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Il-Whan Choi
- Department of Microbiology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
12
|
Preventive effect of fermented Gelidium amansii and Cirsium japonicum extract mixture against UVB-induced skin photoaging in hairless mice. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0085-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
13
|
Wei B, Zhang YP, Yan HZ, Xu Y, Du TM. Cilostazol promotes production of melanin by activating the microphthalmia-associated transcription factor (MITF). Biochem Biophys Res Commun 2014; 443:617-21. [DOI: 10.1016/j.bbrc.2013.12.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 12/03/2013] [Indexed: 10/25/2022]
|