1
|
Inggriani MP, Musthafa A, Puspitawati I, Fachiroh J, Dewi FST, Hartopo AB. Increased endothelin-1 levels in coronary artery disease with diabetes mellitus in an Indonesian population. Can J Physiol Pharmacol 2022; 100:1097-1105. [DOI: 10.1139/cjpp-2022-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus (DM) increases risk of coronary artery disease (CAD). Endothelin-1 (ET-1) is a potential biomarker of endothelial dysfunction. This study aimed to evaluate ET-1 level in CAD patients and its relationship with DM. The cross-sectional design included subjects with angiographically proven CAD and controls among Indonesian. DM was defined by medical history and anti-diabetics use. Serum ET-1 level was measured in both subject groups. We recruited 305 subjects, 183 CAD patients and 122 controls. CAD subjects had higher percentage of males, DM, hypertension, dyslipidemia, smoking, family history of cardiovascular disease, and obesity. ET-1 level was significantly higher in CAD than in controls (2.44 ± 1.49 pg/mL vs. 1.76 ± 0.83 pg/mL; p < 0.001). Increased ET-1 level was significantly associated with DM and dyslipidemia. The highest ET-1 level was observed in CAD with DM, followed by CAD non-DM (2.79 ± 1.63 pg/mL vs. 2.29 ± 1.40 pg/mL; p = 0.023). Among controls, ET-1 level was the lowest in non-DM subjects. Female CAD had higher proportion of DM; however, ET-1 level was similar to male CAD with DM. In conclusion, an increased ET-1 level was significantly associated with DM in patients with CAD. Further research should investigate the potential role of ET-1 receptor antagonists in the secondary prevention of CAD with DM.
Collapse
Affiliation(s)
- Maria Patricia Inggriani
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada–Dr. Sardjito Hospital, Yogyakarta55281, Indonesia
| | - Ahmad Musthafa
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada–Dr. Sardjito Hospital, Yogyakarta55281, Indonesia
| | - Ira Puspitawati
- Department of Clinical Pathology and Laboratory Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada–Dr. Sardjito Hospital, Yogyakarta55281, Indonesia
| | - Jajah Fachiroh
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing—Biobank Unit, Universitas Gadjah Mada, Yogyakarta55281, Indonesia
| | - Fatwa Sari Tetra Dewi
- Department of Health Behaviour, Environment and Social Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta55281, Indonesia
| | - Anggoro Budi Hartopo
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada–Dr. Sardjito Hospital, Yogyakarta55281, Indonesia
| |
Collapse
|
2
|
Endothelin and the Cardiovascular System: The Long Journey and Where We Are Going. BIOLOGY 2022; 11:biology11050759. [PMID: 35625487 PMCID: PMC9138590 DOI: 10.3390/biology11050759] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022]
Abstract
Simple Summary In this review, we describe the basic functions of endothelin and related molecules, including their receptors and enzymes. Furthermore, we discuss the important role of endothelin in several cardiovascular diseases, the relevant clinical evidence for targeting the endothelin pathway, and the scope of endothelin-targeting treatments in the future. We highlight the present uses of endothelin receptor antagonists and the advancements in the development of future treatment options, thereby providing an overview of endothelin research over the years and its future scope. Abstract Endothelin was first discovered more than 30 years ago as a potent vasoconstrictor. In subsequent years, three isoforms, two canonical receptors, and two converting enzymes were identified, and their basic functions were elucidated by numerous preclinical and clinical studies. Over the years, the endothelin system has been found to be critical in the pathogenesis of several cardiovascular diseases, including hypertension, pulmonary arterial hypertension, heart failure, and coronary artery disease. In this review, we summarize the current knowledge on endothelin and its role in cardiovascular diseases. Furthermore, we discuss how endothelin-targeting therapies, such as endothelin receptor antagonists, have been employed to treat cardiovascular diseases with varying degrees of success. Lastly, we provide a glimpse of what could be in store for endothelin-targeting treatment options for cardiovascular diseases in the future.
Collapse
|
3
|
Yang C, Xue L, Wu Y, Li S, Zhou S, Yang J, Jiang C, Ran J, Jiang Q. PPARβ down-regulation is involved in high glucose-induced endothelial injury via acceleration of nitrative stress. Microvasc Res 2022; 139:104272. [PMID: 34699845 DOI: 10.1016/j.mvr.2021.104272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
Endothelial injury plays a vital role in vascular lesions from diabetes mellitus (DM). Therapeutic targets against endothelial damage may provide critical venues for the treatment of diabetic vascular diseases. Peroxisome proliferator-activated receptor β (PPARβ) is a crucial regulator in DM and its complications. However, the molecular signal mediating the roles of PPARβ in DM-induced endothelial dysfunction is not fully understood. The impaired endothelium-dependent relaxation and destruction of the endothelium structures appeared in high glucose incubated rat aortic rings. A high glucose level significantly decreased the expression of PPARβ and endothelial nitric oxide synthase (eNOS) at the mRNA and protein levels, and reduced the concentration of nitric oxide (NO), which occurred in parallel with an increase in the expression of inducible nitric oxide synthase (iNOS) and 3-nitrotyrosine. The effect of high glucose was inhibited by GW0742, a PPARβ agonist. Both GSK0660 (PPARβ antagonist) and NG-nitro-l-arginine-methyl ester (NOS inhibitor) could reverse the protective effects of GW0742. These results suggest that the activation of nitrative stress may, at least in part, mediate the down-regulation of PPARβ in high glucose-impaired endothelial function in rat aorta. PPARβ-nitrative stress may hold potential in treating vascular complications from DM.
Collapse
Affiliation(s)
- Chuang Yang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Lai Xue
- Clinical Pharmacy, Jiangyou People's Hospital, Sichuan 621700, PR China
| | - Yang Wu
- Cardiovascular Center, the Seventh Affiliated Hospital of Sun Yat-sen University, Guangdong 518107, PR China
| | - Siman Li
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Shangjun Zhou
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Junxia Yang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Chengyan Jiang
- Department of Endocrinology, the First People's Hospital of Zunyi, Guizhou 563000, PR China
| | - Jianhua Ran
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China.
| | - Qingsong Jiang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
4
|
Vlasov TD, Petrischev NN, Lazovskaya OA. Endothelial dysfunction. Do we understand this term properly? MESSENGER OF ANESTHESIOLOGY AND RESUSCITATION 2020. [DOI: 10.21292/2078-5658-2020-17-2-76-84] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- T. D. Vlasov
- Pavlov First Saint Petersburg State Medical University
| | | | | |
Collapse
|
5
|
Rafnsson A, Matic LP, Lengquist M, Mahdi A, Shemyakin A, Paulsson-Berne G, Hansson GK, Gabrielsen A, Hedin U, Yang J, Pernow J. Endothelin-1 increases expression and activity of arginase 2 via ETB receptors and is co-expressed with arginase 2 in human atherosclerotic plaques. Atherosclerosis 2020; 292:215-223. [DOI: 10.1016/j.atherosclerosis.2019.09.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 08/28/2019] [Accepted: 09/26/2019] [Indexed: 10/25/2022]
|
6
|
Abstract
Discovered in 1987 as a potent endothelial cell-derived vasoconstrictor peptide, endothelin-1 (ET-1), the predominant member of the endothelin peptide family, is now recognized as a multifunctional peptide with cytokine-like activity contributing to almost all aspects of physiology and cell function. More than 30 000 scientific articles on endothelin were published over the past 3 decades, leading to the development and subsequent regulatory approval of a new class of therapeutics-the endothelin receptor antagonists (ERAs). This article reviews the history of the discovery of endothelin and its role in genetics, physiology, and disease. Here, we summarize the main clinical trials using ERAs and discuss the role of endothelin in cardiovascular diseases such as arterial hypertension, preecclampsia, coronary atherosclerosis, myocardial infarction in the absence of obstructive coronary artery disease (MINOCA) caused by spontaneous coronary artery dissection (SCAD), Takotsubo syndrome, and heart failure. We also discuss how endothelins contributes to diabetic kidney disease and focal segmental glomerulosclerosis, pulmonary arterial hypertension, as well as cancer, immune disorders, and allograft rejection (which all involve ETA autoantibodies), and neurological diseases. The application of ERAs, dual endothelin receptor/angiotensin receptor antagonists (DARAs), selective ETB agonists, novel biologics such as receptor-targeting antibodies, or immunization against ETA receptors holds the potential to slow the progression or even reverse chronic noncommunicable diseases. Future clinical studies will show whether targeting endothelin receptors can prevent or reduce disability from disease and improve clinical outcome, quality of life, and survival in patients.
Collapse
Affiliation(s)
- Matthias Barton
- From Molecular Internal Medicine, University of Zürich, Switzerland (M.B.)
- Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS) and Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Japan (M.Y.)
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX (M.Y.)
| |
Collapse
|
7
|
Mahdi A, Kövamees O, Checa A, Wheelock CE, von Heijne M, Alvarsson M, Pernow J. Arginase inhibition improves endothelial function in patients with type 2 diabetes mellitus despite intensive glucose-lowering therapy. J Intern Med 2018; 284:388-398. [PMID: 30151846 DOI: 10.1111/joim.12785] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Arginase is implicated in the pathogenesis behind endothelial dysfunction in type 2 diabetes mellitus (T2DM) by its inhibition of nitric oxide formation. Strict glycaemic control is not sufficient to improve endothelial function or cardiovascular outcomes in patients with T2DM, thus other treatment strategies are needed. We hypothesized that arginase inhibition improves endothelial function beyond glucose-lowering therapy following glucose optimization in patients with poorly controlled T2DM. METHODS AND RESULTS Endothelial function was evaluated in 16 patients with poorly controlled T2DM (visit 1) and 16 age-matched controls using venous occlusion plethysmography. T2DM patients were re-evaluated (visit 2) after intensive glucose-lowering regimen. Endothelium-dependent (EDV) and -independent (EIDV) vasodilatations were evaluated before and after 120 min intra-arterial infusion of the arginase inhibitor N(ω)-hydroxy-nor-L-arginine (nor-NOHA). HbA1c was reduced from 87 ± 17 (visit 1) to 65 ± 11 mmol mol-1 (visit 2, P < 0.001). Basal EDV, but not EIDV, was significantly lower in patients with T2DM than in healthy subjects (P < 0.05). EDV and EIDV were unaffected by glucose-lowering regimen in patients with T2DM. Arginase inhibition enhanced EDV in T2DM patients both at visit 1 and visit 2 (P < 0.01). There was no difference in improvement in EDV between the two occasions. EIDV was unaltered by nor-NOHA in T2DM at visit 1, but was slightly improved at visit 2. CONCLUSIONS Arginase inhibition improves endothelial function in patients with poorly controlled T2DM, which is maintained following glucose optimization. Thus, arginase inhibition is a promising therapeutic target beyond glucose lowering for improving endothelial function in T2DM patients.
Collapse
Affiliation(s)
- A Mahdi
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - O Kövamees
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - A Checa
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - C E Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - M von Heijne
- Division of Endocrinology, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - M Alvarsson
- Division of Endocrinology and Diabetology, Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - J Pernow
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
8
|
Padilla J, Carpenter AJ, Das NA, Kandikattu HK, López-Ongil S, Martinez-Lemus LA, Siebenlist U, DeMarco VG, Chandrasekar B. TRAF3IP2 mediates high glucose-induced endothelin-1 production as well as endothelin-1-induced inflammation in endothelial cells. Am J Physiol Heart Circ Physiol 2018; 314:H52-H64. [PMID: 28971844 PMCID: PMC5866390 DOI: 10.1152/ajpheart.00478.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/11/2017] [Accepted: 09/25/2017] [Indexed: 01/15/2023]
Abstract
Hyperglycemia-induced production of endothelin (ET)-1 is a hallmark of endothelial dysfunction in diabetes. Although the detrimental vascular effects of increased ET-1 are well known, the molecular mechanisms regulating endothelial synthesis of ET-1 in the setting of diabetes remain largely unidentified. Here, we show that adapter molecule TRAF3 interacting protein 2 (TRAF3IP2) mediates high glucose-induced ET-1 production in endothelial cells and ET-1-mediated endothelial cell inflammation. Specifically, we found that high glucose upregulated TRAF3IP2 in human aortic endothelial cells, which subsequently led to activation of JNK and IKKβ. shRNA-mediated silencing of TRAF3IP2, JNK1, or IKKβ abrogated high-glucose-induced ET-converting enzyme 1 expression and ET-1 production. Likewise, overexpression of TRAF3IP2, in the absence of high glucose, led to activation of JNK and IKKβ as well as increased ET-1 production. Furthermore, ET-1 transcriptionally upregulated TRAF3IP2, and this upregulation was prevented by pharmacological inhibition of ET-1 receptor B using BQ-788, or inhibition of NADPH oxidase-derived reactive oxygen species using gp91ds-tat and GKT137831. Notably, we found that knockdown of TRAF3IP2 abolished ET-1-induced proinflammatory and adhesion molecule (IL-1β, TNF-α, monocyte chemoattractant protein 1, ICAM-1, VCAM-1, and E-selectin) expression and monocyte adhesion to endothelial cells. Finally, we report that TRAF3IP2 is upregulated and colocalized with CD31, an endothelial marker, in the aorta of diabetic mice. Collectively, findings from the present study identify endothelial TRAF3IP2 as a potential new therapeutic target to suppress ET-1 production and associated vascular complications in diabetes. NEW & NOTEWORTHY This study provides the first evidence that the adapter molecule TRAF3 interacting protein 2 mediates high glucose-induced production of endothelin-1 by endothelial cells as well as endothelin-1-mediated endothelial cell inflammation. The findings presented herein suggest that TRAF3 interacting protein 2 may be an important therapeutic target in diabetic vasculopathy characterized by excess endothelin-1 production.
Collapse
Affiliation(s)
- Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri , Columbia, Missouri
- Department of Child Health, University of Missouri , Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri , Columbia, Missouri
| | - Andrea J Carpenter
- Cardiothoracic Surgery, University of Texas Health Science Center , San Antonio, Texas
| | - Nitin A Das
- Cardiothoracic Surgery, University of Texas Health Science Center , San Antonio, Texas
| | - Hemanth Kumar Kandikattu
- Research Service, Harry S. Truman Memorial Veterans' Hospital , Columbia, Missouri
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri , Columbia, Missouri
| | - Susana López-Ongil
- Research Unit, Fundación para la Investigación Biomédica del Hospital Universitario Prıncipe de Asturias, Alcala de Henares, Madrid , Spain
- Instituto Reina Sofıa de Investigación Nefrológica, IRSIN, Madrid , Spain
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri , Columbia, Missouri
- Department of Medical Pharmacology and Physiology, University of Missouri , Columbia, Missouri
| | - Ulrich Siebenlist
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland
| | - Vincent G DeMarco
- Research Service, Harry S. Truman Memorial Veterans' Hospital , Columbia, Missouri
- Department of Medical Pharmacology and Physiology, University of Missouri , Columbia, Missouri
- Diabetes and Cardiovascular Center, Department of Medicine, University of Missouri , Columbia, Missouri
- Division of Endocrinology, Department of Medicine, University of Missouri , Columbia, Missouri
| | - Bysani Chandrasekar
- Dalton Cardiovascular Research Center, University of Missouri , Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans' Hospital , Columbia, Missouri
- Division of Cardiovascular Medicine, Department of Medicine, University of Missouri , Columbia, Missouri
- Department of Medical Pharmacology and Physiology, University of Missouri , Columbia, Missouri
| |
Collapse
|
9
|
Shi Y, Vanhoutte PM. Macro- and microvascular endothelial dysfunction in diabetes. J Diabetes 2017; 9:434-449. [PMID: 28044409 DOI: 10.1111/1753-0407.12521] [Citation(s) in RCA: 345] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/06/2016] [Accepted: 12/29/2016] [Indexed: 12/12/2022] Open
Abstract
Endothelial cells, as well as their major products nitric oxide (NO) and prostacyclin, play a key role in the regulation of vascular homeostasis. Diabetes mellitus is an important risk factor for cardiovascular disease. Diabetes-induced endothelial dysfunction is a critical and initiating factor in the genesis of diabetic vascular complications. The present review focuses on both large blood vessels and the microvasculature. The endothelial dysfunction in diabetic macrovascular complications is characterized by reduced NO bioavailability, poorly compensated for by increased production of prostacyclin and/or endothelium-dependent hyperpolarizations, and increased production or action of endothelium-derived vasoconstrictors. The endothelial dysfunction of microvascular complications is primarily characterized by decreased release of NO, enhanced oxidative stress, increased production of inflammatory factors, abnormal angiogenesis, and impaired endothelial repair. In addition, non-coding RNAs (microRNAs) have emerged as participating in numerous cellular processes. Thus, this reviews pays special attention to microRNAs and their modulatory role in diabetes-induced vascular dysfunction. Some therapeutic strategies for preventing and restoring diabetic endothelial dysfunction are also highlighted.
Collapse
Affiliation(s)
- Yi Shi
- Biomedical Research Centre, Shanghai Key Laboratory of organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, PR China
| | - Paul M Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China
| |
Collapse
|
10
|
Endothelin type A receptor blockade reduces vascular calcification and inflammation in rats with chronic kidney disease. J Hypertens 2017; 35:376-384. [DOI: 10.1097/hjh.0000000000001161] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Vanhoutte PM, Shimokawa H, Feletou M, Tang EHC. Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol (Oxf) 2017; 219:22-96. [PMID: 26706498 DOI: 10.1111/apha.12646] [Citation(s) in RCA: 620] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/27/2015] [Accepted: 12/17/2015] [Indexed: 02/06/2023]
Abstract
The endothelium can evoke relaxations of the underlying vascular smooth muscle, by releasing vasodilator substances. The best-characterized endothelium-derived relaxing factor (EDRF) is nitric oxide (NO) which activates soluble guanylyl cyclase in the vascular smooth muscle cells, with the production of cyclic guanosine monophosphate (cGMP) initiating relaxation. The endothelial cells also evoke hyperpolarization of the cell membrane of vascular smooth muscle (endothelium-dependent hyperpolarizations, EDH-mediated responses). As regards the latter, hydrogen peroxide (H2 O2 ) now appears to play a dominant role. Endothelium-dependent relaxations involve both pertussis toxin-sensitive Gi (e.g. responses to α2 -adrenergic agonists, serotonin, and thrombin) and pertussis toxin-insensitive Gq (e.g. adenosine diphosphate and bradykinin) coupling proteins. New stimulators (e.g. insulin, adiponectin) of the release of EDRFs have emerged. In recent years, evidence has also accumulated, confirming that the release of NO by the endothelial cell can chronically be upregulated (e.g. by oestrogens, exercise and dietary factors) and downregulated (e.g. oxidative stress, smoking, pollution and oxidized low-density lipoproteins) and that it is reduced with ageing and in the course of vascular disease (e.g. diabetes and hypertension). Arteries covered with regenerated endothelium (e.g. following angioplasty) selectively lose the pertussis toxin-sensitive pathway for NO release which favours vasospasm, thrombosis, penetration of macrophages, cellular growth and the inflammatory reaction leading to atherosclerosis. In addition to the release of NO (and EDH, in particular those due to H2 O2 ), endothelial cells also can evoke contraction of the underlying vascular smooth muscle cells by releasing endothelium-derived contracting factors. Recent evidence confirms that most endothelium-dependent acute increases in contractile force are due to the formation of vasoconstrictor prostanoids (endoperoxides and prostacyclin) which activate TP receptors of the vascular smooth muscle cells and that prostacyclin plays a key role in such responses. Endothelium-dependent contractions are exacerbated when the production of nitric oxide is impaired (e.g. by oxidative stress, ageing, spontaneous hypertension and diabetes). They contribute to the blunting of endothelium-dependent vasodilatations in aged subjects and essential hypertensive and diabetic patients. In addition, recent data confirm that the release of endothelin-1 can contribute to endothelial dysfunction and that the peptide appears to be an important contributor to vascular dysfunction. Finally, it has become clear that nitric oxide itself, under certain conditions (e.g. hypoxia), can cause biased activation of soluble guanylyl cyclase leading to the production of cyclic inosine monophosphate (cIMP) rather than cGMP and hence causes contraction rather than relaxation of the underlying vascular smooth muscle.
Collapse
Affiliation(s)
- P. M. Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| | - H. Shimokawa
- Department of Cardiovascular Medicine; Tohoku University; Sendai Japan
| | - M. Feletou
- Department of Cardiovascular Research; Institut de Recherches Servier; Suresnes France
| | - E. H. C. Tang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
- School of Biomedical Sciences; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| |
Collapse
|
12
|
Reynolds LJ, Credeur DP, Manrique C, Padilla J, Fadel PJ, Thyfault JP. Obesity, type 2 diabetes, and impaired insulin-stimulated blood flow: role of skeletal muscle NO synthase and endothelin-1. J Appl Physiol (1985) 2016; 122:38-47. [PMID: 27789766 DOI: 10.1152/japplphysiol.00286.2016] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 02/07/2023] Open
Abstract
Increased endothelin-1 (ET-1) and reduced endothelial nitric oxide phosphorylation (peNOS) are hypothesized to reduce insulin-stimulated blood flow in type 2 diabetes (T2D), but studies examining these links in humans are limited. We sought to assess basal and insulin-stimulated endothelial signaling proteins (ET-1 and peNOS) in skeletal muscle from T2D patients. Ten obese T2D [glucose disposal rate (GDR): 6.6 ± 1.6 mg·kg lean body mass (LBM)-1·min-1] and 11 lean insulin-sensitive subjects (Lean GDR: 12.9 ± 1.2 mg·kg LBM-1·min-1) underwent a hyperinsulinemic-euglycemic clamp with vastus lateralis biopsies taken before and 60 min into the clamp. Basal biopsies were also taken in 11 medication-naïve, obese, non-T2D subjects. ET-1, peNOS (Ser1177), and eNOS protein and mRNA were measured from skeletal muscle samples containing native microvessels. Femoral artery blood flow was assessed by duplex Doppler ultrasound. Insulin-stimulated blood flow was reduced in obese T2D (Lean: +50.7 ± 6.5% baseline, T2D: +20.8 ± 5.2% baseline, P < 0.05). peNOS/eNOS content was higher in Lean under basal conditions and, although not increased by insulin, remained higher in Lean during the insulin clamp than in obese T2D (P < 0.05). ET-1 mRNA and peptide were 2.25 ± 0.50- and 1.52 ± 0.11-fold higher in obese T2D compared with Lean at baseline, and ET-1 peptide remained 2.02 ± 1.9-fold elevated in obese T2D after insulin infusion (P < 0.05) but did not increase with insulin in either group (P > 0.05). Obese non-T2D subjects tended to also display elevated basal ET-1 (P = 0.06). In summary, higher basal skeletal muscle expression of ET-1 and reduced peNOS/eNOS may contribute to a reduced insulin-stimulated leg blood flow response in obese T2D patients. NEW & NOTEWORTHY Although impairments in endothelial signaling are hypothesized to reduce insulin-stimulated blood flow in type 2 diabetes (T2D), human studies examining these links are limited. We provide the first measures of nitric oxide synthase and endothelin-1 expression from skeletal muscle tissue containing native microvessels in individuals with and without T2D before and during insulin stimulation. Higher basal skeletal muscle expression of endothelin-1 and reduced endothelial nitric oxide phosphorylation (peNOS)/eNOS may contribute to reduced insulin-stimulated blood flow in obese T2D patients.
Collapse
Affiliation(s)
- Leryn J Reynolds
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Daniel P Credeur
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Camila Manrique
- Department of Medicine-Division of Endocrinology, University of Missouri, Columbia, Missouri
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; and.,Department of Child Health, University of Missouri, Columbia, Missouri
| | - Paul J Fadel
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; and
| | - John P Thyfault
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri;
| |
Collapse
|
13
|
Kövamees O, Shemyakin A, Pernow J. Amino acid metabolism reflecting arginase activity is increased in patients with type 2 diabetes and associated with endothelial dysfunction. Diab Vasc Dis Res 2016; 13:354-60. [PMID: 27190086 DOI: 10.1177/1479164116643916] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Endothelial dysfunction contributes to the development of vascular complication in diabetes. Arginase has emerged as a key mechanism behind endothelial dysfunction by its reciprocal regulation of nitric oxide production by substrate competition. We hypothesized that increased arginase activity in patients with type 2 diabetes shifts the metabolism of l-arginine from nitric oxide synthase to arginase resulting in an increase in the plasma ratio of ornithine/citrulline, and that this ratio is associated with endothelial dysfunction. METHODS Forearm endothelium-dependent vasodilatation and endothelium-independent vasodilatation were determined in 15 patients with type 2 diabetes and 10 healthy controls and related to amino acids reflecting arginase and nitric oxide synthase activity. RESULTS Compared to healthy controls, patients with diabetes had impaired endothelium-dependent vasodilatation and endothelium-independent vasodilatation. The ratios of ornithine/citrulline and proline/citrulline were 60% and 95% higher, respectively, in patients with diabetes than in controls (p < 0.001). The plasma ornithine/arginine ratio was 36% higher in patients with diabetes, indicating increased arginase activity. These ratios were inversely correlated to endothelium-dependent vasodilatation and endothelium-independent vasodilatation. CONCLUSION Patients with diabetes and macrovascular complications have increased amino acid ratios reflecting a shift in arginine metabolism due to arginase activation. These changes are inversely related to endothelial function supporting that arginase activity contributes to endothelial dysfunction.
Collapse
Affiliation(s)
- Oskar Kövamees
- Unit of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden Department of Cardiology Karolinska University Hospital, Stockholm, Sweden
| | - Alexey Shemyakin
- Unit of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden Department of Cardiology Karolinska University Hospital, Stockholm, Sweden
| | - John Pernow
- Unit of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden Department of Cardiology Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
14
|
Manea SA, Fenyo IM, Manea A. c-Src tyrosine kinase mediates high glucose-induced endothelin-1 expression. Int J Biochem Cell Biol 2016; 75:123-30. [PMID: 27102411 DOI: 10.1016/j.biocel.2016.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/08/2016] [Accepted: 04/15/2016] [Indexed: 11/25/2022]
Abstract
Endothelin-1 (ET-1) plays an important role in the pathophysiology of diabetes-associated cardiovascular disorders. The molecular mechanisms leading to ET-1 upregulation in diabetes are not entirely defined. c-Src tyrosine kinase regulates important pathophysiological aspects of vascular response to insults. In this study, we aimed to elucidate whether high glucose-activated c-Src signaling plays a role in the regulation of ET-1 expression. Human endothelial cells EAhy926 (ECs) were exposed to normal or high levels of glucose for 24h. Male C57BL/6J mice were rendered diabetic with streptozotocin and then treated with a specific c-Src inhibitor (Src I1) or c-Src siRNA. Real-time PCR, Western blot, and ELISA, were used to investigate ET-1 regulation. The c-Src activity and expression were selectively downregulated by pharmacological inhibition and siRNA-mediated gene silencing, respectively. High glucose dose-dependently up-regulated c-Src phosphorylation and ET-1 gene and protein expression levels in human ECs. Chemical inhibition or silencing of c-Src significantly decreased the high-glucose augmented ET-1 expression in cultured ECs. In vivo studies showed significant elevations in the aortic ET-1 mRNA expression and plasma ET-1 concentration in diabetic mice compared to non-diabetic animals. Treatment with Src I1, as well as in vivo silencing of c-Src, significantly reduced the upregulated ET-1 expression in diabetic mice. These data provide new insights into the regulation of ET-1 expression in endothelial cells in diabetes. Pharmacological targeting of c-Src activity and/or expression may represent a potential therapeutic strategy to reduce ET-1 level and to counteract diabetes-induced deleterious vascular effects.
Collapse
Affiliation(s)
- Simona-Adriana Manea
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania.
| | - Ioana Madalina Fenyo
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Adrian Manea
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| |
Collapse
|
15
|
Davenport AP, Hyndman KA, Dhaun N, Southan C, Kohan DE, Pollock JS, Pollock DM, Webb DJ, Maguire JJ. Endothelin. Pharmacol Rev 2016; 68:357-418. [PMID: 26956245 PMCID: PMC4815360 DOI: 10.1124/pr.115.011833] [Citation(s) in RCA: 523] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The endothelins comprise three structurally similar 21-amino acid peptides. Endothelin-1 and -2 activate two G-protein coupled receptors, ETA and ETB, with equal affinity, whereas endothelin-3 has a lower affinity for the ETA subtype. Genes encoding the peptides are present only among vertebrates. The ligand-receptor signaling pathway is a vertebrate innovation and may reflect the evolution of endothelin-1 as the most potent vasoconstrictor in the human cardiovascular system with remarkably long lasting action. Highly selective peptide ETA and ETB antagonists and ETB agonists together with radiolabeled analogs have accurately delineated endothelin pharmacology in humans and animal models, although surprisingly no ETA agonist has been discovered. ET antagonists (bosentan, ambrisentan) have revolutionized the treatment of pulmonary arterial hypertension, with the next generation of antagonists exhibiting improved efficacy (macitentan). Clinical trials continue to explore new applications, particularly in renal failure and for reducing proteinuria in diabetic nephropathy. Translational studies suggest a potential benefit of ETB agonists in chemotherapy and neuroprotection. However, demonstrating clinical efficacy of combined inhibitors of the endothelin converting enzyme and neutral endopeptidase has proved elusive. Over 28 genetic modifications have been made to the ET system in mice through global or cell-specific knockouts, knock ins, or alterations in gene expression of endothelin ligands or their target receptors. These studies have identified key roles for the endothelin isoforms and new therapeutic targets in development, fluid-electrolyte homeostasis, and cardiovascular and neuronal function. For the future, novel pharmacological strategies are emerging via small molecule epigenetic modulators, biologicals such as ETB monoclonal antibodies and the potential of signaling pathway biased agonists and antagonists.
Collapse
Affiliation(s)
- Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Kelly A Hyndman
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Neeraj Dhaun
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Christopher Southan
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Donald E Kohan
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Jennifer S Pollock
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - David M Pollock
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - David J Webb
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| |
Collapse
|