1
|
Lou YL, Xie DL, Huang XH, Zheng MM, Chen N, Xu JR. The role of MNK1-mTORC1 pathway in modulating macrophage responses to Vibrio vulnificus infection. Microbiol Spectr 2024; 12:e0334023. [PMID: 38980024 PMCID: PMC11302032 DOI: 10.1128/spectrum.03340-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 06/06/2024] [Indexed: 07/10/2024] Open
Abstract
Vibrio vulnificus (Vv) is known to cause life-threatening infections, particularly septicemia. These patients often exhibit elevated levels of pro-inflammatory cytokines. While it is established that mitogen-activated protein kinase (MAPK)-interacting kinase (MNK) contributes to the production of pro-inflammatory cytokines, the role of MNK in macrophages during Vv infection remains unclear. In this study, we investigate the impact of MNK on macrophages. We demonstrate that the inhibition of MNK in J774A.1 cells, when treated with lipopolysaccharide or Vv, resulted in decreased production of tumor necrosis factor alpha and interleukin-6, without affecting their transcription. Interestingly, treatment with MNK inhibitor CGP57380 led to enhanced phosphorylation of MNK1 but decreased phosphorylation of eIF4E. Moreover, MNK1 knockout cells exhibited an increased capacity for phagocytosis and clearance of Vv, with more acidic phagosomes than the parental cells. Notably, CGP57380 did not impact phagocytosis, bacterial clearance, or phagosome acidification in Vv-infected J774A.1 cells. Considering the reported association between MNK and mammalian target of rapamycin complex 1 (mTORC1) activation, we investigated the mTORC1 signaling in MNK1 knockout cells infected with Vv. Our results revealed that attenuation of the mTORC1 signaling in these cells and treatment with the mTORC1 inhibitor rapamycin significantly enhanced bacterial clearance in J774A.1 cells following Vv infection. In summary, our findings suggest that MNK promotes the Vv-induced cytokine production in J774A.1 cells without affecting their transcription levels. MNK1 appears to impair the phagocytosis, bacterial clearance, and phagosome acidification in Vv-infected J774A.1 cells through the MNK1-mTORC1 signaling pathway rather than the MNK1-eIF4E signaling pathway. Our findings highlight the importance of the MNK1-mTORC1 pathway in modulating macrophage responses to Vv infection. IMPORTANCE Mitogen-activated protein kinase (MAPK)-interacting kinase (MNK) plays a role in promoting the production of tumor necrosis factor alpha and interleukin-6 in macrophages during Vibrio vulnificus (Vv) infection. Inhibition or knockout of MNK1 in J774A.1 cells resulted in reduced cytokine production without affecting their transcription levels. MNK1 also impairs phagocytosis, bacterial clearance, and phagosome acidification in Vv-infected cells through the MNK1-mammalian target of rapamycin complex 1 (mTORC1) signaling pathway. The findings highlight the importance of the MNK1-mTORC1 pathway in modulating macrophage responses to Vv infection.
Collapse
Affiliation(s)
- Yong-Liang Lou
- Department of Immunology and Pathogenic Biology, School of Medicine, Xi'an Jiaotong University, Xi'an, Shanxi, China
- The School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, Zhejiang, China
| | - Dan-Li Xie
- The School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, Zhejiang, China
| | - Xian-Hui Huang
- The School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, Zhejiang, China
| | - Meng-Meng Zheng
- The School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Wenzhou Key Laboratory of Sanitary Microbiology, Wenzhou, Zhejiang, China
- Scientific Research Center, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Na Chen
- The School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Laboratory Medicine, The First People’s Hospital of Linping District, Hangzhou, Zhejiang, China
| | - Ji-Ru Xu
- Department of Immunology and Pathogenic Biology, School of Medicine, Xi'an Jiaotong University, Xi'an, Shanxi, China
| |
Collapse
|
2
|
Sun S, Noorian P, McDougald D. Dual Role of Mechanisms Involved in Resistance to Predation by Protozoa and Virulence to Humans. Front Microbiol 2018; 9:1017. [PMID: 29867902 PMCID: PMC5967200 DOI: 10.3389/fmicb.2018.01017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Most opportunistic pathogens transit in the environment between hosts and the environment plays a significant role in the evolution of protective traits. The coincidental evolution hypothesis suggests that virulence factors arose as a response to other selective pressures rather for virulence per se. This idea is strongly supported by the elucidation of bacterial-protozoal interactions. In response to protozoan predation, bacteria have evolved various defensive mechanisms which may also function as virulence factors. In this review, we summarize the dual role of factors involved in both grazing resistance and human pathogenesis, and compare the traits using model intracellular and extracellular pathogens. Intracellular pathogens rely on active invasion, blocking of the phagosome and lysosome fusion and resistance to phagocytic digestion to successfully invade host cells. In contrast, extracellular pathogens utilize toxin secretion and biofilm formation to avoid internalization by phagocytes. The complexity and diversity of bacterial virulence factors whose evolution is driven by protozoan predation, highlights the importance of protozoa in evolution of opportunistic pathogens.
Collapse
Affiliation(s)
- Shuyang Sun
- ithree Institute, University of Technology Sydney, Sydney, NSW, Australia
| | - Parisa Noorian
- ithree Institute, University of Technology Sydney, Sydney, NSW, Australia.,School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Diane McDougald
- ithree Institute, University of Technology Sydney, Sydney, NSW, Australia.,Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
3
|
The Makes Caterpillars Floppy (MCF)-Like Domain of Vibrio vulnificus Induces Mitochondrion-Mediated Apoptosis. Infect Immun 2015; 83:4392-403. [PMID: 26351282 DOI: 10.1128/iai.00570-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 08/26/2015] [Indexed: 12/17/2022] Open
Abstract
The multifunctional-autoprocessing repeats-in-toxin (MARTXVv) toxin of Vibrio vulnificus plays a significant role in the pathogenesis of this bacterium through delivery of up to five effector domains to the host cells. Previous studies have established that the MARTXVv toxin is linked to V. vulnificus dependent induction of apoptosis, but the region of the large multifunction protein essential for this activity was not previously identified. Recently, we showed that the Makes Caterpillar Floppy-like MARTX effector domain (MCFVv) is an autoproteolytic cysteine protease that induces rounding of various cell types. In this study, we demonstrate that cell rounding induced by MCFVv is coupled to reduced metabolic rate and inhibition of cellular proliferation. Moreover, delivery of MCFVv into host cells either as a fusion to the N-terminal fragment of anthrax toxin lethal factor or when naturally delivered as a V. vulnificus MARTX toxin led to loss of mitochondrial membrane potential, release of cytochrome c, activation of Bax and Bak, and processing of caspases and poly-(ADP-ribose) polymerase (PARP-γ). These studies specifically link the MCFVv effector domain to induction of the intrinsic apoptosis pathway by V. vulnificus.
Collapse
|