1
|
Zhu H, Zhou J, Wang D, Yu Z, Li B, Ni Y, He K. Quantitative proteomic analysis reveals that serine/threonine kinase is involved in Streptococcus suis virulence and adaption to stress conditions. Arch Microbiol 2021; 203:4715-4726. [PMID: 34028569 PMCID: PMC8141825 DOI: 10.1007/s00203-021-02369-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/27/2022]
Abstract
The eukaryotic-type serine/threonine kinase of Streptococcus suis serotype 2 (SS2) performs critical roles in bacterial pathogenesis. In this study, isobaric tags for relative and absolute quantification (iTRAQ) MS/MS were used to analyze the protein profiles of wild type strain SS2-1 and its isogenic STK deletion mutant (Δstk). A total of 281 significant differential proteins, including 147 up-regulated and 134 down-regulated proteins, were found in Δstk. Moreover, 69 virulence factors (VFs) among these 281 proteins were predicted by the Virulence Factor Database (VFDB), including 38 downregulated and 31 up-regulated proteins in Δstk, among which 15 down regulated VFs were known VFs of SS2. Among the down-regulated proteins, high temperature requirement A (HtrA), glutamine synthase (GlnA), ferrichrome ABC transporter substrate-binding protein FepB, and Zinc-binding protein AdcA are known to be involved in bacterial survival and/or nutrient and energy acquisition under adverse host conditions. Overall, our results indicate that STK regulates the expression of proteins involved in virulence of SS2 and its adaption to stress environments.
Collapse
Affiliation(s)
- Haodan Zhu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China
| | - Junming Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China
| | - Dandan Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China
| | - Zhengyu Yu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China
| | - Yanxiu Ni
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China.
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China.
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China.
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, People's Republic of China.
- Key Lab of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing, People's Republic of China.
| |
Collapse
|
2
|
Bonne Køhler J, Jers C, Senissar M, Shi L, Derouiche A, Mijakovic I. Importance of protein Ser/Thr/Tyr phosphorylation for bacterial pathogenesis. FEBS Lett 2020; 594:2339-2369. [PMID: 32337704 DOI: 10.1002/1873-3468.13797] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
Abstract
Protein phosphorylation regulates a large variety of biological processes in all living cells. In pathogenic bacteria, the study of serine, threonine, and tyrosine (Ser/Thr/Tyr) phosphorylation has shed light on the course of infectious diseases, from adherence to host cells to pathogen virulence, replication, and persistence. Mass spectrometry (MS)-based phosphoproteomics has provided global maps of Ser/Thr/Tyr phosphosites in bacterial pathogens. Despite recent developments, a quantitative and dynamic view of phosphorylation events that occur during bacterial pathogenesis is currently lacking. Temporal, spatial, and subpopulation resolution of phosphorylation data is required to identify key regulatory nodes underlying bacterial pathogenesis. Herein, we discuss how technological improvements in sample handling, MS instrumentation, data processing, and machine learning should improve bacterial phosphoproteomic datasets and the information extracted from them. Such information is expected to significantly extend the current knowledge of Ser/Thr/Tyr phosphorylation in pathogenic bacteria and should ultimately contribute to the design of novel strategies to combat bacterial infections.
Collapse
Affiliation(s)
- Julie Bonne Køhler
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Carsten Jers
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Mériem Senissar
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lei Shi
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Abderahmane Derouiche
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ivan Mijakovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.,Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
3
|
Nakedi KC, Calder B, Banerjee M, Giddey A, Nel AJM, Garnett S, Blackburn JM, Soares NC. Identification of Novel Physiological Substrates of Mycobacterium bovis BCG Protein Kinase G (PknG) by Label-free Quantitative Phosphoproteomics. Mol Cell Proteomics 2018; 17:1365-1377. [PMID: 29549130 PMCID: PMC6030727 DOI: 10.1074/mcp.ra118.000705] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Indexed: 01/09/2023] Open
Abstract
Mycobacterial Ser/Thr kinases play a critical role in bacterial physiology and pathogenesis. Linking kinases to the substrates they phosphorylate in vivo, thereby elucidating their exact functions, is still a challenge. The aim of this work was to associate protein phosphorylation in mycobacteria with important subsequent macro cellular events by identifying the physiological substrates of PknG in Mycobacterium bovis BCG. The study compared the phosphoproteome dynamics during the batch growth of M. bovis BCG versus the respective PknG knock-out mutant (ΔPknG-BCG) strains. We employed TiO2 phosphopeptide enrichment techniques combined with label-free quantitative phosphoproteomics workflow on LC-MS/MS. The comprehensive analysis of label-free data identified 603 phosphopeptides on 307 phosphoproteins with high confidence. Fifty-five phosphopeptides were differentially phosphorylated, of these, 23 phosphopeptides were phosphorylated in M. bovis BCG wild-type only and not in the mutant. These were further validated through targeted mass spectrometry assays (PRMs). Kinase-peptide docking studies based on a published crystal structure of PknG in complex with GarA revealed that the majority of identified phosphosites presented docking scores close to that seen in previously described PknG substrates, GarA, and ribosomal protein L13. Six out of the 22 phosphoproteins had higher docking scores than GarA, consistent with the proteins identified here being true PknG substrates. Based on protein functional analysis of the PknG substrates identified, this study confirms that PknG plays an important regulatory role in mycobacterial metabolism, through phosphorylation of ATP binding proteins and enzymes in the TCA cycle. This work also reinforces PknG's regulation of protein translation and folding machinery.
Collapse
Affiliation(s)
- Kehilwe C Nakedi
- From the ‡Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Bridget Calder
- From the ‡Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Mousumi Banerjee
- From the ‡Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Alexander Giddey
- From the ‡Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Andrew J M Nel
- From the ‡Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Shaun Garnett
- From the ‡Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Jonathan M Blackburn
- From the ‡Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, South Africa.,§Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Nelson C Soares
- From the ‡Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, South Africa;
| |
Collapse
|
4
|
Talavera A, Hendrix J, Versées W, Jurėnas D, Van Nerom K, Vandenberk N, Singh RK, Konijnenberg A, De Gieter S, Castro-Roa D, Barth A, De Greve H, Sobott F, Hofkens J, Zenkin N, Loris R, Garcia-Pino A. Phosphorylation decelerates conformational dynamics in bacterial translation elongation factors. SCIENCE ADVANCES 2018; 4:eaap9714. [PMID: 29546243 PMCID: PMC5851678 DOI: 10.1126/sciadv.aap9714] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
Bacterial protein synthesis is intricately connected to metabolic rate. One of the ways in which bacteria respond to environmental stress is through posttranslational modifications of translation factors. Translation elongation factor Tu (EF-Tu) is methylated and phosphorylated in response to nutrient starvation upon entering stationary phase, and its phosphorylation is a crucial step in the pathway toward sporulation. We analyze how phosphorylation leads to inactivation of Escherichia coli EF-Tu. We provide structural and biophysical evidence that phosphorylation of EF-Tu at T382 acts as an efficient switch that turns off protein synthesis by decoupling nucleotide binding from the EF-Tu conformational cycle. Direct modifications of the EF-Tu switch I region or modifications in other regions stabilizing the β-hairpin state of switch I result in an effective allosteric trap that restricts the normal dynamics of EF-Tu and enables the evasion of the control exerted by nucleotides on G proteins. These results highlight stabilization of a phosphorylation-induced conformational trap as an essential mechanism for phosphoregulation of bacterial translation and metabolism. We propose that this mechanism may lead to the multisite phosphorylation state observed during dormancy and stationary phase.
Collapse
Affiliation(s)
- Ariel Talavera
- Structural Biology Brussels, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Structural Biology, VIB, Flanders, Belgium
| | - Jelle Hendrix
- Molecular Imaging and Photonics, University of Leuven, B-3001 Leuven, Belgium
- Biomedical Research Institute, Hasselt University, B-3590 Hasselt, Belgium
| | - Wim Versées
- Structural Biology Brussels, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Structural Biology, VIB, Flanders, Belgium
| | - Dukas Jurėnas
- Cellular and Molecular Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, Brussels, Belgium
| | - Katleen Van Nerom
- Cellular and Molecular Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, Brussels, Belgium
| | - Niels Vandenberk
- Molecular Imaging and Photonics, University of Leuven, B-3001 Leuven, Belgium
| | - Ranjan Kumar Singh
- Structural Biology Brussels, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Structural Biology, VIB, Flanders, Belgium
| | - Albert Konijnenberg
- Structural Biology Brussels, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Structural Biology, VIB, Flanders, Belgium
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
| | - Steven De Gieter
- Structural Biology Brussels, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Structural Biology, VIB, Flanders, Belgium
| | - Daniel Castro-Roa
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| | - Anders Barth
- Fluorescence Applications in Biology Laboratory, Department of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Henri De Greve
- Structural Biology Brussels, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Structural Biology, VIB, Flanders, Belgium
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Johan Hofkens
- Molecular Imaging and Photonics, University of Leuven, B-3001 Leuven, Belgium
- Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Baddiley-Clark Building, Richardson Road, Newcastle upon Tyne NE2 4AX, UK
| | - Remy Loris
- Structural Biology Brussels, Department of Bio-engineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Structural Biology, VIB, Flanders, Belgium
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Department of Molecular Biology, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
5
|
Liu X, Luo Y, Li Z, Wei G. Functional analysis of PrkA - a putative serine protein kinase from Mesorhizobium alhagi CCNWXJ12-2 - in stress resistance. BMC Microbiol 2016; 16:227. [PMID: 27686068 PMCID: PMC5041497 DOI: 10.1186/s12866-016-0849-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/24/2016] [Indexed: 01/12/2023] Open
Abstract
Background Serine/threonine protein kinases are highly conserved kinases with a wide distribution in microbes and with multiple functions. Mesorhizobium alhagi CCNWXJ12-2, a α-proteobacterium which could be able to form symbiosis with Alhagi sparsifolia in northwest of China, contains a putative PrkA-family serine protein kinase, PrkA. In our previous study, the expression of prkA was found to be downregulated in high-salt conditions. To elucidate the function of M. alhagi PrkA, a prkA deletion mutant was constructed and the phenotypes of the mutant were analyzed. Results The salt and alkaline tolerance and antioxidant capacity of the wild-type strain and the prkA deletion mutant was measured. Our results showed that the deletion mutant had higher salt and alkaline tolerance than the wild-type strain. The total cellular Na+ content was measured and showed no significant difference between the wild-type strain and the mutant. The prkA deletion mutant also showed a higher H2O2 tolerance than the wild-type strain. Therefore the activities of antioxidant enzymes were measured. Catalase activity was similar in the wild-type and the deletion mutant, while the superoxide dismutase activity in the mutant was higher than that in the wild-type. Conclusions We firstly analyze the function of a serine protein kinase, PrkA, in M. alhagi. Our data indicate that PrkA could reduce the survival of M. alhagi under environmental stress and deletion of prkA dramatically improved the salt and alkaline tolerance and antioxidant capacity of M. alhagi.
Collapse
Affiliation(s)
- Xiaodong Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yantao Luo
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Zhefei Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Gehong Wei
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
6
|
Bespyatykh J, Shitikov E, Butenko I, Altukhov I, Alexeev D, Mokrousov I, Dogonadze M, Zhuravlev V, Yablonsky P, Ilina E, Govorun V. Proteome analysis of the Mycobacterium tuberculosis Beijing B0/W148 cluster. Sci Rep 2016; 6:28985. [PMID: 27356881 PMCID: PMC4928086 DOI: 10.1038/srep28985] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/13/2016] [Indexed: 12/18/2022] Open
Abstract
Beijing B0/W148, a "successful" clone of Mycobacterium tuberculosis, is widespread in the Russian Federation and some countries of the former Soviet Union. Here, we used label-free gel-LC-MS/MS shotgun proteomics to discover features of Beijing B0/W148 strains that could explain their success. Qualitative and quantitative proteome analyses of Beijing B0/W148 strains allowed us to identify 1,868 proteins, including 266 that were differentially abundant compared with the control strain H37Rv. To predict the biological effects of the observed differences in protein abundances, we performed Gene Ontology analysis together with analysis of protein-DNA interactions using a gene regulatory network. Our results demonstrate that Beijing B0/W148 strains have increased levels of enzymes responsible for long-chain fatty acid biosynthesis, along with a coincident decrease in the abundance of proteins responsible for their degradation. Together with high levels of HsaA (Rv3570c) protein, involved in steroid degradation, these findings provide a possible explanation for the increased transmissibility of Beijing B0/W148 strains and their survival in host macrophages. Among other, we confirmed a very low level of the SseA (Rv3283) protein in Beijing B0/W148 characteristic for all «modern» Beijing strains, which could lead to increased DNA oxidative damage, accumulation of mutations, and potentially facilitate the development of drug resistance.
Collapse
Affiliation(s)
- Julia Bespyatykh
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow, Russian Federation
| | - Egor Shitikov
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow, Russian Federation
| | - Ivan Butenko
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow, Russian Federation
| | - Ilya Altukhov
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow, Russian Federation
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Dmitry Alexeev
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow, Russian Federation
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Igor Mokrousov
- St. Petersburg Pasteur Institute, St. Petersburg, Russian Federation
| | - Marine Dogonadze
- Research Institute of Phtisiopulmonology, St. Petersburg, Russian Federation
| | | | - Peter Yablonsky
- Research Institute of Phtisiopulmonology, St. Petersburg, Russian Federation
| | - Elena Ilina
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow, Russian Federation
| | - Vadim Govorun
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow, Russian Federation
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
7
|
Calder B, Albeldas C, Blackburn JM, Soares NC. Mass Spectrometry Offers Insight into the Role of Ser/Thr/Tyr Phosphorylation in the Mycobacteria. Front Microbiol 2016; 7:141. [PMID: 26904014 PMCID: PMC4751927 DOI: 10.3389/fmicb.2016.00141] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 01/25/2016] [Indexed: 12/23/2022] Open
Abstract
Phosphorylation is a post translational modification which can rapidly regulate biochemical pathways by altering protein function, and has been associated with pathogenicity in bacteria. Once engulfed by host macrophages, pathogenic bacteria are exposed to harsh conditions and must respond rapidly in order to survive. The causative agent of TB, Mycobacterium tuberculosis, is unusual amongst the bacteria because it can survive within the host macrophage for decades in a latent state, demonstrating a remarkable capacity to successfully evade the host immune response. This ability may be mediated in part by regulatory mechanisms such as ser/thr/tyr phosphorylation. Mass spectrometry-based proteomics has afforded us the capacity to identify hundreds of phosphorylation sites in the bacterial proteome, allowing for comparative phosphoproteomic studies in the mycobacteria. There remains an urgent need to validate the reported phosphosites, and to elucidate their biological function in the context of pathogenicity. However, given the sheer number of putative phosphorylation events in the mycobacterial proteome, and the technical difficulty of assigning biological function to a phosphorylation event, it will not be trivial to do so. There are currently six published phosphoproteomic investigations of a member of mycobacteria. Here, we combine the datasets from these studies in order to identify commonly detected phosphopeptides and phosphosites in order to present high confidence candidates for further validation. By applying modern mass spectrometry-based techniques to improve our understanding of phosphorylation and other PTMs in pathogenic bacteria, we may identify candidates for therapeutic intervention.
Collapse
Affiliation(s)
- Bridget Calder
- Applied and Chemical Proteomics Group, Medical Biochemistry Division, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town Cape Town, South Africa
| | - Claudia Albeldas
- Applied and Chemical Proteomics Group, Medical Biochemistry Division, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town Cape Town, South Africa
| | - Jonathan M Blackburn
- Applied and Chemical Proteomics Group, Medical Biochemistry Division, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town Cape Town, South Africa
| | - Nelson C Soares
- Applied and Chemical Proteomics Group, Medical Biochemistry Division, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town Cape Town, South Africa
| |
Collapse
|
8
|
Calder B, Soares NC, de Kock E, Blackburn JM. Mycobacterial proteomics: analysis of expressed proteomes and post-translational modifications to identify candidate virulence factors. Expert Rev Proteomics 2015; 12:21-35. [PMID: 25603863 DOI: 10.1586/14789450.2015.1007046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Mycobacterium tuberculosis bacillus has a number of unique features that make it a particularly effective human pathogen. Although genomic analysis has added to our current understanding of the molecular basis by which M. tuberculosis damages its host, proteomics may be better suited to describe the dynamic interactions between mycobacterial and host systems that underpin this disease. The M. tuberculosis proteome has been investigated using proteomics for over a decade, with increasingly sophisticated mass spectrometry technology and sensitive methods for comparative proteomic profiling. Deeper coverage of the M. tuberculosis proteome has led to the identification of hundreds of putative virulence determinants, as well as an unsurpassed coverage of post-translational modifications. Proteomics is therefore uniquely poised to contribute to our understanding of this pathogen, which may ultimately lead to better management of the disease.
Collapse
Affiliation(s)
- Bridget Calder
- Division of Medical Biochemistry, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Anzio Rd, Observatory, Cape Town 7925, South Africa
| | | | | | | |
Collapse
|
9
|
Singhal A, Arora G, Virmani R, Kundu P, Khanna T, Sajid A, Misra R, Joshi J, Yadav V, Samanta S, Saini N, Pandey AK, Visweswariah SS, Hentschker C, Becher D, Gerth U, Singh Y. Systematic Analysis of Mycobacterial Acylation Reveals First Example of Acylation-mediated Regulation of Enzyme Activity of a Bacterial Phosphatase. J Biol Chem 2015; 290:26218-34. [PMID: 26350458 DOI: 10.1074/jbc.m115.687269] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Indexed: 02/02/2023] Open
Abstract
Protein lysine acetylation is known to regulate multiple aspects of bacterial metabolism. However, its presence in mycobacterial signal transduction and virulence-associated proteins has not been studied. In this study, analysis of mycobacterial proteins from different cellular fractions indicated dynamic and widespread occurrence of lysine acetylation. Mycobacterium tuberculosis proteins regulating diverse physiological processes were then selected and expressed in the surrogate host Mycobacterium smegmatis. The purified proteins were analyzed for the presence of lysine acetylation, leading to the identification of 24 acetylated proteins. In addition, novel lysine succinylation and propionylation events were found to co-occur with acetylation on several proteins. Protein-tyrosine phosphatase B (PtpB), a secretory phosphatase that regulates phosphorylation of host proteins and plays a critical role in Mycobacterium infection, is modified by acetylation and succinylation at Lys-224. This residue is situated in a lid region that covers the enzyme's active site. Consequently, acetylation and succinylation negatively regulate the activity of PtpB.
Collapse
Affiliation(s)
- Anshika Singhal
- From the CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Gunjan Arora
- From the CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India, the Translational Health Science and Technology Institute, Faridabad 121001, India
| | - Richa Virmani
- From the CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Parijat Kundu
- From the CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Tanya Khanna
- From the CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Andaleeb Sajid
- From the CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Richa Misra
- From the CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Jayadev Joshi
- From the CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Vikas Yadav
- From the CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Sintu Samanta
- the Indian Institute of Science, Bangalore 560012, India, and
| | - Neeru Saini
- From the CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India
| | - Amit K Pandey
- the Translational Health Science and Technology Institute, Faridabad 121001, India,
| | | | - Christian Hentschker
- the Institute of Microbiology, Ernst-Moritz-Arndt-University Greifswald, D-17487 Greifswald, Germany
| | - Dörte Becher
- the Institute of Microbiology, Ernst-Moritz-Arndt-University Greifswald, D-17487 Greifswald, Germany
| | - Ulf Gerth
- the Institute of Microbiology, Ernst-Moritz-Arndt-University Greifswald, D-17487 Greifswald, Germany
| | - Yogendra Singh
- From the CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India,
| |
Collapse
|
10
|
Global dynamics of Escherichia coli phosphoproteome in central carbon metabolism under changing culture conditions. J Proteomics 2015; 126:24-33. [DOI: 10.1016/j.jprot.2015.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/13/2015] [Accepted: 05/20/2015] [Indexed: 12/25/2022]
|
11
|
Zheng J, Liu L, Liu B, Jin Q. Phosphoproteomic analysis of bacillus Calmette-Guérin using gel-based and gel-free approaches. J Proteomics 2015; 126:189-99. [PMID: 26070398 DOI: 10.1016/j.jprot.2015.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 05/09/2015] [Accepted: 06/03/2015] [Indexed: 12/16/2022]
Abstract
Post-translational modifications regulate many aspects of protein behavior and provide options for expanding protein functionality in organisms. Protein phosphorylation is one of the major PTMs observed in bacteria, which are involved in regulating a myriad of physiological processes. Mycobacterium bovis bacillus Calmette-Guérin (BCG) has been recognized as an important weapon in the fight against tuberculosis (TB) worldwide for over 80 years. In this study, we conducted phosphoproteomic analysis in BCG bacteria using gel-based and gel-free complementary approaches and high-resolution Fourier transform mass spectrometry. In total, 501 phosphopeptides derived from 398 phosphoproteins were identified, representing the first phosphoproteomic analysis of BCG reported to date. Thirty-three novel protein products supported by 36 unique phosphorylated peptides were detected. Additionally, the translational start sites of 28 proteins were confirmed, and 31 proteins were validated through the extension of translational start sites based on N-terminus-derived peptides. The expression of three randomly selected phosphoproteins was validated through Western blotting. A number of proteins involved in metabolic pathways, including glycolysis, the tricarboxylic acid cycle, oxidative phosphorylation and two-component system, are discussed. We believe some of the proteins identified in this study may represent potential targets for the development of novel antibiotics for treating TB.
Collapse
Affiliation(s)
- Jianhua Zheng
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Liguo Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bo Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
12
|
Environmental Sensing in Actinobacteria: a Comprehensive Survey on the Signaling Capacity of This Phylum. J Bacteriol 2015; 197:2517-35. [PMID: 25986905 DOI: 10.1128/jb.00176-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/12/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Signal transduction is an essential process that allows bacteria to sense their complex and ever-changing environment and adapt accordingly. Three distinct major types of signal-transducing proteins (STPs) can be distinguished: one-component systems (1CSs), two-component systems (2CSs), and extracytoplasmic-function σ factors (ECFs). Since Actinobacteria are particularly rich in STPs, we comprehensively investigated the abundance and diversity of STPs encoded in 119 actinobacterial genomes, based on the data stored in the Microbial Signal Transduction (MiST) database. Overall, we observed an approximately linear correlation between the genome size and the total number of encoded STPs. About half of all membrane-anchored 1CSs are protein kinases. For both 1CSs and 2CSs, a detailed analysis of the domain architectures identified novel proteins that are found only in actinobacterial genomes. Many actinobacterial genomes are particularly enriched for ECFs. As a result of this study, almost 500 previously unclassified ECFs could be classified into 18 new ECF groups. This comprehensive survey demonstrates that actinobacterial genomes encode previously unknown STPs, which may represent new mechanisms of signal transduction and regulation. This information not only expands our knowledge of the diversity of bacterial signal transduction but also provides clear and testable hypotheses about their mechanisms, which can serve as starting points for experimental studies. IMPORTANCE In the wake of the genomic era, with its enormous increase in the amount of available sequence information, the challenge has now shifted toward making sense and use of this treasure chest. Such analyses are a prerequisite to provide meaningful information that can help guide subsequent experimental efforts, such as mechanistic studies on novel signaling strategies. This work provides a comprehensive analysis of signal transduction proteins from 119 actinobacterial genomes. We identify, classify, and describe numerous novel and conserved signaling devices. Hence, our work serves as an important resource for any researcher interested in signal transduction of this important bacterial phylum, which contains organisms of ecological, biotechnological, and medical relevance.
Collapse
|
13
|
Dworkin J. Ser/Thr phosphorylation as a regulatory mechanism in bacteria. Curr Opin Microbiol 2015; 24:47-52. [PMID: 25625314 DOI: 10.1016/j.mib.2015.01.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/31/2014] [Accepted: 01/10/2015] [Indexed: 11/30/2022]
Abstract
This review will discuss some recent work describing the role of Ser/Thr phosphorylation as a post-translational mechanism of regulation in bacteria. I will discuss the interaction between bacterial eukaryotic-like Ser/Thr kinases (eSTKs) and two-component systems as well as hints as to physiological function of eSTKs and their cognate eukaryotic-like phosphatases (eSTPs). In particular, I will highlight the role of eSTKs and eSTPs in the regulation of peptidoglycan metabolism and protein synthesis. In addition, I will discuss how data from phosphoproteomic surveys suggest that Ser/Thr phosphorylation plays a much more significant physiological role than would be predicted simply based on in vivo and in vitro analyses of individual kinases.
Collapse
Affiliation(s)
- Jonathan Dworkin
- Department of Microbiology & Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|