1
|
Berois N, Pittini A, Osinaga E. Targeting Tumor Glycans for Cancer Therapy: Successes, Limitations, and Perspectives. Cancers (Basel) 2022; 14:cancers14030645. [PMID: 35158915 PMCID: PMC8833780 DOI: 10.3390/cancers14030645] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Aberrant glycosylation is a common feature of many cancers, and it plays crucial roles in tumor development and biology. Cancer progression can be regulated by several physiopathological processes controlled by glycosylation, such as cell–cell adhesion, cell–matrix interaction, epithelial-to-mesenchymal transition, tumor proliferation, invasion, and metastasis. Different mechanisms of aberrant glycosylation lead to the formation of tumor-associated carbohydrate antigens (TACAs), which are suitable for selective cancer targeting, as well as novel antitumor immunotherapy approaches. This review summarizes the strategies developed in cancer immunotherapy targeting TACAs, analyzing molecular and cellular mechanisms and state-of-the-art methods in clinical oncology. Abstract Aberrant glycosylation is a hallmark of cancer and can lead to changes that influence tumor behavior. Glycans can serve as a source of novel clinical biomarker developments, providing a set of specific targets for therapeutic intervention. Different mechanisms of aberrant glycosylation lead to the formation of tumor-associated carbohydrate antigens (TACAs) suitable for selective cancer-targeting therapy. The best characterized TACAs are truncated O-glycans (Tn, TF, and sialyl-Tn antigens), gangliosides (GD2, GD3, GM2, GM3, fucosyl-GM1), globo-serie glycans (Globo-H, SSEA-3, SSEA-4), Lewis antigens, and polysialic acid. In this review, we analyze strategies for cancer immunotherapy targeting TACAs, including different antibody developments, the production of vaccines, and the generation of CAR-T cells. Some approaches have been approved for clinical use, such as anti-GD2 antibodies. Moreover, in terms of the antitumor mechanisms against different TACAs, we show results of selected clinical trials, considering the horizons that have opened up as a result of recent developments in technologies used for cancer control.
Collapse
Affiliation(s)
- Nora Berois
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
- Correspondence: (N.B.); (E.O.)
| | - Alvaro Pittini
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Eduardo Osinaga
- Laboratorio de Glicobiología e Inmunología Tumoral, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay;
- Departamento de Inmunobiología, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
- Correspondence: (N.B.); (E.O.)
| |
Collapse
|
2
|
Mo BY, Li GS, Huang SN, Wei ZX, Su YS, Dai WB, Ruan L. Laryngeal Squamous Cell Carcinoma: Potential Molecular Mechanism and Prognostic Signature Based on Immune-Related Genes. Med Sci Monit 2020; 26:e928185. [PMID: 33361747 PMCID: PMC7772955 DOI: 10.12659/msm.928185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Immune-related genes (IRGs) are closely related to the incidence and progression of tumors, potentially indicating that IRGs play an important role in laryngeal squamous cell carcinoma (LSCC). MATERIAL AND METHODS An RNA sequencing dataset containing 123 samples was collected from The Cancer Genome Atlas. Based on immune-related differentially expressed genes (IRDEGs), a potential molecular mechanism of LSCC was explored through analysis of information in the Gene Ontology (GO) resource and the Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interactions (PPIs). A regulatory network of transcriptional regulators and IRDEGs was constructed to explore the underlying molecular mechanism of LSCC at the upstream level. Candidates from IRDEGs for signature were screened via univariate Cox analysis and using the least absolute shrinkage and selection operator (LASSO) technique. The IRDEG signature of LSCC was constructed by using a multivariate Cox proportional hazards model. RESULTS GO and KEGG analysis showed that IRDEGs may participate in the progression of LSCC through immune-related reactions. PPI analysis demonstrated that, among the IRDEGs in LSCC, the Kininogen 1; C-X-X motif chemokine ligand 10; elastase, neutrophil expressed; and LYZ genes are hub genes in the development of LSCC. At the upstream level, SPI1, SP140, signal transducer and activator of transcription 4, zinc finger E-box binding homeobox, and Ikaros family zinc finger 2 are the hub transcriptional regulators of IRDEGs. The risk score based on the IRDEG signature was able to distinguish prognosis in patients with LSCC and represents an independent prognostic risk factor for LSCC. CONCLUSIONS From the perspective of IRGs, we first constructed an IRDEG signature related to the prognosis of LSCC, which can be used as a novel marker to predict prognosis in patients with LSCC.
Collapse
Affiliation(s)
- Bin-Yu Mo
- Department of Otolaryngology, Liuzhou People's Hospital of Guangxi, Liuzhou, Guangxi, China (mainland)
| | - Guo-Sheng Li
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Su-Ning Huang
- Department of Radiotherapy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China (mainland)
| | - Zhu-Xin Wei
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Ya-Si Su
- Department of Pathology, Liuzhou People's Hospital, Liuzhou, Guangxi, China (mainland)
| | - Wen-Bin Dai
- Department of Pathology, Liuzhou People's Hospital, Liuzhou, Guangxi, China (mainland)
| | - Lin Ruan
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| |
Collapse
|
3
|
Li Z, Liu FY, Kirkwood KL. The p38/MKP-1 signaling axis in oral cancer: Impact of tumor-associated macrophages. Oral Oncol 2020; 103:104591. [PMID: 32058294 PMCID: PMC7136140 DOI: 10.1016/j.oraloncology.2020.104591] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023]
Abstract
Oral squamous cell carcinomas (OSCC) constitute over 95% of all head and neck malignancies. As a key component of the tumor microenvironment (TME), chronic inflammation contributes towards the development, progression, and regional metastasis of OSCC. Tumor associated macrophages (TAMs) associated with OSSC promote tumorigenesis through the production of cytokines and pro-inflammatory factors that are critical role in the various steps of malignant transformation, including tumor growth, survival, invasion, angiogenesis, and metastasis. The mitogen-activated protein kinases (MAPKs) can regulate inflammation along with a wide range of cellular processes including cell metabolism, proliferation, motility, apoptosis, survival, differentiation and play a crucial role in cell growth and survival in physiological and pathological processes including innate and adaptive immune responses. Dual specificity MAPK phosphatases (MKPs) deactivates MAPKs. MKPs are considered as an important feedback control mechanism that limits MAPK signaling and subsequent target gene expression. This review outlines the role of MKP-1, the founding member of the MKP family, in OSCC and the TME. Herein, we summarize recent progress in understanding the regulation of p38 MAPK/MKP-1 signaling pathways via TAM-related immune responses in OSCC development, progression and treatment outcomes.
Collapse
Affiliation(s)
- Zhenning Li
- Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, China
- Department of Medical Genetics, China Medical University, Shenyang, China
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| | - Fa-yu Liu
- Department of Oromaxillofacial-Head and Neck Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, China
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
| | - Keith L. Kirkwood
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, USA
- Department of Head and Neck/Plastic and Reconstructive Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
4
|
Guo X, Elkashef SM, Loadman PM, Patterson LH, Falconer RA. Recent advances in the analysis of polysialic acid from complex biological systems. Carbohydr Polym 2019; 224:115145. [PMID: 31472857 DOI: 10.1016/j.carbpol.2019.115145] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/25/2022]
Abstract
Polysialic acid (polySia) is a unique, well-characterised carbohydrate polymer highly-expressed on the cell surface of neurons in the early stages of mammalian brain development. Post-embryogenesis, it is also re-expressed in a number of tumours of neuroendocrine origin. It plays important roles in modulating cell-cell, and cell-matrix adhesion and migration, tumour invasion and metastasis. Techniques for structural and quantitative characterisation of polySia from tumours and cancer cells are thus essential in exploring the relationship between polySia expression levels and structural and functional changes associated with cancer progression and metastasis. A variety of techniques have been developed to structurally and quantitatively analyse polySia in clinical tissues and other biological samples. In this review, analytical approaches used for the determination of polySia in biological matrices in the past 20 years are discussed, with a particular focus on chemical approaches, and quantitative analysis.
Collapse
Affiliation(s)
- Xiaoxiao Guo
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, United Kingdom
| | - Sara M Elkashef
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, United Kingdom
| | - Paul M Loadman
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, United Kingdom
| | - Laurence H Patterson
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, United Kingdom
| | - Robert A Falconer
- Institute of Cancer Therapeutics, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, United Kingdom.
| |
Collapse
|
5
|
Josic D, Martinovic T, Pavelic K. Glycosylation and metastases. Electrophoresis 2018; 40:140-150. [PMID: 30246896 DOI: 10.1002/elps.201800238] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 12/23/2022]
Abstract
The change of cellular glycosylation is one of the key events in malignant transformation and neoplastic progression, and tumor-related glycosylation alterations are promising targets in both tumor diagnosis and therapy. Both malignant transformation and neoplastic progression are the consequence of gene expression alterations and alterations in protein expression. Micro environmental factors such as extracellular matrix (ECM) also play an important role in their growth and metastasis. Tumor-associated glycans are important biomarker candidates for cancer diagnosis and prognosis, and analytical methods for their detection were developed recently. Glycoproteomics that use mass spectrometry for identification of cancer antigens and structural analysis of glycans play a key role in the investigation of changes of glycosylation during malignant transformation and tumor development and metastasis. Deep understanding of glycan remodeling in cancer and the role of glycosyltransferases that are involved in this process will require a detailed profiling of glycosylation patterns of tumor cells, and corresponding analytical methods for their detection were developed.
Collapse
Affiliation(s)
- Djuro Josic
- Department of Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA.,Department of Biotechnology, Centre for High-throughput technologies, University of Rijeka, Rijeka, Croatia.,University Juraj Dobrila, Pula, Croatia
| | - Tamara Martinovic
- Department of Biotechnology, Centre for High-throughput technologies, University of Rijeka, Rijeka, Croatia
| | - Kresimir Pavelic
- Department of Biotechnology, Centre for High-throughput technologies, University of Rijeka, Rijeka, Croatia.,University Juraj Dobrila, Pula, Croatia
| |
Collapse
|