1
|
Takatsu F, Suzawa K, Tomida S, Thu YM, Sakaguchi M, Toji T, Ohki M, Tsudaka S, Date K, Matsuda N, Iwata K, Zhu Y, Nakata K, Shien K, Yamamoto H, Nakayama A, Okazaki M, Sugimoto S, Toyooka S. Periostin secreted by cancer-associated fibroblasts promotes cancer progression and drug resistance in non-small cell lung cancer. J Mol Med (Berl) 2023; 101:1603-1614. [PMID: 37831111 DOI: 10.1007/s00109-023-02384-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/19/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are important components in the tumor microenvironment, and we sought to identify effective therapeutic targets in CAFs for non-small cell lung cancer (NSCLC). In this study, we established fibroblast cell lines from the cancerous and non-cancerous parts of surgical lung specimens from patients with NSCLC and evaluated the differences in behaviors towards NSCLC cells. RNA sequencing analysis was performed to investigate the differentially expressed genes between normal fibroblasts (NFs) and CAFs, and we identified that the expression of periostin (POSTN), which is known to be overexpressed in various solid tumors and promote cancer progression, was significantly higher in CAFs than in NFs. POSTN increased cell proliferation via NSCLC cells' ERK pathway activation and induced epithelial-mesenchymal transition (EMT), which improved migration in vitro. In addition, POSTN knockdown in CAFs suppressed these effects, and in vivo experiments demonstrated that the POSTN knockdown improved the sensitivity of EGFR-mutant NSCLC cells for osimertinib treatment. Collectively, our results showed that CAF-derived POSTN is involved in tumor growth, migration, EMT induction, and drug resistance in NSCLC. Targeting CAF-secreted POSTN could be a potential therapeutic strategy for NSCLC. KEY MESSAGES: • POSTN is significantly upregulated in CAFs compared to normal fibroblasts in NCSLC. • POSTN increases cell proliferation via activation of the NSCLC cells' ERK pathway. • POSTN induces EMT in NSCLC cells and improves the migration ability. • POSTN knockdown improves the sensitivity for osimertinib in EGFR-mutant NSCLC cells.
Collapse
Affiliation(s)
- Fumiaki Takatsu
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Ken Suzawa
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Shuta Tomida
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Yin Min Thu
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Tomohiro Toji
- Department of Pathology, Okayama University Hospital, Okayama, Japan
| | - Masayoshi Ohki
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shimpei Tsudaka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Keiichi Date
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Naoki Matsuda
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kazuma Iwata
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Yidan Zhu
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kentaro Nakata
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Kazuhiko Shien
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Hiromasa Yamamoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Akiko Nakayama
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mikio Okazaki
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Seiichiro Sugimoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| |
Collapse
|
2
|
Mao L, Wang L, Xu J, Zou J. The role of integrin family in bone metabolism and tumor bone metastasis. Cell Death Discov 2023; 9:119. [PMID: 37037822 PMCID: PMC10086008 DOI: 10.1038/s41420-023-01417-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/12/2023] Open
Abstract
Integrins have been the research focus of cell-extracellular matrix adhesion (ECM) and cytokine receptor signal transduction. They are involved in the regulation of bone metabolism of bone precursor cells, mesenchymal stem cells (MSCs), osteoblasts (OBs), osteoclasts (OCs), and osteocytes. Recent studies expanded and updated the role of integrin in bone metabolism, and a large number of novel cytokines were found to activate bone metabolism pathways through interaction with integrin receptors. Integrins act as transducers that mediate the regulation of bone-related cells by mechanical stress, fluid shear stress (FSS), microgravity, hypergravity, extracellular pressure, and a variety of physical factors. Integrins mediate bone metastasis of breast, prostate, and lung cancer by promoting cancer cell adhesion, migration, and survival. Integrin-mediated targeted therapy showed promising prospects in bone metabolic diseases. This review emphasizes the latest research results of integrins in bone metabolism and bone metastasis and provides a vision for treatment strategies.
Collapse
Affiliation(s)
- Liwei Mao
- School of Kinesiology, Shanghai University of Sport, 200438, Shanghai, China
| | - Lian Wang
- School of Kinesiology, Shanghai University of Sport, 200438, Shanghai, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, WA, 6009, Perth, Australia
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, 200438, Shanghai, China.
| |
Collapse
|
3
|
Zhang X, Wang X, Hou L, Xu Z, Liu Y, Wang X. Nanoparticles overcome adaptive immune resistance and enhance immunotherapy via targeting tumor microenvironment in lung cancer. Front Pharmacol 2023; 14:1130937. [PMID: 37033636 PMCID: PMC10080031 DOI: 10.3389/fphar.2023.1130937] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/16/2023] [Indexed: 04/11/2023] Open
Abstract
Lung cancer is one of the common malignant cancers worldwide. Immune checkpoint inhibitor (ICI) therapy has improved survival of lung cancer patients. However, ICI therapy leads to adaptive immune resistance and displays resistance to PD-1/PD-L1 blockade in lung cancer, leading to less immune response of lung cancer patients. Tumor microenvironment (TME) is an integral tumor microenvironment, which is involved in immunotherapy resistance. Nanomedicine has been used to enhance the immunotherapy in lung cancer. In this review article, we described the association between TME and immunotherapy in lung cancer. We also highlighted the importance of TME in immunotherapy in lung cancer. Moreover, we discussed how nanoparticles are involved in regulation of TME to improve the efficacy of immunotherapy, including Nanomedicine SGT-53, AZD1080, Nanomodulator NRF2, Cisplatin nanoparticles, Au@PG, DPAICP@ME, SPIO NP@M-P, NBTXR3 nanoparticles, ARAC nanoparticles, Nano-DOX, MS NPs, Nab-paclitaxel, GNPs-hPD-L1 siRNA. Furthermore, we concluded that targeting TME by nanoparticles could be helpful to overcome resistance to PD-1/PD-L1 blockade in lung cancer.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Xuemei Wang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Lijian Hou
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Zheng Xu
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yu’e Liu
- School of Medicine, Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, Tongji University, Shanghai, China
| | - Xueju Wang
- Department of Pathology, China-Japan Union Hospital, Jilin University, Changchun, China
- *Correspondence: Xueju Wang,
| |
Collapse
|
4
|
Bhadresha K, Upadhyay V, Brahmbhatt J, Mughal MJ, Jain N, Rawal R. In vitro model of predicting metastatic ability using tumor derived extracellular vesicles; beyond seed soil hypothesis. Sci Rep 2022; 12:20258. [PMID: 36424413 PMCID: PMC9691738 DOI: 10.1038/s41598-022-24443-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
Lung cancer progression is often driven by metastasis, which has resulted in a considerable increase in lung cancer-related deaths. Cell-derived extracellular vesicles (EVs), particularly exosomes, serve key roles in cellular signal transmission via microenvironment, however, their biological relevance in cancer development and metastasis still needs to be clear. Here, we demonstrate that extracellular vesicles (EVs) derived from lung cancer bone metastatic patients exhibited a great capacity to promote the progression of lung cancer cells. We carried out a comprehensive meta-analysis to identify the gene expression profile of bone metastases using publicly available microarray datasets. Furthermore, mRNA expression of six identified genes was quantified by real time PCR in lung cancer with and without bone metastasis and healthy individual derived EVs. In addition, we utilized a very novel approach by to study how lung cancer cells uptake EVs by co-culturing EVs with lung cells. We observed that EVs obtained from bone metastases patients were efficiently ingested by lung cancer cells. Morevore, integration and uptake of these EVs lead to increased lung cancer cell proliferation, migration, invasion, and sphere formation. We discovered that EV uptake increase the expression of SPP1, CD44, and POSTN genes in lung cancer cells. The data obtained from this study, support to the possibility that circulating EVs play a significant role in the formation of the pre-metastatic niche, eventually leading to metastasis.
Collapse
Affiliation(s)
- Kinjal Bhadresha
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
- Hematology/Oncology Division, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Vinal Upadhyay
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Jpan Brahmbhatt
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Muhammad Jameel Mughal
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Science, The George Washington University, Washington, DC, USA
| | - Nayan Jain
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Rakesh Rawal
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India.
| |
Collapse
|
5
|
Zhang J, Zha T, Zhang N, Sun G. Diagnostic value of periostin in lung cancer-related malignant pleural effusion. J Clin Lab Anal 2022; 36:e24179. [PMID: 35152510 PMCID: PMC8842311 DOI: 10.1002/jcla.24179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/22/2021] [Accepted: 12/04/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Periostin (POSTN) is an extracellular matrix protein that is overexpressed in lung cancer and is considered an effective diagnostic and prognostic biomarker for lung cancer. The purpose of this study was to investigate the diagnostic performance of POSTN and to further evaluate the diagnostic value of POSTN combined with carcinoembryonic antigen (CEA) and cancer ratio [CR: serum lactate dehydrogenase (LDH)/pleural effusion adenosine deaminase (PE ADA)] in lung cancer-related malignant PE (MPE). METHODS A total of 108 patients with PE, including 54 with lung cancer and 54 with benign lung disease, were enrolled in this study. The POSTN levels of PE and serum were detected using an enzyme-linked immunosorbent assay. Information on the expression of PE and serum CEA, serum LDH, and PE ADA was collected from medical records. RESULTS The levels of PE POSTN in MPE of patients with lung cancer were significantly higher than those in patients with benign PE (p < 0.0001). The receiver operating characteristic (ROC) curve indicated that the diagnostic sensitivity and specificity of PE POSTN for lung cancer-related MPE were respectively 77.78% and 68.52% when the cutoff value was determined to be 53.45 ng/ml. The ROC curve analysis demonstrated that PE POSTN has a high diagnostic value in MPE associated with lung cancer [area under the curve (AUC) = 0.764], and the combination of PE POSTN, PE CEA, and CR can improve the diagnostic accuracy of lung cancer-related MPE (AUC = 0.948). CONCLUSION POSTN can be used as a potential marker for lung cancer-related MPE diagnosis.
Collapse
Affiliation(s)
- Jinjin Zhang
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Anhui Medical UniversityAnhuiChina
| | - Tongtong Zha
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Anhui Medical UniversityAnhuiChina
| | - Na Zhang
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Anhui Medical UniversityAnhuiChina
| | - Gengyun Sun
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Anhui Medical UniversityAnhuiChina
| |
Collapse
|
6
|
Sun CY, Mi YY, Ge SY, Hu QF, Xu K, Guo YJ, Tan YF, Zhang Y, Zhong F, Xia GW. Tumor- and Osteoblast-Derived Periostin in Prostate Cancer bone Metastases. Front Oncol 2022; 11:795712. [PMID: 35087756 PMCID: PMC8787093 DOI: 10.3389/fonc.2021.795712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/13/2021] [Indexed: 11/24/2022] Open
Abstract
Exploring the biological function of periostin (POSTN) in prostate cancer (PCa) bone metastasis is of importance. It was observed that the expression of POSTN was high in PCa, especially highest in PCa metastasized to bone. In this study, we found that inhibiting POSTN in PCa cells could significantly alleviate PCa bone metastasis in vivo, suggesting POSTN is a promising therapeutic target. Since, due to the secreted expression of POSTN in osteoblasts and PCa, we hypothesized the positive feedback loop between osteoblasts and PCa mediated by POSTN in PCa bone metastasis. The in vitro experiments demonstrated that osteoblast-derived POSTN promoted PCa cell proliferation and invasion and PCa cell-derived POSTN promotes proliferation of osteoblasts. Furthermore, we found that POSTN regulated PCa and osteoblast function through integrin receptors. Finally, 18F-Alfatide II was used as the molecule probe of integrin αvβ3 in PET-CT, revealing high intake in metastatic lesions. Our findings together indicate that targeting POSTN in PCa cells as well as in the osteoblastic may be an effective treatment for PCa bone metastasis.
Collapse
Affiliation(s)
- Chuan-Yu Sun
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuan-Yuan Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Sheng-Yang Ge
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing-Feng Hu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ke Xu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi-Jun Guo
- Department of Urology, Jing'an District Central Hospital, Fudan University, Shanghai, China
| | - Yi-Fan Tan
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yang Zhang
- Department of Systems Biology for Medicine, Shanghai Medical College, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Fan Zhong
- Department of Systems Biology for Medicine, Shanghai Medical College, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Guo-Wei Xia
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Ratajczak-Wielgomas K, Kmiecik A, Dziegiel P. Role of Periostin Expression in Non-Small Cell Lung Cancer: Periostin Silencing Inhibits the Migration and Invasion of Lung Cancer Cells via Regulation of MMP-2 Expression. Int J Mol Sci 2022; 23:ijms23031240. [PMID: 35163164 PMCID: PMC8835752 DOI: 10.3390/ijms23031240] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/20/2022] [Indexed: 01/08/2023] Open
Abstract
The involvement of periostin (POSTN) in non-small-cell lung cancer (NSCLC) migration, invasion, and its underlying mechanisms has not been well established. The present study aims to determine epithelial POSTN expression in NSCLC and to assess associations with clinicopathological factors and prognosis as well as to explore the effects of POSTN knockdown on tumor microenvironment and the migration and invasion of lung cancer cells. Immunohistochemistry was used to evaluate epithelial POSTN expression in NSCLC. POSTN mRNA expression in the dissected lung cancer cells was confirmed by laser capture microdissection and real-time PCR. A549 cells were used for transfecting shRNA-POSTN lentiviral particles. Wound healing and Transwell invasion assays were used to assess the migratory and invasive abilities of A549 cells transfected with POSTN-specific short hairpin (sh)RNA. The results demonstrated significantly higher cytoplasmic POSTN expression in the whole NSCLC group compared to non-malignant lung tissue (NMLT). POSTN expression in cancer cells may be considered to be an independent prognostic factor for survival in NSCLC. POSTN knockdown significantly inhibited A549 cell migration and invasion capabilities in vitro. The activity and the expression level of matrix metalloproteinase-2 (MMP-2) were significantly decreased in A549.shRNA compared to control cells. In summary, POSTN may regulate lung cancer cell invasiveness by modulating the expression of MMP-2 and may represent a potential target for novel therapeutic intervention for NSCLC.
Collapse
Affiliation(s)
- Katarzyna Ratajczak-Wielgomas
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.K.); (P.D.)
- Correspondence: ; Tel.: +48-7-1784-1365; Fax: +48-7-1784-0082
| | - Alicja Kmiecik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.K.); (P.D.)
| | - Piotr Dziegiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (A.K.); (P.D.)
- Department of Human Biology, Faculty of Physiotherapy, University School of Physical Education, 51-612 Wroclaw, Poland
| |
Collapse
|
8
|
Massy E, Rousseau JC, Gueye M, Bonnelye E, Brevet M, Chambard L, Duruisseaux M, Borel O, Roger C, Guelminger R, Pialat J, Gineyts E, Bouazza L, Millet M, Maury JM, Clézardin P, Girard N, Confavreux CB. Serum total periostin is an independent marker of overall survival in bone metastases of lung adenocarcinoma. J Bone Oncol 2021; 29:100364. [PMID: 34150488 PMCID: PMC8190464 DOI: 10.1016/j.jbo.2021.100364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 12/25/2022] Open
Abstract
More than 35% of lung adenocarcinoma patients have bone metastases at diagnosis and have a poor survival. Periostin, a carboxylated matrix protein, mediates lung cancer cell dissemination by promoting epithelial-mesenchymal transition, and is involved in bone response to mechanical stress and bone formation regulation. This suggests that periostin may be used as a biomarker to predict survival in lung cancer patients. Serum periostin was assessed at diagnosis in a prospective cohort of 133 patients with lung adenocarcinoma of all stages. Patients were divided into localized and bone metastatic groups. Both groups were matched to healthy controls. Survival analysis and Cox proportional hazards models were conducted in the total population and in bone metastatic group. The median serum periostin level was higher in bone metastatic (n = 67; median: 1752 pmol/L) than in the localized group (n = 66; 861 pmol/L; p < 0.0001). Patients with high periostin (>median) had a poorer overall survival in the whole population (33.3 weeks vs. NR; p < 0.0001) and the bone metastatic group (24.4 vs. 66.1 weeks; p < 0.001). In multivariate analysis, patients with high periostin had increased risk of death (HR = 2.09, 95%CI [1.06-4.13]; p = 0.03). This was also found in the bone metastatic group (HR = 3.62, 95%CI [1.74-7.52]; p = 0.0005). Immunohistochemistry on bone metastasis biopsies showed periostin expression in the bone matrix and nuclear and cytoplasmic staining in cancer cells. Serum periostin was an independent survival biomarker in all-stage and in bone metastatic lung adenocarcinoma patients. IHC data suggest that periostin might be induced in cancer cells in bone metastatic niche in addition to bone microenvironment expression.
Collapse
Affiliation(s)
- E Massy
- INSERM UMR 1033-LYOS, Lyon, France
- Université de Lyon, France
- Centre Expert des Métastases Osseuses (CEMOS) – Service de Rhumatologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | | | - M. Gueye
- Centre Expert des Métastases Osseuses (CEMOS) – Service de Rhumatologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - E. Bonnelye
- INSERM UMR 1033-LYOS, Lyon, France
- Université de Lyon, France
| | - M. Brevet
- Université de Lyon, France
- Anatomie pathologique, Hospices Civils de Lyon, Lyon, France
| | - L. Chambard
- Centre Expert des Métastases Osseuses (CEMOS) – Service de Rhumatologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - M. Duruisseaux
- Université de Lyon, France
- Service d’Oncologie Thoracique, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, France
| | - O. Borel
- CNRS ERL 6001/ INSERM U1232-Institut de Cancérologie de l’Ouest-Université de Nantes, France
| | - C. Roger
- INSERM UMR 1033-LYOS, Lyon, France
- Biochimie centre hospitalier Lyon sud, INSERM UMR 1033 – Hospices Civils de Lyon, Lyon, France
| | - R. Guelminger
- Service d’Oncologie Thoracique, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, France
| | - J.B. Pialat
- Service de Radiologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | | | | | | | - JM. Maury
- Chirurgie thoracique, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, France
| | - P. Clézardin
- INSERM UMR 1033-LYOS, Lyon, France
- Université de Lyon, France
| | - N. Girard
- Pneumologie, Institut du thorax Curie-Montsouris, Paris, France
| | - Cyrille B. Confavreux
- INSERM UMR 1033-LYOS, Lyon, France
- Université de Lyon, France
- Centre Expert des Métastases Osseuses (CEMOS) – Service de Rhumatologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| |
Collapse
|
9
|
Oo KK, Kamolhan T, Soni A, Thongchot S, Mitrpant C, O-Charoenrat P, Thuwajit C, Thuwajit P. Development of an engineered peptide antagonist against periostin to overcome doxorubicin resistance in breast cancer. BMC Cancer 2021; 21:65. [PMID: 33446140 PMCID: PMC7807878 DOI: 10.1186/s12885-020-07761-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022] Open
Abstract
Background Chemoresistance is one of the main problems in treatment of cancer. Periostin (PN) is a stromal protein which is mostly secreted from cancer associated fibroblasts in the tumor microenvironment and can promote cancer progression including cell survival, metastasis, and chemoresistance. The main objective of this study was to develop an anti-PN peptide from the bacteriophage library to overcome PN effects in breast cancer (BCA) cells. Methods A twelve amino acids bacteriophage display library was used for biopanning against the PN active site. A selected clone was sequenced and analyzed for peptide primary structure. A peptide was synthesized and tested for the binding affinity to PN. PN effects including a proliferation, migration and a drug sensitivity test were performed using PN overexpression BCA cells or PN treatment and inhibited by an anti-PN peptide. An intracellular signaling mechanism of inhibition was studied by western blot analysis. Lastly, PN expressions in BCA patients were analyzed along with clinical data. Results The results showed that a candidate anti-PN peptide was synthesized and showed affinity binding to PN. PN could increase proliferation and migration of BCA cells and these effects could be inhibited by an anti-PN peptide. There was significant resistance to doxorubicin in PN-overexpressed BCA cells and this effect could be reversed by an anti-PN peptide in associations with phosphorylation of AKT and expression of survivin. In BCA patients, serum PN showed a correlation with tissue PN expression but there was no significant correlation with clinical data. Conclusions This finding supports that anti-PN peptide is expected to be used in the development of peptide therapy to reduce PN-induced chemoresistance in BCA. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-020-07761-w.
Collapse
Affiliation(s)
- Khine Kyaw Oo
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Thanpawee Kamolhan
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Anish Soni
- Bachelor of Science Program in Biological Science (Biomedical Science), Mahidol University International College, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Suyanee Thongchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.,Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Chalermchai Mitrpant
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Pornchai O-Charoenrat
- Department of Surgery, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.,Breast Center, Medpark Hospital, Bangkok, 10110, Thailand
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
10
|
Deng X, Ao S, Hou J, Li Z, Lei Y, Lyu G. Prognostic significance of periostin in colorectal cancer. Chin J Cancer Res 2019; 31:547-556. [PMID: 31354223 PMCID: PMC6613499 DOI: 10.21147/j.issn.1000-9604.2019.03.16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 06/05/2019] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence suggests that periostin is frequently upregulated in tissue injury, inflammation, fibrosis and tumor progression. Periostin expression in cancer cells can promote metastatic potential of colorectal cancer (CRC) via activating PI3K/Akt signaling pathway. Moreover, periostin is observed mainly in tumor stroma and cytoplasm of cancer cells, which may facilitate aggressiveness of CRC. In this review, we summarize information regarding periostin to emphasize its role as a prognostic marker of CRC.
Collapse
Affiliation(s)
- Xingming Deng
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Sheng Ao
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jianing Hou
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Zhuofei Li
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yunpeng Lei
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Guoqing Lyu
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
11
|
González-González L, Alonso J. Periostin: A Matricellular Protein With Multiple Functions in Cancer Development and Progression. Front Oncol 2018; 8:225. [PMID: 29946533 PMCID: PMC6005831 DOI: 10.3389/fonc.2018.00225] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/30/2018] [Indexed: 01/19/2023] Open
Abstract
Tumor microenvironment is considered nowadays as one of the main players in cancer development and progression. Tumor microenvironment is highly complex and consists of non-tumor cells (i.e., cancer-associated fibroblast, endothelial cells, or infiltrating leukocytes) and a large list of extracellular matrix proteins and soluble factors. The way that microenvironment components interact among them and with the tumor cells is very complex and only partially understood. However, it is now clear that these interactions govern and modulate many of the cancer hallmarks such as cell proliferation, the resistance to death, the differentiation state of tumor cells, their ability to migrate and metastasize, and the immune response against tumor cells. One of the microenvironment components that have emerged in the last years with strength is a heterogeneous group of multifaceted proteins grouped under the name of matricellular proteins. Matricellular proteins are a family of non-structural matrix proteins that regulate a variety of biological processes in normal and pathological situations. Many components of this family such as periostin (POSTN), osteopontin (SPP1), or the CNN family of proteins have been shown to regulate key aspect of tumor biology, including proliferation, invasion, matrix remodeling, and dissemination to pre-metastatic niches in distant organs. Matricellular proteins can be produced by tumor cells themselves or by tumor-associated cells, and their synthesis can be affected by intrinsic and/or extrinsic tumor cell factors. In this review, we will focus on the role of POSTN in the development and progression of cancer. We will describe their functions in normal tissues and the mechanisms involved in their regulation. We will analyze the tumors in which their expression is altered and their usefulness as a biomarker of tumor progression. Finally, we will speculate about future directions for research and therapeutic approaches targeting POSTN.
Collapse
Affiliation(s)
- Laura González-González
- Unidad de Tumores Sólidos Infantiles, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Alonso
- Unidad de Tumores Sólidos Infantiles, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|