1
|
Vazquez-Munoz R, Thompson A, Sobue T, Dongari-Bagtzoglou A. Powder diet exacerbates oropharyngeal candidiasis in a mouse model. Appl Environ Microbiol 2024; 90:e0171323. [PMID: 38319097 PMCID: PMC10952443 DOI: 10.1128/aem.01713-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
This study reports on the influence of a powder diet in a mouse model of oropharyngeal candidiasis (OPC), a significant health concern caused primarily by Candida albicans. Despite identical nutritional composition, we found that a powdered diet significantly increased Candida burdens and oral lesions, and aggravated weight loss compared to a standard pelleted diet. High fungal burdens and severe oral lesions were accomplished within 48 hours after infection with only one dose of cortisone. Moreover, mice on a powder diet recovered a week after infection. Using a powder diet, we thus modified the cortisone OPC murine model in a way that simplifies the infection process, enhances reproducibility, and facilitates studies investigating both pathogenesis and recovery processes. Our findings also underscore the pivotal role of the physical form of the diet in the progression and severity of oral Candida infection in this model. Future research should investigate this relationship further to broaden our understanding of the underlying mechanisms, potentially leading to novel prevention strategies and improved disease management.IMPORTANCEOropharyngeal candidiasis (OPC) is a multifactorial disease and a significant health concern. We found that the physical form of the diet plays a critical role in the severity and progression of OPC. We developed a modified cortisone OPC murine model that facilitates studies investigating pathogenesis and recovery processes.
Collapse
Affiliation(s)
- Roberto Vazquez-Munoz
- Department of General Dentistry, The University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Angela Thompson
- Department of General Dentistry, The University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Takanori Sobue
- Department of General Dentistry, The University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Anna Dongari-Bagtzoglou
- Department of General Dentistry, The University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
2
|
Furukawa M, Tada H, Raju R, Wang J, Yokoi H, Yamada M, Shikama Y, Matsushita K. Long-Term Soft-Food Rearing in Young Mice Alters Brain Function and Mood-Related Behavior. Nutrients 2023; 15:2397. [PMID: 37242280 PMCID: PMC10222696 DOI: 10.3390/nu15102397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The relationship between caloric and nutrient intake and overall health has been extensively studied. However, little research has focused on the impact of the hardness of staple foods on health. In this study, we investigated the effects of a soft diet on brain function and behavior in mice from an early age. Mice fed a soft diet for six months exhibited increased body weight and total cholesterol levels, along with impaired cognitive and motor function, heightened nocturnal activity, and increased aggression. Interestingly, when these mice were switched back to a solid diet for three months, their weight gain ceased, total cholesterol levels stabilized, cognitive function improved, and aggression decreased, while their nocturnal activity remained high. These findings suggest that long-term consumption of a soft diet during early development can influence various behaviors associated with anxiety and mood regulation, including weight gain, cognitive decline, impaired motor coordination, increased nocturnal activity, and heightened aggression. Therefore, the hardness of food can impact brain function, mental well-being, and motor skills during the developmental stage. Early consumption of hard foods may be crucial for promoting and maintaining healthy brain function.
Collapse
Affiliation(s)
- Masae Furukawa
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (R.R.); (J.W.); (H.Y.); (M.Y.); (Y.S.)
| | - Hirobumi Tada
- Department of Nutrition, Faculty of Wellness, Shigakkan University, Obu 474-8651, Japan;
- Department of Integrative Physiology, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan
| | - Resmi Raju
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (R.R.); (J.W.); (H.Y.); (M.Y.); (Y.S.)
| | - Jingshu Wang
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (R.R.); (J.W.); (H.Y.); (M.Y.); (Y.S.)
| | - Haruna Yokoi
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (R.R.); (J.W.); (H.Y.); (M.Y.); (Y.S.)
| | - Mitsuyoshi Yamada
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (R.R.); (J.W.); (H.Y.); (M.Y.); (Y.S.)
- Department of Operative Dentistry, School of Dentistry, Aichi Gakuin University, Nagoya 464-8651, Japan
| | - Yosuke Shikama
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (R.R.); (J.W.); (H.Y.); (M.Y.); (Y.S.)
| | - Kenji Matsushita
- Department of Oral Disease Research, Geroscience Research Center, National Center for Geriatrics and Gerontology, Obu 474-8511, Japan; (R.R.); (J.W.); (H.Y.); (M.Y.); (Y.S.)
| |
Collapse
|
3
|
Impact of habitual chewing on gut motility via microbiota transition. Sci Rep 2022; 12:13819. [PMID: 35970869 PMCID: PMC9378666 DOI: 10.1038/s41598-022-18095-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 08/05/2022] [Indexed: 11/25/2022] Open
Abstract
The gut environment, including the microbiota and its metabolites and short-chain fatty acids (SCFA), is essential for health maintenance. It is considered that functional recovery treatment for masticatory dysphagia affects the composition of the gut microbiota, indicating that habitual mastication, depending on the hardness of the food, may affect the gut microbiota and environment. However, the impact of chronic powdered diet feeding on the colonic condition and motility remains unclear. Here, we evaluated various colonic features in mice fed with powdered diets for a long-term and a mouse model with masticatory behavior. We observed a decreased abundance of the SCFA-producing bacterial genera in the ceca of the powdered diet-fed mice. Based on the importance of SCFAs in gut immune homeostasis and motility, interestingly, powdered diet feeding also resulted in constipation-like symptoms due to mild colitis, which were ameliorated by the administration of a neutrophil-depleting agent and neutrophil elastase inhibitors. Lastly, the suppressed colonic motility in the powdered diet-fed mice was significantly improved by loading masticatory activity for 2 h. Thus, feeding habits with appropriate masticatory activity and stimulation may play a key role in providing a favorable gut environment based on interactions between the gut microbiota and host immune system.
Collapse
|
4
|
Takagi T, Yamamoto M, Sugano A, Kanehira C, Kitamura K, Katayama M, Sakai K, Sato M, Abe S. Alteration of Oral and Perioral Soft Tissue in Mice following Incisor Tooth Extraction. Int J Mol Sci 2022; 23:ijms23062987. [PMID: 35328407 PMCID: PMC8951366 DOI: 10.3390/ijms23062987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 01/01/2023] Open
Abstract
Oral and perioral soft tissues cooperate with other oral and pharyngeal organs to facilitate mastication and swallowing. It is essential for these tissues to maintain their morphology for efficient function. Recently, it was reported that the morphology of oral and perioral soft tissue can be altered by aging or orthodontic treatment. However, it remains unclear whether tooth loss can alter these tissues’ morphology. This study examined whether tooth loss could alter lip morphology. First, an analysis of human anatomy suggested that tooth loss altered lip morphology. Next, a murine model of tooth loss was established by extracting an incisor; micro-computed tomography revealed that a new bone replaced the extraction socket. Body weight was significantly lower in the tooth loss (UH) group than in the non-extraction control (NH) group. The upper lip showed a greater degree of morphological variation in the UH group. Proteomic analysis and immunohistochemical staining of the upper lip illustrated that S100A8/9 expression was higher in the UH group, suggesting that tooth loss induced lip inflammation. Finally, soft-diet feeding improved lip deformity associated with tooth loss, but not inflammation. Therefore, soft-diet feeding is essential for preventing lip morphological changes after tooth loss.
Collapse
Affiliation(s)
- Takahiro Takagi
- Department of Anatomy, Tokyo Dental College, 2-9-18, Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; (T.T.); (C.K.); (S.A.)
| | - Masahito Yamamoto
- Department of Anatomy, Tokyo Dental College, 2-9-18, Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; (T.T.); (C.K.); (S.A.)
- Correspondence:
| | - Aki Sugano
- Department of Dental Hygiene, Tokyo Dental Junior College, 2-9-18, Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan;
| | - Chiemi Kanehira
- Department of Anatomy, Tokyo Dental College, 2-9-18, Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; (T.T.); (C.K.); (S.A.)
| | - Kei Kitamura
- Department of Histology and Developmental Biology, Tokyo Dental College, 2-9-18, Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan;
| | - Masateru Katayama
- Department of Neurosurgery, Tokyo Dental College, Ichikawa General Hospital, 5-11-13, Sugano, Ichikawa 272-8513, Japan;
| | - Katsuhiko Sakai
- Department of Oral Medicine and Hospital Dentistry, Tokyo Dental College, 5-11-13, Sugano, Ichikawa 272-8513, Japan;
| | - Masaki Sato
- Laboratory of Biology, Tokyo Dental College, 2-9-18, Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan;
| | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, 2-9-18, Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; (T.T.); (C.K.); (S.A.)
| |
Collapse
|
5
|
Toomey LM, Papini M, Lins B, Wright AJ, Warnock A, McGonigle T, Hellewell SC, Bartlett CA, Anyaegbu C, Fitzgerald M. Cuprizone feed formulation influences the extent of demyelinating disease pathology. Sci Rep 2021; 11:22594. [PMID: 34799634 PMCID: PMC8604913 DOI: 10.1038/s41598-021-01963-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/01/2021] [Indexed: 11/09/2022] Open
Abstract
Cuprizone is a copper-chelating agent that induces pathology similar to that within some multiple sclerosis (MS) lesions. The reliability and reproducibility of cuprizone for inducing demyelinating disease pathology depends on the animals ingesting consistent doses of cuprizone. Cuprizone-containing pelleted feed is a convenient way of delivering cuprizone, but the efficacy of these pellets at inducing demyelination has been questioned. This study compared the degree of demyelinating disease pathology between mice fed cuprizone delivered in pellets to mice fed a powdered cuprizone formulation at an early 3 week demyelinating timepoint. Within rostral corpus callosum, cuprizone pellets were more effective than cuprizone powder at increasing astrogliosis, microglial activation, DNA damage, and decreasing the density of mature oligodendrocytes. However, cuprizone powder demonstrated greater protein nitration relative to controls. Furthermore, mice fed control powder had significantly fewer mature oligodendrocytes than those fed control pellets. In caudal corpus callosum, cuprizone pellets performed better than cuprizone powder relative to controls at increasing astrogliosis, microglial activation, protein nitration, DNA damage, tissue swelling, and reducing the density of mature oligodendrocytes. Importantly, only cuprizone pellets induced detectable demyelination compared to controls. The two feeds had similar effects on oligodendrocyte precursor cell (OPC) dynamics. Taken together, these data suggest that demyelinating disease pathology is modelled more effectively with cuprizone pellets than powder at 3 weeks. Combined with the added convenience, cuprizone pellets are a suitable choice for inducing early demyelinating disease pathology.
Collapse
Affiliation(s)
- Lillian M Toomey
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia.,Perron Institute for Neurological and Translational Science, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, WA, 6009, Australia
| | - Melissa Papini
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Brittney Lins
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Alexander J Wright
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Andrew Warnock
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Terence McGonigle
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Sarah C Hellewell
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Carole A Bartlett
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Chidozie Anyaegbu
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia. .,Perron Institute for Neurological and Translational Science, Sarich Neuroscience Research Institute Building, 8 Verdun St, Nedlands, WA, 6009, Australia.
| |
Collapse
|
6
|
Sekine N, Okada-Ogawa A, Asano S, Takanezawa D, Nishihara C, Tanabe N, Imamura Y. Analgesic effect of gum chewing in patients with burning mouth syndrome. J Oral Sci 2020; 62:387-392. [PMID: 32893197 DOI: 10.2334/josnusd.19-0501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The cause of burning mouth syndrome (BMS) is unknown. Although no effective treatment has been established, BMS patients frequently chew gum to alleviate pain. To identify the cause and new treatments for BMS, this study investigated the psychophysical and pharmacological properties of gum chewing to better understand its pain-relieving effects. In this prospective, blinded study, plasma catecholamine and serotonin levels and Profile of Mood States (POMS) scores were assessed after gum chewing or simulated chewing in 40 women (20 BMS patients and 20 age-matched controls). Visual analogue scale (VAS) scores for pain decreased significantly in BMS patients after gum chewing and simulated chewing. Moreover, resting VAS scores of BMS patients were significantly positively correlated with plasma adrenaline level. Furthermore, gum chewing was significantly correlated with lower plasma adrenaline level, VAS score, and tension-anxiety score. These results suggest that adrenaline is important in the pathogenesis of BMS pain and that the analgesic effect of gum chewing is induced through the potential effects of anxiety reduction, although this effect might not be specific to BMS. In addition, the analgesic effect of gum chewing was not induced solely by chewing motion.
Collapse
Affiliation(s)
- Naohiko Sekine
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry
| | - Akiko Okada-Ogawa
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry.,Division of Orofacial Pain Clinic, Nihon University Dental Hospital.,Division of Clinical Research, Dental Research Center, Nihon University School of Dentistry
| | - Sayaka Asano
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry
| | - Daiki Takanezawa
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry
| | - Chisa Nishihara
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry
| | - Natsuko Tanabe
- Department of Biochemistry, Nihon University School of Dentistry
| | - Yoshiki Imamura
- Department of Oral Diagnostic Sciences, Nihon University School of Dentistry.,Division of Orofacial Pain Clinic, Nihon University Dental Hospital.,Division of Clinical Research, Dental Research Center, Nihon University School of Dentistry
| |
Collapse
|
7
|
Food texture affects glucose tolerance by altering pancreatic β-cell function in mice consuming high-fructose corn syrup. PLoS One 2020; 15:e0233797. [PMID: 32470042 PMCID: PMC7259500 DOI: 10.1371/journal.pone.0233797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022] Open
Abstract
The incidence of metabolic diseases, such as type 2 diabetes, has increased steadily worldwide. Diet, beverages, and food texture can all markedly influence these metabolic disorders. However, the combined effects of food texture and beverages on energy metabolism remains unclear. In the present study, we examined the effect of food texture on energy metabolism in mice administered high-fructose corn syrup (HFCS). Mice were fed a soft or hard diet along with 4.2% HFCS or tap water. Body weight and total caloric intake were not affected by food texture irrespective of HFCS consumption. However, caloric intake from HFCS (i.e., drinking volume) and diet were higher and lower, respectively, in the hard food group than in the soft food group. The hard food group’s preference for HFCS was absent in case of mice treated with the μ-opioid receptor antagonist naltrexone. Despite increased HFCS consumption, blood glucose levels were lower in the hard-diet group than in the soft-diet group. In HFCS-fed mice, insulin levels after glucose stimulation and insulin content in the pancreas were higher in the hard food group than the soft food group, whereas insulin tolerance did not differ between the groups. These food texture-induced differences in glucose tolerance were not observed in mice fed tap water. Thus, food texture appears to affect glucose tolerance by influencing pancreatic β-cell function in HFCS-fed mice. These data shed light on the combined effects of eating habits and food texture on human health.
Collapse
|
8
|
Wu S, Wang B, Yu C, Wang Z, Xie L, Fu J, Shi H, Zheng L. Juvenile recurrent parotitis: Soft foods contribute to the delayed development of salivary glands. J Oral Rehabil 2019; 47:485-493. [PMID: 31828830 DOI: 10.1111/joor.12921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/29/2019] [Accepted: 11/29/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Juvenile recurrent parotitis (JRP) is the second-most common childhood disease of the salivary glands after mumps. Since popularisation of mumps vaccination, children suffered from JRP more often, and the aetiology remains unclear. Chinese children had the habit of soft foods due to the special dietary habit of Asia. OBJECTIVES To clarify whether mastication was related to the pathogenesis of JRP and whether the growth of salivary glands was influenced by soft diet. METHODS Investigation of dietary habit and masticatory efficiency from 2015 to 2018 of children diagnosed with JRP compared with the normal children by the dentition. Mice had been fed a soft diet beginning in their development phase. The gland weight, amount of saliva, salivary amylase, histological and ultrastructural observation and the expression levels of EGF, FGFr2 and Wnt3a had been tested. RESULTS The JRP children preferred soft foods and had a significantly lower masticatory efficiency than do normal children. When normalised by body weight, the gland weight, amount of saliva and amount of salivary amylase in the experimental group were significantly lower. The ultrastructural results showed that the acinar cells in the experimental groups were smaller and contained fewer electron-dense secretory granules than those in the control groups. The expression levels of EGF, FGFr2 and Wnt3a in the salivary glands of mice in the experimental groups were significantly lower than those of mice in the control groups. CONCLUSION The soft diet indeed influenced the salivary gland through insufficient mastication, which could be one of the primary factors inducing JRP.
Collapse
Affiliation(s)
- Shufeng Wu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Baoli Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chuangqi Yu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhijun Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lisong Xie
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiayao Fu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Huan Shi
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lingyan Zheng
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
9
|
Sunariani J, Khoswanto C, Irmalia WR. Difference of brain-derived neurotrophic factor expression and pyramid cell count during mastication of food with varying hardness. J Appl Oral Sci 2019; 27:e20180182. [PMID: 30970112 PMCID: PMC6442831 DOI: 10.1590/1678-7757-2018-0182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/26/2018] [Indexed: 02/02/2023] Open
Abstract
Previous studies suggested that mastication activity can affect learning and memory function. However, most were focused on mastication impaired models by providing long-term soft diet. The effects of chewing food with various hardness, especially during the growth period, remain unknown. OBJECTIVE To analyze the difference of hippocampus function and morphology, as characterized by pyramidal cell count and BDNF expression in different mastication activities. MATERIALS AND METHODS 28-day old, post-weaned, male-Wistar rats were randomly divided into three groups (n=7); the first (K0) was fed a standard diet using pellets as the control, the second (K1) was fed soft food and the third (K2) was fed hard food. After eight weeks, the rats were decapitated, their brains were removed and placed on histological plates made to count the pyramid cells and quantify BDNF expression in the hippocampus. Data collected were compared using one-way ANOVA. RESULTS Results confirmed the pyramid cell count (K0=169.14±27.25; K1=130.14±29.32; K2=128.14±39.02) and BDNF expression (K0=85.27±19.78; K1=49.57±20.90; K2=36.86±28.97) of the K0 group to be significantly higher than that of K1 and K2 groups (p<0.05); no significant difference in the pyramidal cell count and BNDF expression was found between K1 and K2 groups (p>0.05). CONCLUSION A standard diet leads to the optimum effect on hippocampus morphology. Food consistency must be appropriately suited to each development stage, in this case, hippocampus development in post-weaned period.
Collapse
Affiliation(s)
- Jenny Sunariani
- Universitas Airlangga, Faculty of Dental Medicine, Department of Oral Biology, Surabaya, Indonesia
| | - Christian Khoswanto
- Universitas Airlangga, Faculty of Dental Medicine, Department of Oral Biology, Surabaya, Indonesia
| | | |
Collapse
|
10
|
Yaoita F, Tsuchiya M, Arai Y, Tadano T, Tan-No K. Involvement of catecholaminergic and GABAAergic mediations in the anxiety-related behavior in long-term powdered diet-fed mice. Neurochem Int 2018; 124:1-9. [PMID: 30529642 DOI: 10.1016/j.neuint.2018.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 11/26/2022]
Abstract
Dietary habits are important factors which affect metabolic homeostasis and the development of emotion. We have previously shown that long-term powdered diet feeding in mice increases spontaneous locomotor activity and social interaction (SI) time. Moreover, that diet causes changes in the dopaminergic system, especially increased dopamine turnover and decreased dopamine D4 receptor signals in the frontal cortex. Although the increased SI time indicates low anxiety, the elevated plus maze (EPM) test shows anxiety-related behavior and impulsive behavior. In this study, we investigated whether the powdered diet feeding causes changes in anxiety-related behavior. Mice fed a powdered diet for 17 weeks from weaning were compared with mice fed a standard diet (control). The percentage (%) of open arm time and total number of arm entries were increased in powdered diet-fed mice in the EPM test. We also examined the effects of diazepam, benzodiazepine anti-anxiety drug, bicuculline, GABA-A receptor antagonist, methylphenidate, dopamine transporter (DAT) and noradrenaline transporter (NAT) inhibitor, atomoxetine, selective NAT inhibitor, GBR12909, selective DAT inhibitor, and PD168077, selective dopamine D4 receptor agonist, on the changes of the EPM in powdered diet-fed mice. Methylphenidate and atomoxetine are clinically used to treat attention deficit/hyperactivity disorder (ADHD) symptoms. The % of open arm time in powdered diet-fed mice was decreased by treatments of atomoxetine, methylphenidate and PD168077. Diazepam increased the % of open arm time in control diet-fed mice, but not in powdered diet-fed mice. The powdered diet feeding induced a decrease in GABA transaminase, GABA metabolic enzymes, in the frontal cortex. Moreover, the powdered diet feeding induced an increase in NAT expression, but not DAT expression, in the frontal cortex. These results suggest that the long-term powdered diet feeding may cause low anxiety or impulsivity, possibly via noradrenergic and/or dopaminergic, and GABAAergic mediations and increase the risk for onset of ADHD-like behaviors.
Collapse
Affiliation(s)
- Fukie Yaoita
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan.
| | - Masahiro Tsuchiya
- Department of Nursing, Tohoku Fukushi University, 1-8-1 Kunimi, Aoba-ku, Sendai, 981-8522, Japan
| | - Yuichiro Arai
- Tokyo Ariake University of Medical and Health Science, 2-9-1 Ariake, Koto-Ku, Tokyo, 135-0063, Japan
| | - Takeshi Tadano
- Complementary and Alternative Medicine Clinical Research and Development, Graduate School of Medicine Sciences, Kanazawa University, Kakumamachi, Kanazawa, 920-1192, Japan
| | - Koichi Tan-No
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, 981-8558, Japan
| |
Collapse
|
11
|
Yaoita F. Animal Models for Elucidation of the Mechanisms of Neuropsychiatric Disorders Induced by Sleep and Dietary Habits. YAKUGAKU ZASSHI 2016; 136:895-904. [PMID: 27252067 DOI: 10.1248/yakushi.15-00283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Numerous changes in human lifestyle in modern life increase the risk of disease. Especially, modern sleep and dietary habits are crucial factors affecting lifestyle disease. In terms of sleep, decreases in total sleep time and in rapid eye movement sleep time have been observed in attention-deficit/hyperactivity disorder (ADHD) patients. From a dietary perspective, mastication during eating has several good effects on systemic, mental, and physical functions of the body. However, few animal experiments have addressed the influence of this decline in sleep duration or of long-term powdered diet feeding on parameters reflecting systemic health. In our studies, we examined both the influence of intermittent sleep deprivation (SD) treatment and long-term powdered diet feeding on emotional behavior in mice, and focused on the mechanisms underlying these impaired behaviors. Our findings were as follows: SD treatment induced hypernoradrenergic and hypodopaminergic states within the frontal cortex. Furthermore, hyperactivity and an explosive number of jumps were observed. Both the hypernoradrenergic state and the jumps were improved by treatment with ADHD therapeutic drugs. On the other hand, long-term powdered diet feeding increased social interaction behaviors. The feeding affected the dopaminergic function of the frontal cortex. In addition, the long-term powdered diet fed mice presented systemic illness signs, such as elevations of blood glucose, and hypertension. This review, describing the SD mice and long-term powdered diet fed mice can be a useful model for elucidation of the mechanism of neuropsychiatric disorders or the discovery of new therapeutic targets in combatting effects of the modern lifestyle.
Collapse
Affiliation(s)
- Fukie Yaoita
- Department of Pharmacology, Faculty of Pharmaceutical Science, Tohoku Medical and Pharmaceutical University
| |
Collapse
|
12
|
Takahashi S, Uekita H, Kato T, Inoue K, Domon T. Growth of rat parotid glands is inhibited by liquid diet feeding. Tissue Cell 2015; 47:336-41. [PMID: 25956847 DOI: 10.1016/j.tice.2015.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 03/26/2015] [Accepted: 04/09/2015] [Indexed: 11/26/2022]
Abstract
This study investigated how liquid diet feeding affects the growth of parotid glands. We weaned 21-day-old rats and thereafter fed them a pellet diet (control group) or a liquid diet (experimental group) for 0, 1, 2, 4, or 8 weeks. Their parotid glands were excised, weighed, examined, and tested for 5-bromo-2'-deoxyuridine (BrdU) and cleaved caspase-3 (Casp-3) as markers of proliferation and apoptosis, respectively. Parotid gland weights were consistently smaller in experimental animals than in controls. Morphometrical analysis showed that control group acinar cells increased in area during the experiment, but experimental group acinar cells were almost unchanged. Labeling indices of BrdU in acinar cells in both groups declined during the experiment, but were consistently lower in the experimental group than in controls. Casp-3-positive acinar cells were rare in both groups, which consistently express significantly similar Casp-3 levels. Ultrastructurally, terminal portions of the experimental parotid glands consisted of a few acinar cells that were smaller than those in controls. Control acinar cells showed mitotic figures within short experimental periods, but not in experimental glands. These observations indicate that liquid diet feeding inhibits growth of parotid glands in growing rats through suppression of growth and proliferation of individual acinar cells, but not through apoptosis.
Collapse
Affiliation(s)
- Shigeru Takahashi
- Department of Oral Functional Anatomy, Hokkaido University Graduate School of Dental Medicine, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Japan.
| | - Hiroki Uekita
- Department of Oral Functional Anatomy, Hokkaido University Graduate School of Dental Medicine, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Japan
| | - Tsuyoshi Kato
- Department of Oral Functional Anatomy, Hokkaido University Graduate School of Dental Medicine, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Japan
| | - Kiichiro Inoue
- Department of Oral Functional Anatomy, Hokkaido University Graduate School of Dental Medicine, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Japan
| | - Takanori Domon
- Department of Oral Functional Anatomy, Hokkaido University Graduate School of Dental Medicine, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Japan
| |
Collapse
|
13
|
Anti-stress action of an orally-given combination of resveratrol, β-glucan, and vitamin C. Molecules 2014; 19:13724-34. [PMID: 25255758 PMCID: PMC6271389 DOI: 10.3390/molecules190913724] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 08/30/2014] [Accepted: 09/01/2014] [Indexed: 11/16/2022] Open
Abstract
Stress has repeatedly been found to reduce the abilities of the immune system to fight against individual attacks. The current dissatisfaction with classical medications has led to more attention being focused on natural molecules. As recent studies have suggested that some bioactive molecules can have synergistic effects in stimulation of immune system and reduction of stress, we have evaluated the stress-reducing effects of the resveratrol-β-glucan-vitamin C combination. We found that compared to its individual components, this combination was the strongest reducer of stress-related symptoms, including corticosterone levels and IL-6, IL-12 and IFN-γ production.
Collapse
|