1
|
Juang YP, Tsai JY, Gu WL, Hsu HC, Lin CL, Wu CC, Liang PH. Discovery of 5-Hydroxy-1,4-naphthoquinone (Juglone) Derivatives as Dual Effective Agents Targeting Platelet-Cancer Interplay through Protein Disulfide Isomerase Inhibition. J Med Chem 2024; 67:3626-3642. [PMID: 38381886 PMCID: PMC10945480 DOI: 10.1021/acs.jmedchem.3c02107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/23/2024]
Abstract
In this study, a series of 2- and/or 3-substituted juglone derivatives were designed and synthesized. Among them, 9, 18, 22, 30, and 31 showed stronger inhibition activity against cell surface PDI or recombinant PDI and higher inhibitory effects on U46619- and/or collagen-induced platelet aggregation than juglone. The glycosylated derivatives 18 and 22 showed improved selectivity for inhibiting the proliferation of multiple myeloma RPMI 8226 cells, and the IC50 values reached 61 and 48 nM, respectively, in a 72 h cell viability test. In addition, 18 and 22 were able to prevent tumor cell-induced platelet aggregation and platelet-enhanced tumor cell proliferation. The molecular docking showed the amino acid residues Gln243, Phe440, and Leu443 are important for the compound-protein interaction. Our results reveal the potential of juglone derivatives to serve as novel antiplatelet and anticancer dual agents, which are available to interrupt platelet-cancer interplay through covalent binding to PDI catalytic active site.
Collapse
Affiliation(s)
- Yu-Pu Juang
- School
of Pharmacy, College of Medicine, National
Taiwan University, Taipei 100, Taiwan
| | - Ju-Ying Tsai
- Graduate
Institute of Natural Product, Kaohsiung
Medical University, Kaohsiung 807, Taiwan
| | - Wan-Lan Gu
- School
of Pharmacy, College of Medicine, National
Taiwan University, Taipei 100, Taiwan
| | - Hui-Ching Hsu
- Graduate
Institute of Natural Product, Kaohsiung
Medical University, Kaohsiung 807, Taiwan
| | - Chao-Lung Lin
- School
of Pharmacy, College of Medicine, National
Taiwan University, Taipei 100, Taiwan
| | - Chin-Chung Wu
- Graduate
Institute of Natural Product, Kaohsiung
Medical University, Kaohsiung 807, Taiwan
| | - Pi-Hui Liang
- School
of Pharmacy, College of Medicine, National
Taiwan University, Taipei 100, Taiwan
- The
Genomics Research Center, Academia Sinica, Taipei 128, Taiwan
| |
Collapse
|
2
|
Hsieh KY, Wei CK, Wu CC. YC-1 Prevents Tumor-Associated Tissue Factor Expression and Procoagulant Activity in Hypoxic Conditions by Inhibiting p38/NF-κB Signaling Pathway. Int J Mol Sci 2019; 20:ijms20020244. [PMID: 30634531 PMCID: PMC6359014 DOI: 10.3390/ijms20020244] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 12/31/2022] Open
Abstract
Tissue factor (TF) expressed in cancer cells has been linked to tumor-associated thrombosis, a major cause of mortality in malignancy. Hypoxia is a common feature of solid tumors and can upregulate TF. In this study, the effect of YC-1, a putative inhibitor of hypoxia-inducible factor-1α (HIF-1α), on hypoxia-induced TF expression was investigated in human lung cancer A549 cells. YC-1 selectively prevented hypoxia-induced TF expression and procoagulant activity without affecting the basal TF levels. Surprisingly, knockdown or pharmacological inhibition of HIF-1α failed to mimic YC-1′s effect on TF expression, suggesting other mechanisms are involved. NF-κB, a transcription factor for TF, and its upstream regulator p38, were activated by hypoxia exposure. Treatment of hypoxic A549 cells with YC-1 prevented the activation of both NF-κB and p38. Inhibition of p38 suppressed hypoxia-activated NF-κB, and inhibited TF expression and activity to similar levels as treatment with an NF-κB inhibitor. Furthermore, stimulation of p38 by anisomycin reversed the effects of YC-1. Taken together, our results suggest that YC-1 prevents hypoxia-induced TF in cancer cells by inhibiting the p38/NF-κB pathway, this is distinct from the conventional anticoagulants that systemically inhibit blood coagulation and may shed new light on approaches to treat tumor-associated thrombosis.
Collapse
Affiliation(s)
- Kan-Yen Hsieh
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Chien-Kei Wei
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Chin-Chung Wu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Research Center for Natural Product and Drug Development, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| |
Collapse
|
3
|
Jitariu AA, Raica M, Cîmpean AM, Suciu SC. The role of PDGF-B/PDGFR-BETA axis in the normal development and carcinogenesis of the breast. Crit Rev Oncol Hematol 2018; 131:46-52. [PMID: 30293705 DOI: 10.1016/j.critrevonc.2018.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 07/10/2018] [Accepted: 08/22/2018] [Indexed: 12/25/2022] Open
Abstract
PDGFs/PDGFRs axis is documented as an important tumor-promoting agent and potential therapeutic target for several human carcinomas, including breast cancer. However, little is known about the role played by the PDGF family members in the normal development of the breast tissue, breast carcinogenesis and tumor-microenvironment dynamics Despite its potent pro-lymphangiogenic effects, PDGF-B/PDGFR-beta axis remains controversial and incompletely elucidated in the field of breast cancer, with emphasis to its differential implications in breast cancer molecular subtypes. Although some data are available concerning this aspect, little or no information is found regarding the role of the PDGF-B/PDGFR-beta axis in rare and aggressive types of breast cancers, such as triple negative breast cancers (TNBCs) and its associated subtypes This review attempted to gather as many data as possible concerning PDGFs family members in the normal breast tissue and in breast carcinogenesis with special focus on their role in diagnosis and therapeutic approach.
Collapse
Affiliation(s)
- Adriana-Andreea Jitariu
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babeș University of Medicine and Pharmacy, Timișoara, Romania
| | - Marius Raica
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babeș University of Medicine and Pharmacy, Timișoara, Romania
| | - Anca Maria Cîmpean
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babeș University of Medicine and Pharmacy, Timișoara, Romania.
| | - Silviu Cristian Suciu
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, Victor Babeș University of Medicine and Pharmacy, Timișoara, Romania
| |
Collapse
|
4
|
Molecular mechanisms of platelet activation and aggregation induced by breast cancer cells. Cell Signal 2018; 48:45-53. [PMID: 29705335 DOI: 10.1016/j.cellsig.2018.04.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/24/2018] [Accepted: 04/25/2018] [Indexed: 12/23/2022]
Abstract
Tumor cell-induced platelet aggregation represents a critical process both for successful metastatic spread of the tumor and for the development of thrombotic complications in cancer patients. To get further insights into this process, we investigated and compared the molecular mechanisms of platelet aggregation induced by two different breast cancer cell lines (MDA-MB-231 and MCF7) and a colorectal cancer cell line (Caco-2). All the three types of cancer cells were able to induce comparable platelet aggregation, which, however, was observed exclusively in the presence of CaCl2 and autologous plasma. Aggregation was supported both by fibrinogen binding to integrin αIIbβ3 as well as by fibrin formation, and was completely prevented by the serine protease inhibitor PPACK. Platelet aggregation was preceded by generation of low amounts of thrombin, possibly through tumor cells-expressed tissue factor, and was supported by platelet activation, as revealed by stimulation of phospholipase C, intracellular Ca2+ increase and activation of Rap1b GTPase. Pharmacological inhibition of phospholipase C, but not of phosphatidylinositol 3-kinase or Src family kinases prevented tumor cell-induced platelet aggregation. Tumor cells also induced dense granule secretion, and the stimulation of the P2Y12 receptor by released ADP was found to be necessary for complete platelet aggregation. By contrast, prevention of thromboxane A2 synthesis by aspirin did not alter the ability of all the cancer cell lines analyzed to induce platelet aggregation. These results indicate that tumor cell-induced platelet aggregation is not related to the type of the cancer cells or to their metastatic potential, and is triggered by platelet activation and secretion driven by the generation of small amount of thrombin from plasma and supported by the positive feedback signaling through secreted ADP.
Collapse
|
5
|
Wojtukiewicz MZ, Hempel D, Sierko E, Tucker SC, Honn KV. Antiplatelet agents for cancer treatment: a real perspective or just an echo from the past? Cancer Metastasis Rev 2018; 36:305-329. [PMID: 28752248 PMCID: PMC5557869 DOI: 10.1007/s10555-017-9683-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The association between coagulation and cancer development has been observed for centuries. However, the connection between inflammation and malignancy is also well-recognized. The plethora of evidence indicates that among multiple hemostasis components, platelets play major roles in cancer progression by providing surface and granular contents for several interactions as well as behaving like immune cells. Therefore, the anticancer potential of anti-platelet therapy has been intensively investigated for many years. Anti-platelet agents may prevent cancer, decrease tumor growth, and metastatic potential, as well as improve survival of cancer patients. On the other hand, there are suggestions that antiplatelet treatment may promote solid tumor development in a phenomenon described as "cancers follow bleeding." The controversies around antiplatelet agents justify insight into the subject to establish what, if any, role platelet-directed therapy has in the continuum of anticancer management.
Collapse
Affiliation(s)
- Marek Z Wojtukiewicz
- Department of Oncology, Medical University of Bialystok, 12 Ogrodowa St., 15-025, Bialystok, Poland.
| | - Dominika Hempel
- Department of Radiotherapy, Comprehensive Cancer Center in Bialystok, Bialystok, Poland
| | - Ewa Sierko
- Department of Clinical Oncology, Comprehensive Cancer Center in Bialystok, Bialystok, Poland
| | - Stephanie C Tucker
- Department of Pathology-School of Medicine, Bioactive Lipids Research Program, Detroit, MI, 48202, USA
| | - Kenneth V Honn
- Department of Pathology-School of Medicine, Bioactive Lipids Research Program, Detroit, MI, 48202, USA.,Departments of Chemistry, Wayne State University, Detroit, MI, 48202, USA.,Department of Oncology, Karmanos Cancer Institute, Detroit, MI, 48202, USA
| |
Collapse
|
6
|
Chang YW, Tseng CP, Lee CH, Hwang TL, Chen YL, Su MT, Chong KY, Lan YW, Wu CC, Chen KJ, Lu FH, Liao HR, Hsueh C, Hsieh PW. β-Nitrostyrene derivatives attenuate LPS-mediated acute lung injury via the inhibition of neutrophil-platelet interactions and NET release. Am J Physiol Lung Cell Mol Physiol 2018; 314:L654-L669. [PMID: 29351433 DOI: 10.1152/ajplung.00501.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS) are high-mortality and life-threatening diseases that are associated with neutrophil activation and accumulation within lung tissue. Emerging evidence indicates that neutrophil-platelet aggregates (NPAs) at sites of injury increase acute inflammation and contribute to the development of ALI. Although numerous studies have increased our understanding of the pathophysiology of ALI, there is still a lack of innovative and useful treatments that reduce mortality, emphasizing that there is an urgent need for novel treatment strategies. In this study, a new series of small compounds of β-nitrostyrene derivatives (BNSDs) were synthesized, and their anti-inflammatory bioactivities on neutrophils and platelets were evaluated. The new small compound C7 modulates neutrophil function by inhibiting superoxide generation and elastase release. Compound C7 elicits protective effects on LPS-induced paw edema and acute lung injury via the inhibition of neutrophil accumulation, proinflammatory mediator release, platelet aggregation, myeloperoxidase activity, and neutrophil extracellular trap (NET) release. NET formation was identified as the bridge for the critical interactions between neutrophils and platelets by confocal microscopy and flow cytometry. This research provides new insights for elucidating the complicated regulation of neutrophils and platelets in ALI and sheds further light on future drug development strategies for ALI/ARDS and acute inflammatory diseases.
Collapse
Affiliation(s)
- Yao-Wen Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,Graduate Institute of Natural Products, College of Medicine, and Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University , Taoyuan , Taiwan
| | - Ching-Ping Tseng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,Molecular Medicine Research Center, Chang Gung University , Taoyuan , Taiwan.,Department of Laboratory Medicine, Chang Gung Memorial Hospital , Taoyuan , Taiwan
| | - Chih-Hsun Lee
- Graduate Institute of Natural Products, College of Medicine, and Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University , Taoyuan , Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,Graduate Institute of Natural Products, College of Medicine, and Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University , Taoyuan , Taiwan.,Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology , Taoyuan , Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital , Linkou , Taiwan
| | - Yu-Li Chen
- Graduate Institute of Natural Products, College of Medicine, and Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University , Taoyuan , Taiwan
| | - Mei-Tzu Su
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University , Taipei , Taiwan
| | - Kowit-Yu Chong
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,Department of Thoracic Medicine, Chang Gung Memorial Hospital at Linkou , Taoyuan , Taiwan
| | - Ying-Wei Lan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan
| | - Chin-Chung Wu
- Graduate Institute of Natural Products, Kaohsiung Medical University , Kaohsiung , Taiwan
| | - Kung-Ju Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,Graduate Institute of Natural Products, College of Medicine, and Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University , Taoyuan , Taiwan
| | - Fen-Hua Lu
- Graduate Institute of Natural Products, College of Medicine, and Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University , Taoyuan , Taiwan
| | - Hsiang-Ruei Liao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,Graduate Institute of Natural Products, College of Medicine, and Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University , Taoyuan , Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital , Linkou , Taiwan
| | - Chuen Hsueh
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,Molecular Medicine Research Center, Chang Gung University , Taoyuan , Taiwan.,Department of Pathology, Chang Gung Memorial Hospital, Linkou, Taoyuan , Taiwan
| | - Pei-Wen Hsieh
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University , Taoyuan , Taiwan.,Graduate Institute of Natural Products, College of Medicine, and Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University , Taoyuan , Taiwan.,Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology , Taoyuan , Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital , Linkou , Taiwan
| |
Collapse
|
7
|
Korinek M, Tsai YH, El-Shazly M, Lai KH, Backlund A, Wu SF, Lai WC, Wu TY, Chen SL, Wu YC, Cheng YB, Hwang TL, Chen BH, Chang FR. Anti-allergic Hydroxy Fatty Acids from Typhonium blumei Explored through ChemGPS-NP. Front Pharmacol 2017; 8:356. [PMID: 28674495 PMCID: PMC5474496 DOI: 10.3389/fphar.2017.00356] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/24/2017] [Indexed: 12/14/2022] Open
Abstract
Increasing prevalence of allergic diseases with an inadequate variety of treatment drives forward search for new alternative drugs. Fatty acids, abundant in nature, are regarded as important bioactive compounds and powerful nutrients playing an important role in lipid homeostasis and inflammation. Phytochemical study on Typhonium blumei Nicolson and Sivadasan (Araceae), a folk anti-cancer and anti-inflammatory medicine, yielded four oxygenated fatty acids, 12R-hydroxyoctadec-9Z,13E-dienoic acid methyl ester (1) and 10R-hydroxyoctadec-8E,12Z-dienoic acid methyl ester (2), 9R-hydroxy-10E-octadecenoic acid methyl ester (3), and 12R*-hydroxy-10E-octadecenoic acid methyl ester (4). Isolated compounds were identified by spectroscopic methods along with GC-MS analysis. Isolated fatty acids together with a series of saturated, unsaturated and oxygenated fatty acids were evaluated for their anti-inflammatory and anti-allergic activities in vitro. Unsaturated (including docosahexaenoic and eicosapentaenoic acids) as well as hydroxylated unsaturated fatty acids exerted strong anti-inflammatory activity in superoxide anion generation (IC50 2.14-3.73 μM) and elastase release (IC50 1.26-4.57 μM) assays. On the other hand, in the anti-allergic assays, the unsaturated fatty acids were inactive, while hydroxylated fatty acids showed promising inhibitory activity in A23187- and antigen-induced degranulation assays (e.g., 9S-hydroxy-10E,12Z-octadecadienoic acid, IC50 92.4 and 49.7 μM, respectively). According to our results, the presence of a hydroxy group in the long chain did not influence the potent anti-inflammatory activity of free unsaturated acids. Nevertheless, hydroxylation of fatty acids (or their methyl esters) seems to be a key factor for the anti-allergic activity observed in the current study. Moreover, ChemGPS-NP was explored to predict the structure-activity relationship of fatty acids. The anti-allergic fatty acids formed different cluster distant from clinically used drugs. The bioactivity of T. blumei, which is historically utilized in folk medicine, might be related to the content of fatty acids and their metabolites.
Collapse
Affiliation(s)
- Michal Korinek
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical UniversityKaohsiung, Taiwan.,Department of Biotechnology, College of Life Science, Kaohsiung Medical UniversityKaohsiung, Taiwan
| | - Yi-Hong Tsai
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical UniversityKaohsiung, Taiwan
| | - Mohamed El-Shazly
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical UniversityKaohsiung, Taiwan.,Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams UniversityCairo, Egypt
| | - Kuei-Hung Lai
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical UniversityKaohsiung, Taiwan.,Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala UniversityUppsala, Sweden
| | - Anders Backlund
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala UniversityUppsala, Sweden
| | - Shou-Fang Wu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical UniversityKaohsiung, Taiwan.,Natural Resource Development Institute of Pharmaceutics, Development Center for BiotechnologyNew Taipei City, Taiwan
| | - Wan-Chun Lai
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical UniversityKaohsiung, Taiwan
| | - Tung-Ying Wu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical UniversityKaohsiung, Taiwan
| | - Shu-Li Chen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical UniversityKaohsiung, Taiwan
| | - Yang-Chang Wu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical UniversityKaohsiung, Taiwan.,Research Center for Natural Products and Drug Development, Kaohsiung Medical UniversityKaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University HospitalKaohsiung, Taiwan
| | - Yuan-Bin Cheng
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical UniversityKaohsiung, Taiwan.,Research Center for Natural Products and Drug Development, Kaohsiung Medical UniversityKaohsiung, Taiwan.,Center for Infectious Disease and Cancer Research, Kaohsiung Medical UniversityKaohsiung, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung UniversityTaoyuan, Taiwan.,Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and TechnologyTaoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial HospitalTaoyuan, Taiwan
| | - Bing-Hung Chen
- Department of Biotechnology, College of Life Science, Kaohsiung Medical UniversityKaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University HospitalKaohsiung, Taiwan.,The Institute of Biomedical Sciences, National Sun Yat-sen UniversityKaohsiung, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical UniversityKaohsiung, Taiwan.,Center for Infectious Disease and Cancer Research, Kaohsiung Medical UniversityKaohsiung, Taiwan.,Department of Marine Biotechnology and Resources, National Sun Yat-sen UniversityKaohsiung, Taiwan.,Research Center for Environmental Medicine, Kaohsiung Medical UniversityKaohsiung, Taiwan.,Cancer Center, Kaohsiung Medical University HospitalKaohsiung, Taiwan
| |
Collapse
|
8
|
Kung PH, Hsieh PW, Lin YT, Lee JH, Chen IH, Wu CC. HPW-RX40 prevents human platelet activation by attenuating cell surface protein disulfide isomerases. Redox Biol 2017; 13:266-277. [PMID: 28600983 PMCID: PMC5466588 DOI: 10.1016/j.redox.2017.05.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 01/01/2023] Open
Abstract
Protein disulfide isomerase (PDI) present at platelet surfaces has been considered to play an important role in the conformational change and activation of the integrin glycoprotein IIb/IIIa (GPIIb/IIIa) and thus enhances platelet aggregation. Growing evidences indicated that platelet surface PDI may serve as a potential target for developing of a new class of antithrombotic agents. In the present study, we investigated the effects of HPW-RX40, a chemical derivative of β-nitrostyrene, on platelet activation and PDI activity. HPW-RX40 inhibited platelet aggregation, GPIIb/IIIa activation, and P-selectin expression in human platelets. Moreover, HPW-RX40 reduced thrombus formation in human whole blood under flow conditions, and protects mice from FeCl3-induced carotid artery occlusion. HPW-RX40 inhibited the activity of recombinant PDI family proteins (PDI, ERp57, and ERp5) as well as suppressed cell surface PDI activity of platelets in a reversible manner. Exogenous addition of PDI attenuated the inhibitory effect of HPW-RX40 on GPIIb/IIIa activation. Structure-based molecular docking simulations indicated that HPW-RX40 binds to the active site of PDI by forming hydrogen bonds. In addition, HPW-RX40 neither affected the cell viability nor induced endoplasmic reticulum stress in human cancer A549 and MDA-MB-231 cells. Taken together, our results suggest that HPW-RX40 is a reversible and non-cytotoxic PDI inhibitor with antiplatelet effects, and it may have a potential for development of novel antithrombotic agents.
Collapse
Affiliation(s)
- Po-Hsiung Kung
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Wen Hsieh
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ying-Ting Lin
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jia-Hau Lee
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - I-Hua Chen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chin-Chung Wu
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan.
| |
Collapse
|