1
|
Huang Y, Chen X, Chen M, Lin Y, Chen B, Gao H, Chen M. Drug-induced heart failure: a real-world pharmacovigilance study using the FDA adverse event reporting system database. Front Pharmacol 2025; 15:1523136. [PMID: 39881876 PMCID: PMC11775474 DOI: 10.3389/fphar.2024.1523136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/24/2024] [Indexed: 01/31/2025] Open
Abstract
Objective Although there are certain drug categories associated with heart failure (HF), most of the associated risks are unclear. We investigated the top drugs associated with HF and acute HF (AHF) reported in the FDA Adverse Event Reporting System (FAERS). Methods We reviewed publicly available FAERS databases from 2004 to 2023. Using the search terms "cardiac failure" or "cardiac failure acute" and classifying cases by drug name, we processed and analyzed drug reports related to HF or AHF. Results From 2004 to 2023, 17,379,609 adverse drug events were reported by FAERS, of which 240,050 (1.38%) were reported as HF. Among those with HF, the male-to-female ratio was 0.94% and 52.37% were >65 years old; 46.2% were from the United States. There were 5,971 patients with AHF. We identified 38 drugs and 13 drug classes with a potential high risk of causing HF, and 41 drugs and 19 drug classes were associated with AHF. The median onset times of HF and AHF were 83 days (IQR: 11-416) and 49 days (IQR: 8-259), respectively. The Weibull shape parameter (WSP) test showed early failure-type profile characteristics. Conclusion This study highlights key drugs associated with drug-induced HF and AHF, emphasizing the importance of early risk assessment and close monitoring, particularly during the initial stages of treatment. These findings contribute to a better understanding of drug-induced HF and provide a basis for future research on its underlying mechanisms.
Collapse
Affiliation(s)
- Youqi Huang
- Shengli Clinical College of Fujian Medical University, Department of Pharmacy, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xiaowen Chen
- Shengli Clinical College of Fujian Medical University, Department of Pharmacy, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Mingyu Chen
- Shengli Clinical College of Fujian Medical University, Department of Pharmacy, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yuze Lin
- Shengli Clinical College of Fujian Medical University, Department of Pharmacy, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Bingqi Chen
- Department of pharmacy, Xiamen Medical College, Xiamen, China
| | - Hongjin Gao
- Shengli Clinical College of Fujian Medical University, Department of Pharmacy, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Min Chen
- Shengli Clinical College of Fujian Medical University, Department of Pharmacy, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| |
Collapse
|
2
|
Bie P. Plasma concentrations of peptide hormones: Unrealistic levels of vasopressin (AVP), oxytocin (OXT), and brain natriuretic peptide (BNP). Acta Physiol (Oxf) 2024; 240:e14200. [PMID: 39034759 DOI: 10.1111/apha.14200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/23/2024]
Abstract
Hormones are specific molecules measured in biological fluids by elaborate analytical systems requiring meticulous attention. Variation between laboratories can be expected. However, recently published measurements of AVP, OXT, and BNP in human plasma under basal/control conditions include numbers which, between publications, vary by 100-10 000-fold. Generally, the methods descriptions are scant, at best, and provide no information about quality control measures. Clearly, two results describing the same basal hormone concentration by numbers three orders of magnitude apart are incongruent providing reason for concern. Basal concentrations of bioactive AVP, OXT, and BNP in human plasma are in the order of 1-10 pmol/L. Therefore, assay systems applied to plasma must be able to measure concentrations of less than 1 pmol/L with appropriate specificity and accuracy. Basal concentrations of AVP, OXT, and BNP above 100 pmol/L should be reconsidered, as such results do not reflect bioactive hormone levels in humans, rats, or mice. Any concentration above 1000 pmol/L is of concern because such levels of bioactive hormone may be seen only under extreme conditions, if at all.
Collapse
Affiliation(s)
- Peter Bie
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
3
|
Jasińska-Stroschein M. Searching for Effective Treatments in HFpEF: Implications for Modeling the Disease in Rodents. Pharmaceuticals (Basel) 2023; 16:1449. [PMID: 37895920 PMCID: PMC10610318 DOI: 10.3390/ph16101449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND While the prevalence of heart failure with preserved ejection fraction (HFpEF) has increased over the last two decades, there still remains a lack of effective treatment. A key therapeutic challenge is posed by the absence of animal models that accurately replicate the complexities of HFpEF. The present review summarizes the effects of a wide spectrum of therapeutic agents on HF. METHODS Two online databases were searched for studies; in total, 194 experimental protocols were analyzed following the PRISMA protocol. RESULTS A diverse range of models has been proposed for studying therapeutic interventions for HFpEF, with most being based on pressure overload and systemic hypertension. They have been used to evaluate more than 150 different substances including ARNIs, ARBs, HMGR inhibitors, SGLT-2 inhibitors and incretins. Existing preclinical studies have primarily focused on LV diastolic performance, and this has been significantly improved by a wide spectrum of candidate therapeutic agents. Few experiments have investigated the normalization of pulmonary congestion, exercise capacity, animal mortality, or certain molecular hallmarks of heart disease. CONCLUSIONS The development of comprehensive preclinical HFpEF models, with multi-organ system phenotyping and physiologic stress-based functional testing, is needed for more successful translation of preclinical research to clinical trials.
Collapse
|
4
|
Tian J, Zhao Y, Wang L, Li L. Role of TLR4/MyD88/NF-κB signaling in heart and liver-related complications in a rat model of type 2 diabetes mellitus. J Int Med Res 2021; 49:300060521997590. [PMID: 33787393 PMCID: PMC8020098 DOI: 10.1177/0300060521997590] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Aims To analyze expression of members of the Toll-like receptor (TLR)4/myeloid
differentiation primary response 88 (MyD88)/nuclear factor (NF)-κB signaling
pathway in the heart and liver in a rat model of type 2 diabetes mellitus
(T2DM). Our overall goal was to understand the underlying pathophysiological
mechanisms. Methods We measured fasting blood glucose (FBG) and insulin (FINS) in a rat model of
T2DM. Expression of members of the TLR4/MyD88/NF-κB signaling pathway as
well as downstream cytokines was investigated. Levels of mRNA and protein
were assessed using quantitative real-time polymerase chain reaction and
western blotting, respectively. Protein content of tissue homogenates was
assessed using enzyme-linked immunosorbent assays. Results Diabetic rats had lower body weights, higher FBG, higher FINS, and higher
intraperitoneal glucose tolerance than normal rats. In addition, biochemical
indicators related to heart and liver function were elevated in diabetic
rats compared with normal rats. TLR4 and MyD88 were involved in the
occurrence of T2DM as well as T2DM-related heart and liver complications.
TLR4 caused T2DM-related heart and liver complications through activation of
NF-κB. Conclusions TLR4/MyD88/NF-κB signaling induces production of tumor necrosis factor-α,
interleukin-6, and monocyte chemoattractant protein-1, leading to the heart-
and liver-related complications of T2DM.
Collapse
Affiliation(s)
- Jiajia Tian
- Department of Endocrinology, Weifang Yidu Central Hospital, Weifang, P.R. China
| | - Yanyan Zhao
- Department of Endocrinology, Weifang Yidu Central Hospital, Weifang, P.R. China
| | - Lingling Wang
- Department of Endocrinology, Weifang Yidu Central Hospital, Weifang, P.R. China
| | - Lin Li
- The PLA Rocket Force Characteristic Medical Center, Beijing, P.R. China
| |
Collapse
|
5
|
Oikonomou E, Mourouzis K, Fountoulakis P, Papamikroulis GA, Siasos G, Antonopoulos A, Vogiatzi G, Tsalamadris S, Vavuranakis M, Tousoulis D. Interrelationship between diabetes mellitus and heart failure: the role of peroxisome proliferator-activated receptors in left ventricle performance. Heart Fail Rev 2018; 23:389-408. [PMID: 29453696 DOI: 10.1007/s10741-018-9682-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heart failure (HF) is a common cardiac syndrome, whose pathophysiology involves complex mechanisms, some of which remain unknown. Diabetes mellitus (DM) constitutes not only a glucose metabolic disorder accompanied by insulin resistance but also a risk factor for cardiovascular disease and HF. During the last years though emerging data set up, a bidirectional interrelationship between these two entities. In the case of DM impaired calcium homeostasis, free fatty acid metabolism, redox state, and advance glycation end products may accelerate cardiac dysfunction. On the other hand, when HF exists, hypoperfusion of the liver and pancreas, b-blocker and diuretic treatment, and autonomic nervous system dysfunction may cause impairment of glucose metabolism. These molecular pathways may be used as therapeutic targets for novel antidiabetic agents. Peroxisome proliferator-activated receptors (PPARs) not only improve insulin resistance and glucose and lipid metabolism but also manifest a diversity of actions directly or indirectly associated with systolic or diastolic performance of left ventricle and symptoms of HF. Interestingly, they may beneficially affect remodeling of the left ventricle, fibrosis, and diastolic performance but they may cause impaired water handing, sodium retention, and decompensation of HF which should be taken into consideration in the management of patients with DM. In this review article, we present the pathophysiological data linking HF with DM and we focus on the molecular mechanisms of PPARs agonists in left ventricle systolic and diastolic performance providing useful insights in the molecular mechanism of this class of metabolically active regiments.
Collapse
Affiliation(s)
- Evangelos Oikonomou
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece.
| | - Konstantinos Mourouzis
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Petros Fountoulakis
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Georgios Angelos Papamikroulis
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Gerasimos Siasos
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Alexis Antonopoulos
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Georgia Vogiatzi
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Sotiris Tsalamadris
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Manolis Vavuranakis
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| | - Dimitris Tousoulis
- 1st Department of Cardiology, 'Hippokration' Hospital, National and Kapodistrian University of Athens Medical School, Vasilissis Sofias 114, TK, 115 28, Athens, Greece
| |
Collapse
|
6
|
Xian M, Wang T, Zhang W, Gao J, Zhang Y, Li D, Wei J, Yang H. Yixinshu ameliorates hippocampus abnormality induced by heart failure viathe PPARγ signaling pathway. RSC Adv 2017. [DOI: 10.1039/c7ra10650e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Yizinshu (YXS) improves cardiac function and ameliorates hippocampus abnormality induced by heart failureviathe PPARγ signaling pathway.
Collapse
Affiliation(s)
- Minghua Xian
- Institute of Chinese Materia Medica
- China Academy of Chinese Medical Sciences
- Beijing 100700
- China
| | - Tingting Wang
- Institute of Chinese Materia Medica
- China Academy of Chinese Medical Sciences
- Beijing 100700
- China
| | - Wen Zhang
- College of Ethnic Medicine
- Chengdu University of TCM
- Chengdu 610072
- China
| | - Jinhuan Gao
- Institute of Chinese Materia Medica
- China Academy of Chinese Medical Sciences
- Beijing 100700
- China
| | - Yi Zhang
- Institute of Chinese Materia Medica
- China Academy of Chinese Medical Sciences
- Beijing 100700
- China
| | - Defeng Li
- Institute of Chinese Materia Medica
- China Academy of Chinese Medical Sciences
- Beijing 100700
- China
| | - Junying Wei
- Institute of Chinese Materia Medica
- China Academy of Chinese Medical Sciences
- Beijing 100700
- China
| | - Hongjun Yang
- Institute of Chinese Materia Medica
- China Academy of Chinese Medical Sciences
- Beijing 100700
- China
| |
Collapse
|