1
|
Paraskar G, Bhattacharya S, Kuttiappan A. The Role of Proteomics and Genomics in the Development of Colorectal Cancer Diagnostic Tools and Potential New Treatments. ACS Pharmacol Transl Sci 2025; 8:1227-1250. [PMID: 40370990 PMCID: PMC12070319 DOI: 10.1021/acsptsci.4c00686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/14/2025] [Accepted: 04/03/2025] [Indexed: 05/16/2025]
Abstract
The complex molecular mechanisms involving genetic and epigenetic modifications contribute to colorectal cancer (CRC), which remains a significant threat to world health. This review elucidates the role of proteomics and genomics in the progression, diagnosis, and treatment of colorectal cancers. All potential key pathways involved in CRC, including WNT, MAPK, PI3K, and TGF-β pathways, are reviewed with a systematic analysis, concluding with their involvement in tumorigenesis and therapeutic resistance. Emerging next-generation sequencing technologies revealed critical mutations that are relevant to CRC development. Proteomics has contributed to identifying biomarkers and post-translational modifications that hold promise for targeted therapies. Recent technological advances have provided functional insights into protein signaling networks and pathways through mass spectrometry and integrated proteogenomic approaches. This work emphasizes biomarker-driven translational efforts that integrate genomic insights with protein expression profiles to refine personalized treatments. The application of innovations in liquid biopsy and computational biology advocates for precision medicine paths to improve the outcomes for CRC. Now, pharmacoproteomics offers novel domains for drug discovery and resistance management and serves as a foundation for comprehensive CRC treatment paradigms.
Collapse
Affiliation(s)
- Gaurav Paraskar
- School of Pharmacy &
Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Sankha Bhattacharya
- School of Pharmacy &
Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Anitha Kuttiappan
- School of Pharmacy &
Technology Management, SVKM’S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| |
Collapse
|
2
|
Wang Y, Ding B, Tao Y, Huang L, Zhu Q, Gao C, Feng M, Han Y. Homologous recombination deficiency score is an independent prognostic factor in esophageal squamous cell carcinoma. J Pathol Clin Res 2024; 10:e70007. [PMID: 39469984 PMCID: PMC11519826 DOI: 10.1002/2056-4538.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 10/30/2024]
Abstract
Homologous recombination deficiency (HRD) represents an impairment in the homologous recombination repair (HRR) pathway, crucial for repairing DNA double-strand breaks and contributing to genomic instability in cancer. The HRD score may be a more reliable biomarker than HRR-related gene mutations for identifying patients sensitive to poly(ADP-ribose) polymerase inhibitors. Despite its relevance in various cancers, the HRD score remains underexplored in esophageal squamous cell carcinoma (ESCC). We retrospectively analyzed HRD scores in 96 ESCC patients, examining correlations with clinical characteristics and survival outcomes, and validated our findings using the TCGA dataset. Genomic sequencing utilized a custom superHRD next-generation sequencing panel, and HRD scores were calculated from 54,000 single-nucleotide polymorphisms using Kruskal-Wallis rank-sum tests and two cut-off points for analysis. Higher HRD scores correlated with advanced tumor stages, recurrence, and mutations in TP53 and ABCB1, while APC mutations were linked to lower HRD scores. Patients with high HRD scores had significantly shorter disease-free survival (p = 0.013) and a trend toward shorter overall survival (OS) (p = 0.005), particularly those not receiving adjuvant therapy. Conversely, HRD-high patients undergoing adjuvant therapy showed a trend toward longer OS (p = 0.015). Multivariate analysis identified HRD as an independent prognostic factor (hazard ratio = 2.814 for recurrence, p = 0.015). Validation with the TCGA dataset supported these findings. This study highlights the associations between HRD scores, clinical characteristics, and genomic mutations in ESCC, suggesting HRD as a potential prognostic biomarker. HRD assessment may aid in patient stratification and personalized treatment strategies, warranting further investigation to validate the therapeutic implications of HRD scores in ESCC.
Collapse
Affiliation(s)
- Yulu Wang
- Department of Pathology, Shanghai Chest Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiPR China
| | - Bowen Ding
- Department of Pathology, Shanghai Chest Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiPR China
| | - Yunlan Tao
- Department of Pathology, Shanghai Chest Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiPR China
| | - Lingli Huang
- Department of Pathology, Shanghai Chest Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiPR China
| | - Qian Zhu
- Department of Pathology, Shanghai Chest Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiPR China
| | - Chengying Gao
- Department of Pathology, Shanghai Chest Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiPR China
| | - Mingli Feng
- Department of Pathology, Shanghai Chest Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiPR China
| | - Yuchen Han
- Department of Pathology, Shanghai Chest Hospital, School of MedicineShanghai Jiaotong UniversityShanghaiPR China
| |
Collapse
|
3
|
Devalle S, Aran V, Bastos Júnior CDS, Pannain VL, Brackmann P, Gregório ML, Ferreira Manso JE, Moura Neto V. A panorama of colon cancer in the era of liquid biopsy. THE JOURNAL OF LIQUID BIOPSY 2024; 4:100148. [PMID: 40027146 PMCID: PMC11863817 DOI: 10.1016/j.jlb.2024.100148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/05/2025]
Abstract
Colon cancer (CC) is one of the most frequent cancers worldwide being responsible for over 500 thousand deaths in 2022. Its financial and human burden is expected to increase in the next decades accompanying the growing and aging of the global population. Much of this burden could be alleviated considering that the lethality of CC is mostly due to its late diagnosis and failure in the individualized management of patients. Coordinated government actions and implementation of better diagnostic tools capable of detecting CC earlier and of tracking tumoral evolution are mandatory to achieve a reduction in CC's social impact. CtDNA-based liquid biopsy (LB) has great potential to contribute to patients' screening adhesion, CC earlier detection, and to longitudinal tumor follow-up. In this review, we will discuss the latest epidemiological data on CC disease, diagnostic, subtypes, genetics, and treatment management focusing on the advantages and limitations of ctDNA-based LB, including important bottlenecks and solutions necessary for its clinical translation. The latest ctDNA-directed CC clinical trials will also be examined.
Collapse
Affiliation(s)
- Sylvie Devalle
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | - Veronica Aran
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| | | | - Vera Lucia Pannain
- Departamento de Patologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo Brackmann
- Clínica de Coloproctologia do Hospital Naval Marcílio Dias - IPB/HNMD, Rio de Janeiro, Brazil
| | - Marcelo Leal Gregório
- Instituto de Pesquisas Biomédicas do Hospital Naval Marcílio Dias - IPB/HNMD, Rio de Janeiro, Brazil
| | - José Eduardo Ferreira Manso
- Departamento de Cirurgia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivaldo Moura Neto
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Krishna Rao V, Paul S, Gulkis M, Shen Z, Nair H, Singh A, Li C, Sharma AK, Çağlayan M, Das C, Das B, Kundu CN, Narayan S, Guchhait SK. Molecular editing of NSC-666719 enabling discovery of benzodithiazinedioxide-guanidines as anticancer agents. RSC Med Chem 2024; 15:937-962. [PMID: 38516586 PMCID: PMC10953490 DOI: 10.1039/d3md00648d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/25/2024] [Indexed: 03/23/2024] Open
Abstract
DNA polymerase β (Polβ) is crucial for the base excision repair (BER) pathway of DNA damage repair and is an attractive target for suppressing tumorigenesis as well as chemotherapeutic intervention of cancer. In this study, a unique strategy of scaffold-hopping-based molecular editing of a bioactive agent NSC-666719 was investigated, which led to the development of new molecular motifs with Polβ inhibitory activity. NSC compound and its analogs (two series) were prepared, focusing on pharmacophore-based molecular diversity. Most compounds showed higher activities than the parent NSC-666719 and exhibited effects on apoptosis. The inhibitory activity of Polβ was evaluated in both in vitro reconstituted and in vivo intact cell systems. Compound 10e demonstrated significant Polβ interaction and inhibition characteristics, including direct, non-covalent, reversible, and comparable binding affinity. The investigated approach is useful, and the discovered novel analogs have a high potential for developing as anticancer therapeutics.
Collapse
Affiliation(s)
- Vajja Krishna Rao
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Sector 67, SAS Nagar Mohali Punjab 160062 India
| | - Subarno Paul
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University Campus-11, Patia Bhubaneswar-751024 Odisha India
| | - Mitchell Gulkis
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida 1200 Newell Drive Gainesville FL 32610 USA
| | - Zhihang Shen
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida 1345 Center Drive Gainesville FL 32610 USA
| | - Haritha Nair
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida 1200 Newell Drive Gainesville FL 32610 USA
| | - Amandeep Singh
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine 500 University Drive Hershey PA 17033 USA
| | - Chenglong Li
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida 1345 Center Drive Gainesville FL 32610 USA
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine 500 University Drive Hershey PA 17033 USA
| | - Melike Çağlayan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida 1200 Newell Drive Gainesville FL 32610 USA
| | - Chinmay Das
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University Campus-11, Patia Bhubaneswar-751024 Odisha India
| | - Biswajit Das
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University Campus-11, Patia Bhubaneswar-751024 Odisha India
| | - Chanakya N Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University Campus-11, Patia Bhubaneswar-751024 Odisha India
| | - Satya Narayan
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida 1200 Newell Drive Gainesville FL 32610 USA
| | - Sankar K Guchhait
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Sector 67, SAS Nagar Mohali Punjab 160062 India
| |
Collapse
|
5
|
Iqbal MJ, Kabeer A, Abbas Z, Siddiqui HA, Calina D, Sharifi-Rad J, Cho WC. Interplay of oxidative stress, cellular communication and signaling pathways in cancer. Cell Commun Signal 2024; 22:7. [PMID: 38167159 PMCID: PMC10763046 DOI: 10.1186/s12964-023-01398-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Cancer remains a significant global public health concern, with increasing incidence and mortality rates worldwide. Oxidative stress, characterized by the production of reactive oxygen species (ROS) within cells, plays a critical role in the development of cancer by affecting genomic stability and signaling pathways within the cellular microenvironment. Elevated levels of ROS disrupt cellular homeostasis and contribute to the loss of normal cellular functions, which are associated with the initiation and progression of various types of cancer. In this review, we have focused on elucidating the downstream signaling pathways that are influenced by oxidative stress and contribute to carcinogenesis. These pathways include p53, Keap1-NRF2, RB1, p21, APC, tumor suppressor genes, and cell type transitions. Dysregulation of these pathways can lead to uncontrolled cell growth, impaired DNA repair mechanisms, and evasion of cell death, all of which are hallmark features of cancer development. Therapeutic strategies aimed at targeting oxidative stress have emerged as a critical area of investigation for molecular biologists. The objective is to limit the response time of various types of cancer, including liver, breast, prostate, ovarian, and lung cancers. By modulating the redox balance and restoring cellular homeostasis, it may be possible to mitigate the damaging effects of oxidative stress and enhance the efficacy of cancer treatments. The development of targeted therapies and interventions that specifically address the impact of oxidative stress on cancer initiation and progression holds great promise in improving patient outcomes. These approaches may include antioxidant-based treatments, redox-modulating agents, and interventions that restore normal cellular function and signaling pathways affected by oxidative stress. In summary, understanding the role of oxidative stress in carcinogenesis and targeting this process through therapeutic interventions are of utmost importance in combating various types of cancer. Further research is needed to unravel the complex mechanisms underlying oxidative stress-related pathways and to develop effective strategies that can be translated into clinical applications for the management and treatment of cancer. Video Abstract.
Collapse
Affiliation(s)
| | - Ayesha Kabeer
- Department of Biotechnology, University of Sialkot, Sialkot, Punjab, Pakistan
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Zaighum Abbas
- Department of Biotechnology, University of Sialkot, Sialkot, Punjab, Pakistan
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong.
| |
Collapse
|
6
|
Genotoxins: The Mechanistic Links between Escherichia coli and Colorectal Cancer. Cancers (Basel) 2023; 15:cancers15041152. [PMID: 36831495 PMCID: PMC9954437 DOI: 10.3390/cancers15041152] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Emerging evidence indicates bacterial infections contribute to the formation of cancers. Bacterial genotoxins are effectors that cause DNA damage by introducing single- and double-strand DNA breaks in the host cells. The first bacterial genotoxin cytolethal distending toxin (CDT) was a protein identified in 1987 in a pathogenic strain in Escherichia coli (E. coli) isolated from a young patient. The peptide-polyketide genotoxin colibactin is produced by the phylogenetic group B2 of E. coli. Recently, a protein produced by attaching/effacing (A/E) pathogens, including enteropathogenic and enterohemorrhagic E. coli (EPEC and EHEC) and their murine equivalent Citrobacter rodentium (CR), has been reported as a novel protein genotoxin, being injected via the type III secretion system (T3SS) into host cells and harboring direct DNA digestion activity with a catalytic histidine-aspartic acid dyad. These E. coli-produced genotoxins impair host DNA, which results in senescence or apoptosis of the target cells if the damage is beyond repair. Conversely, host cells can survive and proliferate if the genotoxin-induced DNA damage is not severe enough to kill them. The surviving cells may accumulate genomic instability and acquire malignant traits. This review presents the cellular responses of infection with the genotoxins-producing E. coli and discusses the current knowledge of the tumorigenic potential of these toxins.
Collapse
|
7
|
Fang X, Svitkina TM. Adenomatous polyposis coli (APC) in cell migration. Eur J Cell Biol 2022; 101:151228. [DOI: 10.1016/j.ejcb.2022.151228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 12/22/2022] Open
|
8
|
Molla S, Chatterjee S, Sethy C, Sinha S, Kundu CN. Olaparib enhances curcumin-mediated apoptosis in oral cancer cells by inducing PARP trapping through modulation of BER and chromatin assembly. DNA Repair (Amst) 2021; 105:103157. [PMID: 34144488 DOI: 10.1016/j.dnarep.2021.103157] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/18/2021] [Accepted: 06/08/2021] [Indexed: 11/26/2022]
Abstract
Apart from inducing catalytic inhibition of PARP-1, PARP inhibitors can also trap PARP proteins at the sites of DNA damage and forming toxic PARP-DNA complexes. These complexes obstruct the DNA repair process, resulting in cancer cell death. To study the detailed mechanism of anti-cancer action through PARP trapping, we have treated oral cancer cells (H-357) with curcumin (Cur), olaparib (Ola) and their combination (Cur + Ola). Cur + Ola treatment triggered the expressions of PARP-1 and adenomatous polyposis coli (APC) and down regulated other base excision repair (BER) proteins in the chromatin fraction but not in the nuclear fraction. Cur + Ola treatment inhibited PARylation, altered interaction of PARP-1 with representative BER proteins and arrested cells in S-phase. We have for the first time provided direct evidence and measured the cellular PARP-1 trapping potentiality of Ola in Cur pretreated H-357 cells. Unchanged cellular PARP-1 trapping, unaltered expression of BER proteins and BER activity were found in APC silenced H-357 cells, which further confirmed that the DNA damage/repair response was APC-dependent. Interestingly, complete abolishment of the chromatin remodeler 'amplified in Liver Cancer 1' (ALC1), decreased expression of Histone H3 and histone acetyltransferase (P300) was noted in chromatin of Cur + Ola treated cells. Their expressions remained unchanged in APC silenced cells. Cur + Ola also altered the interaction of ALC1 with BER proteins including APC. Thus, the present study reveals that Cur + Ola treatment increased oral cancer cell death not only through catalytic inhibition of PARP-1 but also predominantly through PARP-1 trapping and indirect inhibition of chromatin remodeling.
Collapse
Affiliation(s)
- Sefinew Molla
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Subhajit Chatterjee
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Chinmayee Sethy
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Saptarshi Sinha
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to Be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India.
| |
Collapse
|
9
|
Phull MS, Jadav SS, Gundla R, Mainkar PS. A perspective on medicinal chemistry approaches towards adenomatous polyposis coli and Wnt signal based colorectal cancer inhibitors. Eur J Med Chem 2021; 212:113149. [PMID: 33445154 DOI: 10.1016/j.ejmech.2020.113149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the major causes of carcinogenic mortality in numbers only after lung and breast cancers. The mutations in adenomatous polyposis coli (APC) gene leads to formation of colorectal polyps in the colonic region and which develop as a malignant tumour upon coalition with patient related risk factors. The protein-protein interaction (PPI) of APC with Asef (A Rac specific guanine nucleotide exchange factor) overwhelms the patient's conditions by rapidly spreading in the entire colorectal region. Most mutations in APC gene occur in mutated cluster region (MCR), where it specifically binds with the cytosolic β-catenin to regulate the Wnt signalling pathway required for CRC cell adhesion, invasion, progression, differentiation and stemness in initial cell cycle phages. The current broad spectrum perspective is attempted to elaborate the sources of identification, development of selective APC inhibitors by targeting emopamil-binding protein (EBP) & dehydrocholesterol reductase-7 & 24 (DHCR-7 & 24); APC-Asef, β-catenin/APC, Wnt/β-catenin, β-catenin/TCF4 PPI inhibitors with other vital Wnt signal cellular proteins and APC/Pol-β interface of colorectal cancer. In this context, this perspective would serve as a platform for design of new medicinal agents by targeting cellular essential components which could accelerate anti-colorectal potential candidates.
Collapse
Affiliation(s)
- Manjinder Singh Phull
- Department of Chemistry, School of Science, GITAM (Deemed to Be University), Hyderabad, 502329, Telangana, India
| | - Surender Singh Jadav
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, Telangana, India
| | - Rambabu Gundla
- Department of Chemistry, School of Science, GITAM (Deemed to Be University), Hyderabad, 502329, Telangana, India
| | - Prathama S Mainkar
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Utter Pradesh, India.
| |
Collapse
|
10
|
Xu L, Qu JL, Song N, Zhang LY, Zeng X, Che XF, Hou KZ, Shi S, Feng ZY, Qu XJ, Liu YP, Teng YE. Biological and clinical significance of flap endonuclease‑1 in triple‑negative breast cancer: Support of metastasis and a poor prognosis. Oncol Rep 2020; 44:2443-2454. [PMID: 33125141 PMCID: PMC7610327 DOI: 10.3892/or.2020.7812] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022] Open
Abstract
Flap endonuclease‑1 (FEN1), a structure‑specific nuclease participating in DNA replication and repair processes, has been confirmed to promote the proliferation and drug resistance of tumor cells. However, the biological functions of FEN1 in cancer cell migration and invasion have not been defined. In the present study, using online database analysis and immunohistochemistry of the specimens, it was found that FEN1 expression was associated with a highly invasive triple‑negative breast cancer (TNBC) subtype in both breast cancer samples from the Oncomine database and from patients recruited into the study. Furthermore, FEN1 was an important biomarker of lymph node metastasis and poor prognosis in patients with TNBC. FEN1 promoted migration of TNBC cell lines and FEN1 knockdown reduced the number of spontaneous lung metastasis in vivo. Ingenuity Pathway Analysis of FEN1‑related transcripts in 198 patients with TNBC demonstrated that the polo‑like kinase family may be the downstream target of FEN1. PLK4 was further identified as a critical target of FEN1 mediating TNBC cell migration, by regulating actin cytoskeleton rearrangement. The results of the present study validate FEN1 as a therapeutic target in patients with TNBC and revealed a new role for FEN1 in regulating TNBC invasion and metastasis.
Collapse
Affiliation(s)
- Lu Xu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jing-Lei Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Na Song
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ling-Yun Zhang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xue Zeng
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xiao-Fang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Ke-Zuo Hou
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Sha Shi
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zu-Ying Feng
- Boz Life Science Research and Teaching Institute, San Diego, CA 92109, USA
| | - Xiu-Juan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yun-Peng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yue-E Teng
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
11
|
The Developing Story of Predictive Biomarkers in Colorectal Cancer. J Pers Med 2019; 9:jpm9010012. [PMID: 30736475 PMCID: PMC6463186 DOI: 10.3390/jpm9010012] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/28/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common malignancy worldwide. Surgery remains the most important treatment for non-metastatic CRC, and the administration of adjuvant chemotherapy depends mainly on the disease stage, which is still the strongest prognostic factor. A refined understanding of the genomics of CRC has recently been achieved thanks to the widespread use of next generation sequencing with potential future therapeutic implications. Microsatellite instability (MSI) has been suggested as a predictive marker for response to anti-programmed-cell-death protein 1 (PD-1) therapy in solid tumors, including CRC. It should be noted that not all cancers with MSI phenotype respond to anti-PD-1 immunotherapy, highlighting the urgent need for even better predictive biomarkers. Mitogen-Activated Protein Kinase (MAPK) pathway genes KRAS, NRAS, and BRAF represent important molecular targets and could serve as independent prognostic biomarkers in CRC, and identify those who potentially benefit from anti-epidermal growth factor receptor (EGFR) treatment. Emerging evidence has attributed a significant role to inflammatory markers including blood cell ratios in the prognosis and survival of CRC patients; these biomarkers can be easily assessed in routine blood exams and be used to identify high-risk patients or those more likely to benefit from chemotherapy, targeted therapies and potentially immunotherapy. Analysis of cell-free DNA (cfDNA), circulating tumor cells (CTC) and/or micro RNAs (miRNAs) could provide useful information for the early diagnosis of CRC, the identification of minimal residual disease and, the evaluation of the risk of recurrence in early CRC patients. Even the selection of patients suitable for the new targeted therapy is becoming possible with the use of predictive miRNA biomarkers. Finally, the development of treatment resistance with the emergence of chemo-resistance clones after treatment remains the most important challenge in the clinical practice. In this context it is crucial to identify potential biomarkers and therapeutic targets which could lead to development of new and more effective treatments.
Collapse
|
12
|
Aghabozorgi AS, Bahreyni A, Soleimani A, Bahrami A, Khazaei M, Ferns GA, Avan A, Hassanian SM. Role of adenomatous polyposis coli (APC) gene mutations in the pathogenesis of colorectal cancer; current status and perspectives. Biochimie 2018; 157:64-71. [PMID: 30414835 DOI: 10.1016/j.biochi.2018.11.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 11/04/2018] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the most common forms of solid tumors in the world with high rates of mortality and morbidity. Most cases of CRCs are initiated by inactivating mutations in a tumor suppressor gene, adenomatous polyposis coli (APC), leading to constitutive activation of the Wnt signaling pathway. This review summarizes the roles of somatic and germline mutations of the APC gene in hereditary as well as sporadic forms of CRC. We also discuss the diagnostic and prognostic value of the APC gene in the pathogenesis of CRC for a better understanding of CRC disease.
Collapse
Affiliation(s)
- Amirsaeed Sabeti Aghabozorgi
- Department of Human Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amirhossein Bahreyni
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atena Soleimani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Majid Khazaei
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Zhu GD, Liu F, OuYang S, Zhou R, Jiang FN, Zhang B, Liao WJ. BACH1 promotes the progression of human colorectal cancer through BACH1/CXCR4 pathway. Biochem Biophys Res Commun 2018; 499:120-127. [DOI: 10.1016/j.bbrc.2018.02.178] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 02/23/2018] [Indexed: 02/08/2023]
|
14
|
Zarkavelis G, Boussios S, Papadaki A, Katsanos KH, Christodoulou DK, Pentheroudakis G. Current and future biomarkers in colorectal cancer. Ann Gastroenterol 2017; 30:613-621. [PMID: 29118555 PMCID: PMC5670280 DOI: 10.20524/aog.2017.0191] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/24/2017] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC), one of the leading causes of death among cancer patients, is a heterogeneous disease and is characterized by diversions in multiple molecular pathways throughout its evolutionary process. To date, specific mutations in RAS and RAF genes are tested in everyday clinical practice along with mismatch repair gene deficiency, serving either as prognostic or predictive biomarkers, providing information for patient risk stratification and the choice of appropriate therapy. However, ongoing studies are focusing on the potential role of recently discovered genetic and epigenetic alterations in the management of CRC patients and their potential prognostic or predictive value. To overcome the problem of tumor heterogeneity as well as the practical obstacles of access to tumor tissue, and to achieve real-time monitoring of disease and therapy efficacy, liquid biopsies constitute a novel technology worth exploring. CRC screening and management is entering a new era where molecular testing will be applied to genomic material extracted from easily accessible bodily fluids.
Collapse
Affiliation(s)
- George Zarkavelis
- Department of Medical Oncology, Medical School, University of Ioannina (George Zarkavelis, Stergios Boussios, Alexandra Papadaki, George Pentheroudakis), Greece.,Society for Study of the Clonal Heterogeneity of Neoplasia, Ioannina, Greece (George Zarkavelis, Stergios Boussios, Alexandra Papadaki, George Pentheroudakis), Greece
| | - Stergios Boussios
- Department of Medical Oncology, Medical School, University of Ioannina (George Zarkavelis, Stergios Boussios, Alexandra Papadaki, George Pentheroudakis), Greece.,Society for Study of the Clonal Heterogeneity of Neoplasia, Ioannina, Greece (George Zarkavelis, Stergios Boussios, Alexandra Papadaki, George Pentheroudakis), Greece
| | - Alexandra Papadaki
- Department of Medical Oncology, Medical School, University of Ioannina (George Zarkavelis, Stergios Boussios, Alexandra Papadaki, George Pentheroudakis), Greece.,Society for Study of the Clonal Heterogeneity of Neoplasia, Ioannina, Greece (George Zarkavelis, Stergios Boussios, Alexandra Papadaki, George Pentheroudakis), Greece
| | - Konstantinos H Katsanos
- Department of Gastroenterology, University Hospital of Ioannina, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina (Konstantinos H. Katsanos, Dimitrios K. Christodoulou), Greece
| | - Dimitrios K Christodoulou
- Department of Gastroenterology, University Hospital of Ioannina, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina (Konstantinos H. Katsanos, Dimitrios K. Christodoulou), Greece
| | - George Pentheroudakis
- Department of Medical Oncology, Medical School, University of Ioannina (George Zarkavelis, Stergios Boussios, Alexandra Papadaki, George Pentheroudakis), Greece.,Society for Study of the Clonal Heterogeneity of Neoplasia, Ioannina, Greece (George Zarkavelis, Stergios Boussios, Alexandra Papadaki, George Pentheroudakis), Greece
| |
Collapse
|
15
|
Serebryannyy LA, Yemelyanov A, Gottardi CJ, de Lanerolle P. Nuclear α-catenin mediates the DNA damage response via β-catenin and nuclear actin. J Cell Sci 2017; 130:1717-1729. [PMID: 28348105 DOI: 10.1242/jcs.199893] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/20/2017] [Indexed: 12/29/2022] Open
Abstract
α-Catenin is an F-actin-binding protein widely recognized for its role in cell-cell adhesion. However, a growing body of literature indicates that α-catenin is also a nuclear protein. In this study, we show that α-catenin is able to modulate the sensitivity of cells to DNA damage and toxicity. Furthermore, nuclear α-catenin is actively recruited to sites of DNA damage. This recruitment occurs in a β-catenin-dependent manner and requires nuclear actin polymerization. These findings provide mechanistic insight into the WNT-mediated regulation of the DNA damage response and suggest a novel role for the α-catenin-β-catenin complex in the nucleus.
Collapse
Affiliation(s)
- Leonid A Serebryannyy
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Alex Yemelyanov
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Cara J Gottardi
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Primal de Lanerolle
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
16
|
Hsu CW, Sowers ML, Hsu W, Eyzaguirre E, Qiu S, Chao C, Mouton CP, Fofanov Y, Singh P, Sowers LC. How does inflammation drive mutagenesis in colorectal cancer? TRENDS IN CANCER RESEARCH 2017; 12:111-132. [PMID: 30147278 PMCID: PMC6107301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Colorectal cancer (CRC) is a major health challenge worldwide. Factors thought to be important in CRC etiology include diet, microbiome, exercise, obesity, a history of colon inflammation and family history. Interventions, including the use of non-steroidal anti-Inflammatory drugs (NSAIDs) and anti-inflammatory agents, have been shown to decrease incidence in some settings. However, our current understanding of the mechanistic details that drive CRC are insufficient to sort out the complex and interacting factors responsible for cancer-initiating events. It has been known for some time that the development of CRC involves mutations in key genes such as p53 and APC, and the sequence in which these mutations occur can determine tumor presentation. Observed recurrent mutations are dominated by C to T transitions at CpG sites, implicating the deamination of 5-methylcytosine (5mC) as a key initiating event in cancer-driving mutations. While it has been widely assumed that inflammation-mediated oxidation drives mutations in CRC, oxidative damage to DNA induces primarily G to T transversions, not C to T transitions. In this review, we discuss this unresolved conundrum, and specifically, we elucidate how the known nucleotide excision repair (NER) and base excision repair (BER) pathways, which are partially redundant and potentially competing, might provide a critical link between oxidative DNA damage and C to T mutations. Studies using recently developed next-generation DNA sequencing technologies have revealed the genetic heterogeneity in human tissues including tumors, as well as the presence of DNA damage. The capacity to follow DNA damage, repair and mutagenesis in human tissues using these emerging technologies could provide a mechanistic basis for understanding the role of oxidative damage in CRC tumor initiation. The application of these technologies could identify mechanism-based biomarkers useful in earlier diagnosis and aid in the development of cancer prevention strategies.
Collapse
Affiliation(s)
- Chia Wei Hsu
- MD/PhD program, University of Texas Medical Branch, Galveston, Texas
| | - Mark L Sowers
- MD/PhD program, University of Texas Medical Branch, Galveston, Texas
| | - Willie Hsu
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas
| | - Eduardo Eyzaguirre
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Suimin Qiu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Celia Chao
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Charles P Mouton
- Department of Family Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Yuri Fofanov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas
- Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, Texas
| | - Pomila Singh
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas
| | - Lawrence C Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas
- Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, Texas
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
17
|
Interaction between APC and Fen1 during breast carcinogenesis. DNA Repair (Amst) 2016; 41:54-62. [PMID: 27088617 DOI: 10.1016/j.dnarep.2016.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 02/07/2023]
Abstract
Aberrant DNA base excision repair (BER) contributes to malignant transformation. However, inter-individual variations in DNA repair capacity plays a key role in modifying breast cancer risk. We review here emerging evidence that two proteins involved in BER - adenomatous polyposis coli (APC) and flap endonuclease 1 (Fen1) - promote the development of breast cancer through novel mechanisms. APC and Fen1 expression and interaction is increased in breast tumors versus normal cells, APC interacts with and blocks Fen1 activity in Pol-β-directed LP-BER, and abrogation of LP-BER is linked with cigarette smoke condensate-induced transformation of normal breast epithelial cells. Carcinogens increase expression of APC and Fen1 in spontaneously immortalized human breast epithelial cells, human colon cancer cells, and mouse embryonic fibroblasts. Since APC and Fen1 are tumor suppressors, an increase in their levels could protect against carcinogenesis; however, this does not seem to be the case. Elevated Fen1 levels in breast and lung cancer cells may reflect the enhanced proliferation of cancer cells or increased DNA damage in cancer cells compared to normal cells. Inactivation of the tumor suppressor functions of APC and Fen1 is due to their interaction, which may act as a susceptibility factor for breast cancer. The increased interaction of APC and Fen1 may occur due to polypmorphic and/or mutational variation in these genes. Screening of APC and Fen1 polymorphic and/or mutational variations and APC/Fen1 interaction may permit assessment of individual DNA repair capability and the risk for breast cancer development. Such individuals might lower their breast cancer risk by reducing exposure to carcinogens. Stratifying individuals according to susceptibility would greatly assist epidemiologic studies of the impact of suspected environmental carcinogens. Additionally, a mechanistic understanding of the interaction of APC and Fen1 may provide the basis for developing new and effective targeted chemopreventive and chemotherapeutic agents.
Collapse
|
18
|
Graillot V, Dormoy I, Dupuy J, Shay JW, Huc L, Mirey G, Vignard J. Genotoxicity of Cytolethal Distending Toxin (CDT) on Isogenic Human Colorectal Cell Lines: Potential Promoting Effects for Colorectal Carcinogenesis. Front Cell Infect Microbiol 2016; 6:34. [PMID: 27047802 PMCID: PMC4803749 DOI: 10.3389/fcimb.2016.00034] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/07/2016] [Indexed: 02/06/2023] Open
Abstract
The composition of the human microbiota influences tumorigenesis, notably in colorectal cancer (CRC). Pathogenic Escherichia coli possesses a variety of virulent factors, among them the Cytolethal Distending Toxin (CDT). CDT displays dual DNase and phosphatase activities and induces DNA double strand breaks, cell cycle arrest and apoptosis in a broad range of mammalian cells. As CDT could promote malignant transformation, we investigated the cellular outcomes induced by acute and chronic exposures to E. coli CDT in normal human colon epithelial cells (HCECs). Moreover, we conducted a comparative study between isogenic derivatives cell lines of the normal HCECs in order to mimic the mutation of three major genes found in CRC genetic models: APC, KRAS, and TP53. Our results demonstrate that APC and p53 deficient cells showed impaired DNA damage response after CDT exposure, whereas HCECs expressing oncogenic KRASV12 were more resistant to CDT. Compared to normal HCECs, the precancerous derivatives exhibit hallmarks of malignant transformation after a chronic exposure to CDT. HCECs defective in APC and p53 showed enhanced anchorage independent growth and genetic instability, assessed by the micronucleus formation assay. In contrast, the ability to grow independently of anchorage was not impacted by CDT chronic exposure in KRASV12 HCECs, but micronucleus formation is dramatically increased. Thus, CDT does not initiate CRC by itself, but may have promoting effects in premalignant HCECs, involving different mechanisms in function of the genetic alterations associated to CRC.
Collapse
Affiliation(s)
- Vanessa Graillot
- Institut National de la Recherche Agronomique UMR 1331, TOXALIM (Research Center in Food Toxicology), Université de Toulouse, INRA, INP-ENVT, INP-EI-Purpan, Université de Toulouse III Paul Sabatier Toulouse, France
| | - Inge Dormoy
- Institut National de la Recherche Agronomique UMR 1331, TOXALIM (Research Center in Food Toxicology), Université de Toulouse, INRA, INP-ENVT, INP-EI-Purpan, Université de Toulouse III Paul Sabatier Toulouse, France
| | - Jacques Dupuy
- Institut National de la Recherche Agronomique UMR 1331, TOXALIM (Research Center in Food Toxicology), Université de Toulouse, INRA, INP-ENVT, INP-EI-Purpan, Université de Toulouse III Paul Sabatier Toulouse, France
| | - Jerry W Shay
- Department of Cell Biology, The University of Texas Southwestern Medical CenterDallas, TX, USA; Center for Excellence in Genomics Medicine Research, King Abdulaziz UniversityJeddah, Saudi Arabia
| | - Laurence Huc
- Institut National de la Recherche Agronomique UMR 1331, TOXALIM (Research Center in Food Toxicology), Université de Toulouse, INRA, INP-ENVT, INP-EI-Purpan, Université de Toulouse III Paul Sabatier Toulouse, France
| | - Gladys Mirey
- Institut National de la Recherche Agronomique UMR 1331, TOXALIM (Research Center in Food Toxicology), Université de Toulouse, INRA, INP-ENVT, INP-EI-Purpan, Université de Toulouse III Paul Sabatier Toulouse, France
| | - Julien Vignard
- Institut National de la Recherche Agronomique UMR 1331, TOXALIM (Research Center in Food Toxicology), Université de Toulouse, INRA, INP-ENVT, INP-EI-Purpan, Université de Toulouse III Paul Sabatier Toulouse, France
| |
Collapse
|