1
|
Kawase K, Nakamura Y, Wolbeck L, Takemura S, Zaitsu K, Ando T, Jinnou H, Sawada M, Nakajima C, Rydbirk R, Gokenya S, Ito A, Fujiyama H, Saito A, Iguchi A, Kratimenos P, Ishibashi N, Gallo V, Iwata O, Saitoh S, Khodosevich K, Sawamoto K. Significance of birth in the maintenance of quiescent neural stem cells. SCIENCE ADVANCES 2025; 11:eadn6377. [PMID: 39841848 PMCID: PMC11753423 DOI: 10.1126/sciadv.adn6377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/18/2024] [Indexed: 01/24/2025]
Abstract
Birth is one of the most important life events for animals. However, its significance in the developmental process is not fully understood. Here, we found that birth-induced alteration of glutamine metabolism in radial glia (RG), the embryonic neural stem cells (NSCs), is required for the acquisition of quiescence and long-term maintenance of postnatal NSCs. Preterm birth impairs this cellular process, leading to transient hyperactivation of RG. Consequently, in the postnatal brain, the NSC pool is depleted and neurogenesis is decreased. We also found that the maintenance of quiescent RG after preterm birth improves postnatal neurogenesis. This study demonstrates the significance of birth in the maintenance of quiescent NSCs.
Collapse
Affiliation(s)
- Koya Kawase
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Yasuhisa Nakamura
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
- Department of Pediatrics, Nagoya City University West Medical Center, 1-1-1 Hiratecho, Kita-ku, Nagoya, Aichi 462-8508, Japan
| | - Laura Wolbeck
- Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Shoko Takemura
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Kei Zaitsu
- Multimodal Informatics and Wide-data Analytics Laboratory, Department of Computational Systems Biology, Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishi Mitani, Kinokawa, Wakayama 649-6493, Japan
| | - Takehiro Ando
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Hideo Jinnou
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20010, USA
| | - Masato Sawada
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
- Division of Neural Development and Regeneration, National Institute for Physiological Sciences, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Chikako Nakajima
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Rasmus Rydbirk
- Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sakura Gokenya
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Akira Ito
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Hitomi Fujiyama
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Akari Saito
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
- Research Laboratory on Environmentally-Conscious Developments and Technologies [E-code], National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Panagiotis Kratimenos
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20010, USA
- Division of Neonatology, Children’s National Hospital, Washington, DC 20010, USA
| | - Nobuyuki Ishibashi
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20010, USA
| | - Vittorio Gallo
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20010, USA
- Norcliffe Foundation Center for Integrative Brain Research Seattle Children’s Research Institute Seattle Children’s Seattle, Seattle, WA 98145-5005, USA
| | - Osuke Iwata
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | - Konstantin Khodosevich
- Biotech Research & Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
- Division of Neural Development and Regeneration, National Institute for Physiological Sciences, Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
2
|
Sharif AF, Almulhim MNM, Almosabeh HMA, Alshammasy MEA, Aljeshi AMA, Mufti TMA, AlNasser S, Al-Mulhim KA, AlMubarak YA. Predictors of Serotonin Syndrome in Acute Poisoning with 5-Hydroxytryptamine Modulators. TOXICS 2024; 12:550. [PMID: 39195652 PMCID: PMC11360237 DOI: 10.3390/toxics12080550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024]
Abstract
5-Hydroxytryptamine (5-HT) modulators are commonly prescribed medications with potentially life-threatening outcomes, particularly serotonin syndrome (SS). Early prediction of SS is critical not only to avoid lethal drug combinations but also to initiate appropriate treatment. The present work aimed to recognize the significant predictors of SS through a retrospective cross-sectional study that was conducted among patients exposed to an overdose of 5-HT modulators and admitted to a poison control center where 112 patients were enrolled. Of them, 21 patients were diagnosed with SS, and 66.7% of patients with SS were exposed to long-term co-ingestion. There was a noticeable surge in SS between April and May, and 52.4% of patients who suffered from SS were admitted after suicidal exposure (p < 0.05). Patients with SS showed severe presentation indicated by high-grade poison severity scores (PSS) and low Glasgow coma scales (GCS). PSS was a significant predictor of SS with an area under the curve of 0.879. PCO2, pulse, GCS, HCO3, and erythrocytic count were other significant predictors of SS. Combinations of serotonergic agents increase the likelihood of developing SS. Clinicians should be vigilant when prescribing a combination of serotonergic therapy, particularly for patients on illicit sympathomimetic and over-the-counter medications like dextromethorphan.
Collapse
Affiliation(s)
- Asmaa F. Sharif
- Department of Clinical Medical Sciences, College of Medicine, Dar AL-Uloom University, Al Falah, Riyadh 13314, Saudi Arabia
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Tanta University, El Bahr St., Tanta 31111, Egypt
| | - Mubarak Nasir M. Almulhim
- College of Medicine, Dar AL-Uloom University, Al Falah, Riyadh 13314, Saudi Arabia; (M.N.M.A.); (H.M.A.A.); (M.E.A.A.); (A.M.A.A.); (T.M.A.M.)
| | - Hadi Mohamed A. Almosabeh
- College of Medicine, Dar AL-Uloom University, Al Falah, Riyadh 13314, Saudi Arabia; (M.N.M.A.); (H.M.A.A.); (M.E.A.A.); (A.M.A.A.); (T.M.A.M.)
| | - Mohammed Essam A. Alshammasy
- College of Medicine, Dar AL-Uloom University, Al Falah, Riyadh 13314, Saudi Arabia; (M.N.M.A.); (H.M.A.A.); (M.E.A.A.); (A.M.A.A.); (T.M.A.M.)
| | - Ali Mohammed A. Aljeshi
- College of Medicine, Dar AL-Uloom University, Al Falah, Riyadh 13314, Saudi Arabia; (M.N.M.A.); (H.M.A.A.); (M.E.A.A.); (A.M.A.A.); (T.M.A.M.)
| | - Taher Mohammed A. Mufti
- College of Medicine, Dar AL-Uloom University, Al Falah, Riyadh 13314, Saudi Arabia; (M.N.M.A.); (H.M.A.A.); (M.E.A.A.); (A.M.A.A.); (T.M.A.M.)
| | - Shahd AlNasser
- Saudi Food and Drug Authority, Hittin, Riyadh 13513, Saudi Arabia;
| | - Khalid A. Al-Mulhim
- Emergency Medicine Department, King Fahad Medical City, Sulimaniyah, Riyadh 12231, Saudi Arabia; (K.A.A.-M.); (Y.A.A.)
| | - Yousef A. AlMubarak
- Emergency Medicine Department, King Fahad Medical City, Sulimaniyah, Riyadh 12231, Saudi Arabia; (K.A.A.-M.); (Y.A.A.)
| |
Collapse
|
3
|
Hibino Y, Iguchi A, Zaitsu K. Preliminary study to classify mechanisms of mitochondrial toxicity by in vitro metabolomics and bioinformatics. Toxicol Appl Pharmacol 2022; 457:116316. [PMID: 36462684 DOI: 10.1016/j.taap.2022.116316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/20/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022]
Abstract
AIM Mitochondrial toxicity is one of the causes for drug-induced liver injury, and the classification of phenotypes or mitochondrial toxicity are highly required though there are no molecular-profiling approaches for classifying mitochondrial toxicity. Therefore, the aim of this study was to classify the mechanisms of mitochondrial toxicity by metabolic profiling in vitro and bioinformatics. MAIN METHODS We applied an established gas chromatography tandem mass spectrometry-based metabolomics to human hepatoma grade 2 (HepG2) cells that were exposed to mitochondrial toxicants, whose mechanisms are different, such as rotenone (0.1 μM), carbonyl cyanide-3-chlorophenylhydrazone (CCCP, 0.5 μM), nefazodone (20 μM), perhexiline (6.25 μM), or digitonin (positive cytotoxic substance, 4 μM). These concentrations were determined by the Mitochondrial ToxGlo Assay. Galactose medium was used for suppressing the Warburg effect in HepG2 cells, and the metabolome analysis successfully identified 125 metabolites in HepG2 cells. Multivariate, metabolic pathway and network analyses were performed by the R software. KEY FINDINGS Metabolic profiling enabled the classifying the mitochondrial toxicity mechanisms of RCC inhibition and uncoupling. The metabolic profiles of respiratory chain complex (RCC) inhibitors (rotenone and nefazodone) and an uncoupler (CCCP) were fully differentiated from those of other compounds. The metabolic pathway analysis revealed that the RCC inhibitors and the uncoupler mainly disrupted TCA-cycle and related metabolic pathways. In addition, the correlation-based network analysis revealed that succinic acid, β-alanine, and glutamic acid were potential metabolic indicators for RCC inhibition and uncoupling. SIGNIFICANCE Our results provided new insights into classifying mechanisms of mitochondrial toxicity by in vitro metabolomics.
Collapse
Affiliation(s)
- Yui Hibino
- Safety Research Laboratories, Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Shonan Health Innovation Park, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa 251-8555, Japan; Department of Legal Medicine & Bioethics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Akira Iguchi
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Kei Zaitsu
- Multimodal Informatics and Wide-data Analytics Laboratory, Department of Computational Systems Biology, Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishi Mitani, Kinokawa, Wakayama 649-6493, Japan; In Vivo Real-time Omics Laboratory, Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
4
|
Zaitsu K, Asano T, Kawakami D, Chang J, Hisatsune K, Taniguchi M, Iguchi A. Metabolomics and Data-Driven Bioinformatics Revealed Key Maternal Metabolites Related to Fetal Lethality via Di(2-ethylhexyl)phthalate Exposure in Pregnant Mice. ACS OMEGA 2022; 7:23717-23726. [PMID: 35847272 PMCID: PMC9280929 DOI: 10.1021/acsomega.2c02338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We performed serum metabolome analysis of di(2-ethylhexyl)phthalate (DEHP)-exposed and control pregnant mice. Pregnant mice (n = 5) were fed a DEHP-containing diet (0.1% or 0.2% DEHP) or a normal diet (control) from gestational days 0-18. After maternal exposure to 0.2% DEHP there were no surviving fetuses, indicating its strong fetal lethality. There were no significant differences in the numbers of fetuses and placentas between the 0.1% DEHP and control groups, although fetal viability differed significantly between them, suggesting that maternal exposure to 0.1% DEHP could inhibit fetal growth. Metabolomics successfully detected 169 metabolites in serum. Principal component analysis (PCA) demonstrated that the three groups were clearly separated on PCA score plots. The biological interpretation of PC1 was fetal lethality, whereas PC2 meant metabolic alteration of pregnant mice via DEHP exposure without fetal lethality. In particular, the first component was significantly correlated with fetal viability, demonstrating that maternal metabolome changes via DEHP exposure were strongly related to fetal lethality. Levels of some amino acids were significantly increased in the DEHP-exposed groups, whereas those of some fatty acids, nicotinic acid, and 1,5-anhydroglucitol were significantly decreased in the DEHP groups. DEHP-induced increases in glycine levels could cause fetal neurological disorders, and decreases in nicotinic acid could inhibit fetal growth. In addition, a machine-learning Random forest could determine 16 potential biomarkers of DEHP exposure, and data-driven network analysis revealed that nicotinic acid was the most influential hub metabolite in the metabolic network. These findings will be useful for understanding the effects of DEHP on the maternal metabolome in pregnancy and their relationship to fetal lethality.
Collapse
Affiliation(s)
- Kei Zaitsu
- Multimodal
Informatics and Wide-data Analytics Laboratory, Department of Computational
Systems Biology, Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishi Mitani, Kinokawa, Wakayama 649-6493, Japan
- In
Vivo Real-time Omics Laboratory, Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Tomomi Asano
- Department
of Human Life and Environment, Kinjo Gakuin
University, 2-1723 Omori, Moriyama-ku, Nagoya 463-8521, Japan
| | - Daisuke Kawakami
- Shimadzu
Corporation, 1, Nishinokyo-Kuwabaracho
Nakagyo-ku, Kyoto, 604-8511, Japan
| | - Jiarui Chang
- In
Vivo Real-time Omics Laboratory, Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Kazuaki Hisatsune
- Forensic
Science Laboratory, Aichi Prefectural Police
Headquarters, 2-1-1,
Sannomaru, Naka-ku, Nagoya 460-8502, Japan
| | - Masaru Taniguchi
- Nagoya City
Public Health Research Institute, Shimoshidami, Moriyama-ku, Nagoya 463-8585, Japan
| | - Akira Iguchi
- Marine Geo-Environment
Research Group, Institute of Geology and Geoinformation, National Institute of Advanced Industrial Science
and Technology (AIST), AIST Tsukuba Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567 Japan
| |
Collapse
|
5
|
Asano T, Taki K, Kitamori K, Naito H, Nakajima T, Tsuchihashi H, Ishii A, Zaitsu K. One-Pot Extraction and Quantification Method for Bile Acids in the Rat Liver by Capillary Liquid Chromatography Tandem Mass Spectrometry. ACS OMEGA 2021; 6:8588-8597. [PMID: 33817519 PMCID: PMC8015121 DOI: 10.1021/acsomega.1c00403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
We developed a highly sensitive method for quantifying 21 bile acids (BAs) in the rat liver by capillary liquid chromatography tandem mass spectrometry (cLC/MS/MS) with one-pot extraction. High recovery rates were obtained for the one-pot methods with either methanol (MeOH) extraction or MeOH/acetonitrile (ACN) (1:1, v/v) mixture extraction; the results obtained for the MeOH/ACN mixture solution were better than the results obtained for MeOH. Thus, we determined that the one-pot method with MeOH/ACN was the most suitable method for the efficient extraction of BAs in the liver. Targeted BAs were well separated by cLC with gradient elution using ammonium acetate (NH4OAc)-MeOH mobile phases. Method validation proved that the intra-day and inter-day accuracies and precisions were primarily less than ±20 and 20% relative standard deviation, respectively. Also, the limit of detection (LOD) and the limit of quantitation (LOQ) were 0.9-10 and 2.3-27 ng/g liver, which proves the high sensitivity of the method. Finally, we quantitated 21 BA concentrations in the liver samples of normal and nonalcoholic steatohepatitis (NASH) rats, both of which were derived from stroke-prone spontaneously hypertensive five (SHRSP5) /Dmcr rat. The hepatic BA profiles were found to be substantially different between the normal and NASH groups; the two groups were clearly separated along the first component axis in the score plots of the principal component analysis. In particular, 10 BAs (β-muricholic acid (MCA), glyco (G-) cholic acid (CA), G-chenodeoxycholic acid (CDCA), tauro (T-) CA, T-CDCA, T-ursodeoxycholic acid (UDCA), T-lithocholic acid (LCA), T-hiodeoxycholic acid (HDCA), T-α-MCA, and T-β-MCA) were significantly different between the two groups using Welch's t-test with the false discovery rate correction method, demonstrating BA disruption in the NASH model rat. In conclusion, this method was able to quantify 21 BAs in the rat liver and will evaluate the hepatic BA pathophysiology of rat disease models.
Collapse
Affiliation(s)
- Tomomi Asano
- Department
of Human Life and Environment, Kinjo Gakuin
University, 2-1723 Omori, Moriyama-ku, Nagoya 463-8521, Japan
- Department
of Legal Medicine & Bioethics, Nagoya
University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kentaro Taki
- Department
of Legal Medicine & Bioethics, Nagoya
University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kazuya Kitamori
- Department
of Human Life and Environment, Kinjo Gakuin
University, 2-1723 Omori, Moriyama-ku, Nagoya 463-8521, Japan
| | - Hisao Naito
- Department
of Human Life and Environment, Kinjo Gakuin
University, 2-1723 Omori, Moriyama-ku, Nagoya 463-8521, Japan
| | - Tamie Nakajima
- College
of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Hitoshi Tsuchihashi
- Department
of Legal Medicine & Bioethics, Nagoya
University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Akira Ishii
- Department
of Legal Medicine & Bioethics, Nagoya
University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kei Zaitsu
- Department
of Legal Medicine & Bioethics, Nagoya
University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
- In
Vivo Real-time Omics Laboratory, Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
6
|
Zaitsu K, Eguchi S, Ohara T, Kondo K, Ishii A, Tsuchihashi H, Kawamata T, Iguchi A. PiTMaP: A New Analytical Platform for High-Throughput Direct Metabolome Analysis by Probe Electrospray Ionization/Tandem Mass Spectrometry Using an R Software-Based Data Pipeline. Anal Chem 2020; 92:8514-8522. [PMID: 32375466 DOI: 10.1021/acs.analchem.0c01271] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A new analytical platform called PiTMaP was developed for high-throughput direct metabolome analysis by probe electrospray ionization/tandem mass spectrometry (PESI/MS/MS) using an R software-based data pipeline. PESI/MS/MS was used as the data acquisition technique, applying a scheduled-selected reaction monitoring method to expand the targeted metabolites. Seventy-two metabolites mainly related to the central energy metabolism were selected; data acquisition time was optimized using mouse liver and brain samples, indicating that the 2.4 min data acquisition method had a higher repeatability than the 1.2 and 4.8 min methods. A data pipeline was constructed using the R software, and it was proven that it can (i) automatically generate box-and-whisker plots for all metabolites, (ii) perform multivariate analyses such as principal component analysis (PCA) and projection to latent structures-discriminant analysis (PLS-DA), (iii) generate score and loading plots of PCA and PLS-DA, (iv) calculate variable importance of projection (VIP) values, (v) determine a statistical family by VIP value criterion, (vi) perform tests of significance with the false discovery rate (FDR) correction method, and (vii) draw box-and-whisker plots only for significantly changed metabolites. These tasks could be completed within ca. 1 min. Finally, PiTMaP was applied to two cases: (1) an acetaminophen-induced acute liver injury model and control mice and (2) human meningioma samples with different grades (G1-G3), demonstrating the feasibility of PiTMaP. PiTMaP was found to perform data acquisition without tedious sample preparation and a posthoc data analysis within ca. 1 min. Thus, it would be a universal platform to perform rapid metabolic profiling of biological samples.
Collapse
Affiliation(s)
- Kei Zaitsu
- In Vivo Real-Time Omics Laboratory, Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.,Department of Legal Medicine & Bioethics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Seiichiro Eguchi
- Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Tomomi Ohara
- Department of Legal Medicine & Bioethics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Kenta Kondo
- Department of Legal Medicine & Bioethics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Akira Ishii
- Department of Legal Medicine & Bioethics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Hitoshi Tsuchihashi
- Department of Legal Medicine & Bioethics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Akira Iguchi
- Marine Geo-Environment Research Group, Institute of Geology and Geoinformation, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| |
Collapse
|
7
|
Lee HK, Kim K, Lee J, Lee J, Lee J, Kim S, Lee SE, Kim JH. Targeted toxicometabolomics of endosulfan sulfate in adult zebrafish (Danio rerio) using GC-MS/MS in multiple reaction monitoring mode. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:122056. [PMID: 32000124 DOI: 10.1016/j.jhazmat.2020.122056] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/16/2019] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
Endosulfan sulfate is a major oxidative metabolite of the chlorinated insecticide endosulfan. In this study, a targeted metabolomics approach was used to investigate the toxic mechanisms of endosulfan sulfate in adult zebrafish using the multiple reaction monitoring mode of a GC-MS/MS. The LC50 of endosulfan sulfate in adult zebrafish was determined and then zebrafish were exposed to endosulfan sulfate at one-tenth the LC50 (0.1LC50) or the LC50 for 24 and 48 h. After exposure, the fish were extracted, derivatized and analyzed by GC-MS/MS for 379 metabolites to identify 170 metabolites. Three experimental groups (control, 0.1LC50 and LC50) were clearly separated in PLS-DA score plots. Based on the VIP, ANOVA, and fold change results, 40 metabolites were selected as biomarkers. Metabolic pathways associated with those metabolites were identified using MetaboAnalyst 4.0 as follows: aminoacyl-tRNA biosynthesis, valine/leucine/isoleucine biosynthesis, citrate cycle, glycerolipid metabolism, and arginine/proline metabolism. Gene expression studies confirmed the activation of citrate cycle and glycerolipids metabolism. MDA levels of the exposed group significantly increased in oxidative toxicity assay tests. Such significant perturbations of important metabolites within key biochemical pathways must result in biologically hazardous effects in zebrafish.
Collapse
Affiliation(s)
- Hwa-Kyung Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyeongnam Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Junghak Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jonghwa Lee
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Jiho Lee
- Environmental Medical Center, Korea Conformity Laboratories, Incheon, 21999, Republic of Korea
| | - Sooyeon Kim
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Gyeongsangnam-do, 52834, Republic of Korea
| | - Sung-Eun Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Jeong-Han Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
8
|
A preliminary study of rapid-fire high-throughput metabolite analysis using nano-flow injection/Q-TOFMS. Anal Bioanal Chem 2020; 412:4127-4134. [DOI: 10.1007/s00216-020-02645-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/17/2020] [Accepted: 04/04/2020] [Indexed: 12/25/2022]
|
9
|
Optimal inter-batch normalization method for GC/MS/MS-based targeted metabolomics with special attention to centrifugal concentration. Anal Bioanal Chem 2019; 411:6983-6994. [DOI: 10.1007/s00216-019-02073-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/29/2019] [Accepted: 08/05/2019] [Indexed: 11/26/2022]
|
10
|
Occlusal interference induces oxidative stress and increases the expression of UCP3 in the masseter muscle: A rat model. Arch Oral Biol 2019; 102:249-255. [PMID: 31096116 DOI: 10.1016/j.archoralbio.2019.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/17/2019] [Accepted: 04/30/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To determine whether occlusal alteration contributes to masticatory muscle damage by inducing oxidative stress. DESIGN Thirty Sprague-Dawley rats were randomly divided into six groups, including occlusal interference groups (3 days, 7 days, 14 days, 21 days, and removal for 3 days) and a sham group. A rat experimental model of occlusal interference was generated by a 0.6-mm unilateral bite-raise. The rats were euthanised for evaluation of histologic changes in the masseter muscles using haematoxylin-eosin staining. To further investigate the role of oxidative stress and uncoupling protein (UCP3) in the development of occlusal dysfunction-induced masseter damage, levels of UCP3 protein were measured by western blot analysis. RESULTS Compared with the sham group, the connective tissue of the masseter muscle was extended partially and inflammatory cells appeared following the induction of malocclusion. With respect to the oxidative stress markers, there were increases in malondialdehyde (MDA) content but decreases in superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities; furthermore, the expression of UCP3 was upregulated. After eliminating the occlusal interference for 3 days, the degree of inflammation was substantially alleviated, the MDA content decreased, and SOD and GPX activities increased. The expression of UCP3 decreased. CONCLUSIONS Occlusal interference induces oxidative stress in the masseter muscle, regulated by UCP3. Overall, these findings have significant implications for the understanding of how occlusal dysfunction causes muscle fatigue and pain.
Collapse
|