1
|
Nam H, Han J, Yu J, Cho C, Kim D, Kim Y, Kim M, Kim J, Jo D, Bae S. Autophagy induction enhances homologous recombination-associated CRISPR-Cas9 gene editing. Nucleic Acids Res 2025; 53:gkaf258. [PMID: 40239991 PMCID: PMC11997770 DOI: 10.1093/nar/gkaf258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/24/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated protein 9)-based gene editing via homologous recombination (HR) enables precise gene correction and insertion. However, its low efficiency poses a challenge due to the predominance of nonhomologous end-joining during DNA repair processes. Although numerous efforts have been made to boost HR efficiency, there remains a critical need to devise a novel method that can be universally applied across cell types and in vivo animals, which could ultimately facilitate therapeutic treatments. This study demonstrated that autophagy induction using different protocols, including nutrient deprivation or chemical treatment, significantly improved HR-associated gene editing at diverse genomic loci in mammalian cells. Notably, interacting cofactor proteins that bind to Cas9 under the autophagic condition have been identified, and autophagy induction could also enhance in vivo HR-associated gene editing in mice. These findings pave the way for effective gene correction or insertion for in vivo therapeutic treatments.
Collapse
Affiliation(s)
- Hye Jin Nam
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jun Hee Han
- Department of Chemistry, Hanyang University, Seoul 04673, Republic of Korea
| | - Jihyeon Yu
- Medical Research Center of Genomic Medicine Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Chang Sik Cho
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Biomedical Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Dongha Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Young Eun Kim
- Center for Bioanalysis, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Min Ji Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jeong Hun Kim
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Biomedical Research Institute, Seoul National University, Seoul 03080, Republic of Korea
- Global Excellence Center for Gene & Cell Therapy (GEC-GCT), Seoul National University Hospital, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Dong Hyun Jo
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sangsu Bae
- Medical Research Center of Genomic Medicine Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
2
|
Pimentel JM, Zhou JY, Wu GS. Autophagy and cancer therapy. Cancer Lett 2024; 605:217285. [PMID: 39395780 DOI: 10.1016/j.canlet.2024.217285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Autophagy is an intracellular degradation process that sequesters cytoplasmic components in double-membrane vesicles known as autophagosomes, which are degraded upon fusion with lysosomes. This pathway maintains the integrity of proteins and organelles while providing energy and nutrients to cells, particularly under nutrient deprivation. Deregulation of autophagy can cause genomic instability, low protein quality, and DNA damage, all of which can contribute to cancer. Autophagy can also be overactivated in cancer cells to aid in cancer cell survival and drug resistance. Emerging evidence indicates that autophagy has functions beyond cargo degradation, including roles in tumor immunity and cancer stem cell survival. Additionally, autophagy can also influence the tumor microenvironment. This feature warrants further investigation of the role of autophagy in cancer, in which autophagy manipulation can improve cancer therapies, including cancer immunotherapy. This review discusses recent findings on the regulation of autophagy and its role in cancer therapy and drug resistance.
Collapse
Affiliation(s)
- Julio M Pimentel
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA; Institutional Research Academic Career Development Award Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jun Ying Zhou
- Molecular Therapeutics Program, Karmanos Cancer Institute, Detroit, MI, 48201, USA; Department of Oncology, Wayne State University, Detroit, MI, 48201, USA
| | - Gen Sheng Wu
- Molecular Therapeutics Program, Karmanos Cancer Institute, Detroit, MI, 48201, USA; Department of Oncology, Wayne State University, Detroit, MI, 48201, USA; Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
3
|
Emran TB, Shahriar A, Mahmud AR, Rahman T, Abir MH, Siddiquee MFR, Ahmed H, Rahman N, Nainu F, Wahyudin E, Mitra S, Dhama K, Habiballah MM, Haque S, Islam A, Hassan MM. Multidrug Resistance in Cancer: Understanding Molecular Mechanisms, Immunoprevention and Therapeutic Approaches. Front Oncol 2022; 12:891652. [PMID: 35814435 PMCID: PMC9262248 DOI: 10.3389/fonc.2022.891652] [Citation(s) in RCA: 233] [Impact Index Per Article: 77.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. Several treatments are available for cancer treatment, but many treatment methods are ineffective against multidrug-resistant cancer. Multidrug resistance (MDR) represents a major obstacle to effective therapeutic interventions against cancer. This review describes the known MDR mechanisms in cancer cells and discusses ongoing laboratory approaches and novel therapeutic strategies that aim to inhibit, circumvent, or reverse MDR development in various cancer types. In this review, we discuss both intrinsic and acquired drug resistance, in addition to highlighting hypoxia- and autophagy-mediated drug resistance mechanisms. Several factors, including individual genetic differences, such as mutations, altered epigenetics, enhanced drug efflux, cell death inhibition, and various other molecular and cellular mechanisms, are responsible for the development of resistance against anticancer agents. Drug resistance can also depend on cellular autophagic and hypoxic status. The expression of drug-resistant genes and the regulatory mechanisms that determine drug resistance are also discussed. Methods to circumvent MDR, including immunoprevention, the use of microparticles and nanomedicine might result in better strategies for fighting cancer.
Collapse
Affiliation(s)
- Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Asif Shahriar
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX, United States
| | - Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Tanjilur Rahman
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Chittagong, Chittagong, Bangladesh
| | - Mehedy Hasan Abir
- Faculty of Food Science and Technology, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| | | | - Hossain Ahmed
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
| | - Nova Rahman
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Dhaka, Bangladesh
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Elly Wahyudin
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Mahmoud M. Habiballah
- Medical Laboratory Technology Department, Jazan University, Jazan, Saudi Arabia
- SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Bursa Uludağ University Faculty of Medicine, Bursa, Turkey
| | | | - Mohammad Mahmudul Hassan
- Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
- Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram, Bangladesh
| |
Collapse
|
4
|
miR-651-3p Enhances the Sensitivity of Hepatocellular Carcinoma to Cisplatin via Targeting ATG3-Mediated Cell Autophagy. JOURNAL OF ONCOLOGY 2021; 2021:5391977. [PMID: 34457004 PMCID: PMC8390158 DOI: 10.1155/2021/5391977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/10/2021] [Indexed: 11/25/2022]
Abstract
Drug resistance is a major challenge for hepatocellular carcinoma (HCC) treatment in a clinic, which limits the therapeutic effect of the chemotherapeutic drugs, including cisplatin (CDDP), in this disease. Mounting evidence has identified that miRNAs dysfunction is related to the resistance of tumor cells to CDDP, and miR-651-3p has been identified as a tumor inhibitor to suppress the progression of multiple tumors. However, the role of miR-651-3p in HCC remains unclear. In this study, the relative expression of miR-651-3p in HCC tissues and cell lines were measured, and the functions of miR-651-3p were also observed by CCK-8 assay, flow cytometry assay, and Western blot. Moreover, the downstream target of miR-651-3p was predicted and verified via TargetScan and dual-luciferase reporter assay, and its functions were also investigated. The results showed that miR-651-3p was significantly downregulated in HCC tissues and cell lines, and the decreased miR-651-3p was also observed in CDDP-induced cells. miR-651-3p upregulation could effectively inhibit the proliferation and induce the apoptosis of R-HepG2. It was also found that ATG3 was a downstream target of miR-651-3p, and ATG3 was highly upregulated in HCC tissues. Moreover, the upregulated ATG3 could partly reverse the effects of miR-651-3p on R-HepG2. Besides, miR-651-3p involved the autophagy pathway of the HCC cells via targeting ATG3. In conclusion, miR-651-3p could regulate the autophagy to enhance the sensitivity of HepG2 cells to CDDP via targeting ATG3.
Collapse
|
5
|
Peng Z, Ji D, Qiao L, Chen Y, Huang H. Autophagy Inhibition by ATG3 Knockdown Remits Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury and Inflammation in Brain Microvascular Endothelial Cells. Neurochem Res 2021; 46:3200-3212. [PMID: 34379294 DOI: 10.1007/s11064-021-03423-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 07/18/2021] [Accepted: 08/04/2021] [Indexed: 01/05/2023]
Abstract
Autophagy participates in the development of cerebral ischemia stroke. Autophagy-related 3 (ATG3), an important autophagy regulator, was reported to be upregulated in a rat model of cerebral ischemia/reperfusion (CI/R) injury and an oxygen-glucose deprivation/reoxygenation (OGD/R) cell model. However, the detailed role of ATG3 in CI/R injury remains elusive. An in vitro cellular model was established to mimic CI/R injury by exposing hBMECs and bEnd.3 cells to OGD/R. OGD/R-induced injury were evaluated by cell counting kit-8 (CCK-8), LDH release assay, caspase-3 activity assay and TUNEL assay. Inflammation was assessed by detecting mRNA expression and concentrations of interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α) using qRT-PCR and ELISA, respectively. The protein levels of ATG3, light chain 3 (LC3)-I, LC3-II, p62, protein kinase B (Akt), and phosphorylated Akt (p-Akt) were determined by western blot analysis. We successfully established an in vitro OGD/R injury model using hBMECs and bEnd.3 cells. ATG3 was time-dependently upregulated and ATG3 knockdown inhibited autophagy in OGD/R-challenged brain microvascular endothelial cells. Moreover, autophagy inhibition by ATG3 interference attenuated OGD/R-induced viability inhibition and increase of LDH release, caspase-3 activity, programmed cell death, and production of IL-1β, IL-6 and TNF-α. Inhibition of autophagy by ATG3 silencing activated the phosphoinositide 3-kinase (PI3K)/Akt pathway in OGD/R-challenged brain microvascular endothelial cells. Furthermore, inhibition of the PI3K/Akt pathway reversed the protective effects of ATG3 silencing on OGD/R-induced injury and inflammation. In conclusion, autophagy inhibition by ATG3 knockdown remitted OGD/R-induced injury and inflammation in brain microvascular endothelial cells via activation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Zhaolong Peng
- Department of Severe Encephalopathy, Nanshi Hospital, Nanyang, 473065, China
| | - Daofei Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China
| | - Lukuan Qiao
- Department of Severe Encephalopathy, Nanshi Hospital, Nanyang, 473065, China
| | - Yuedong Chen
- Department of Severe Encephalopathy, Nanshi Hospital, Nanyang, 473065, China
| | - Hongjuan Huang
- Department of Neurology, Huai'an Second People's Hospital, The Affiliated Huai'an Hospital of Xuzhou Medical University, 62 South Huaihai Road, Huai'an, 223300, China.
| |
Collapse
|
6
|
Hepatoprotective effect of anemoside B4 against sepsis-induced acute liver injury through modulating the mTOR/p70S6K-mediated autophagy. Chem Biol Interact 2021; 345:109534. [PMID: 34051206 DOI: 10.1016/j.cbi.2021.109534] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/25/2021] [Accepted: 05/24/2021] [Indexed: 12/27/2022]
Abstract
Sepsis triggers liver dysfunction with high morbidity and mortality. Here, we elucidated the effect of anemoside B4 on sepsis in cecal ligation and puncture (CLP)-induced mouse model and LPS-induced primary hepatocytes. Following CLP surgery, septic mice were intraperitoneally injected with anemoside B4 (50 or 100 mg/kg). Anemoside B4 improved septic mouse survival rate, decreased serum AST and ALT levels and attenuated liver histopathologic damages. Western blot analysis showed that anemoside B4 elevated the expression of Beclin-1, LC3II/LC3I, Atg3, Atg5, and Atg7, and reduced p62, suggesting the restoration of autophagy flux in liver. More autophagic vesicles were observed in liver after anemoside B4 treatment using transmission electron microscopy. Using ELISA and commercial enzyme kits, we found that anemoside B4 decreased serum TNF-α, IL-6, and IL-1β levels and increased CAT, SOD and GSH activities. TUNEL staining and western blot revealed that anemoside B4 suppressed cell apoptosis, along with decreased Bax, leaved caspase-3, cleaved PARP, but increased Bcl-2. Consistent with in vivo findings, anemoside B4 inhibited apoptosis, inflammatory response, and oxidative stress and enhanced autophagy in LPS-induced primary hepatocytes. Importantly, these cellular processes were possibly mediated by mTOR/p70S6K signaling, as reflected by the offset of 3-MA in the immunosuppression of anemoside B4.
Collapse
|
7
|
Yu H, Zhou X, Zhang Y, Wen K, Yan Z, Fu H, Zhu Y. Flutamide induces uterus and ovary damage in the mouse via apoptosis and excessive autophagy of cells following triggering of the unfolded protein response. Reprod Fertil Dev 2021; 33:466-475. [PMID: 33789078 DOI: 10.1071/rd20287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/09/2021] [Indexed: 11/23/2022] Open
Abstract
Intrauterine exposure to flutamide not only causes abnormal development of the reproductive organs in male offspring, but also damages ovaries and uteri. The unfolded protein response (UPR) is believed to play an important role in embryo development and teratogenic processes. In the present study, pregnant mice were administered either flutamide (300mg kg-1 day-1, p.o.) on an equivalent volume of soybean oil (control) on Days 12-18 of gestation. Eight weeks after birth, female offspring in the flutamide-treated group had a lower bodyweight and lower ovarian and uterine weights, but there was no significant difference in uterine and ovarian weights normalised by bodyweight between the flutamide-treated and control groups. Furthermore, histopathological changes were observed in all uteri and ovaries in the flutamide-treated group, with fewer and less-developed follicles in the ovaries. In both the uteri and ovaries, flutamide increased the expression of UPR members, although the expression of cell cycle-related genes remained unchanged compared with the control group. Flutamide increased the expression of all autophagy- and apoptosis-related genes evaluated in the uterus, as well as some in the ovary. The results suggest that the in utero exposure of mice to flutamide may contribute to uterine and ovarian damage in the offspring, with endoplasmic reticulum stress possibly triggered by the UPR leading to the induction of excessive autophagy and apoptosis.
Collapse
Affiliation(s)
- Haiming Yu
- Department of Critical Medicine, The First Affiliated Hospital of Hunan Normal University (The People's Hospital of Hunan Province), Changsha 410002, PR China
| | - Xiaoqing Zhou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Medical School, Hunan Normal University, Changsha 410013, PR China; and Department of Infection Control, The Eighth Hospital of Xi'An/Shanxi Provincial Infectious Disease Hospital, Xi'An 710061, PR China
| | - Yujing Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Medical School, Hunan Normal University, Changsha 410013, PR China
| | - Kexin Wen
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Medical School, Hunan Normal University, Changsha 410013, PR China; and Changsha Center for Disease Control and Prevention of Hunan Province, Changsha 410004, PR China
| | - Zhengli Yan
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Medical School, Hunan Normal University, Changsha 410013, PR China
| | - Hu Fu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Medical School, Hunan Normal University, Changsha 410013, PR China
| | - Yongfei Zhu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Medical School, Hunan Normal University, Changsha 410013, PR China; and Corresponding author.
| |
Collapse
|
8
|
Wu L, Quan W, Yue G, Luo Q, Peng D, Pan Y, Zhang G. Identification of a novel six autophagy-related genes signature for the prognostic and a miRNA-related autophagy predictor for anti-PD-1 therapy responses in prostate cancer. BMC Cancer 2021; 21:15. [PMID: 33402116 PMCID: PMC7786978 DOI: 10.1186/s12885-020-07725-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/11/2020] [Indexed: 12/19/2022] Open
Abstract
Background Autophagy is a highly conserved homeostatic process in the human body that is responsible for the elimination of aggregated proteins and damaged organelles. Several autophagy-related genes (ARGs) contribute to the process of tumorigenesis and metastasis of prostate cancer (PCa). Also, miRNAs have been proven to modulate autophagy by targeting some ARGs. However, their potential role in PCa still remains unclear. Methods An univariate Cox proportional regression model was used to identify 17 ARGs associated with the overall survival (OS) of PCa. Then, a multivariate Cox proportional regression model was used to construct a 6 autophagy-related prognostic genes signature. Patients were divided into low-risk group and high-risk group using the median risk score as a cutoff value. High-risk patients had shorter OS than low-risk patients. Furthermore, the signature was validated by ROC curves. Regarding mRNA and miRNA, 12 differentially expressed miRNAs (DEMs) and 1073 differentially expressed genes (DEGs) were detected via the GEO database. We found that miR-205, one of the DEMs, was negatively regulated the expression of ARG (NKX2–3). Based on STRING analysis results, we found that the NKX2–3 was moderately related to the part of genes among the 6 autophagy-related genes prognostic signature. Further, NKX 2–3 was significantly correlated with OS and some clinical parameters of PCa by cBioProtal. By gene set enrichment analysis (GSEA). Lastly, we demonstrated that the association between NKX2–3 and tumor mutation burden (TMB) and PDCD1 (programmed cell death 1) of PCa. Results We identified that the six ARGs expression patterns are independent predictors of OS in PCa patients. Furthermore, our results suggest that ARGs and miRNAs are inter-related. MiR-205 was negatively regulated the expression of ARG (NKX2–3). Further analysis demonstrated that NKX2–3 may be a potential biomarker for predicting the efficacy of anti-PD-1 therapy in PCa. Conclusions The current study may offer a novel autophagy-related prognostic signature and may identify a promising miRNA-ARG pathway for predicting the efficacy of anti-PD-1 therapy in PCa.
Collapse
Affiliation(s)
- Lei Wu
- Department of Oncology, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), Zhuhai, Guangdong Province, P. R. China
| | - Wen Quan
- Department of Oncology, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), Zhuhai, Guangdong Province, P. R. China
| | - Guojun Yue
- Zunyi Medical University, Zunyi, Guizhou Province, P. R. China
| | - Qiong Luo
- Department of Oncology, Affiliated Zhuhai Hospital, Southern Medical University, Zhuhai, Guangdong Province, P. R. China
| | - Dongxu Peng
- Department of Oncology, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), Zhuhai, Guangdong Province, P. R. China
| | - Ying Pan
- Department of Oncology, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), Zhuhai, Guangdong Province, P. R. China.
| | - Guihai Zhang
- Department of Oncology, Zhuhai People's Hospital (Zhuhai Hospital affiliated with Jinan University), Zhuhai, Guangdong Province, P. R. China. .,Zunyi Medical University, Zunyi, Guizhou Province, P. R. China.
| |
Collapse
|
9
|
Autophagy: A novel mechanism of chemoresistance in cancers. Biomed Pharmacother 2019; 119:109415. [DOI: 10.1016/j.biopha.2019.109415] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/12/2022] Open
|
10
|
Zhang Y, Li F, Liu L, Jiang H, Hu H, Du X, Ge X, Cao J, Wang Y. Salinomycin triggers endoplasmic reticulum stress through ATP2A3 upregulation in PC-3 cells. BMC Cancer 2019; 19:381. [PMID: 31023247 PMCID: PMC6482559 DOI: 10.1186/s12885-019-5590-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 04/09/2019] [Indexed: 02/06/2023] Open
Abstract
Background Salinomycin is a monocarboxylic polyether antibiotic and is a potential chemotherapy drug. Our previous studies showed that salinomycin inhibited cell growth and targeted CSCs in prostate cancer. However, the precise target of salinomycin action is unclear. Methods In this work, we analyzed and identified differentially expressed genes (DEGs) after treatment with or without salinomycin using a gene expression microarray in vitro (PC-3 cells) and in vivo (NOD/SCID mice xenograft model generated from implanted PC-3 cells). Western blotting and immunohistochemical staining were used to analyze the expression of ATP2A3 and endoplasmic reticulum (ER) stress biomarkers. Flow cytometry was used to analyze the cell cycle, apoptosis and intracellular Ca2+ concentration. Results A significantly upregulated gene, ATPase sarcoplasmatic/endoplasmatic reticulum Ca2+ transporting 3 (ATP2A3), was successfully identified. In subsequent studies, we found that ATP2A3 overexpression could trigger ER stress and exert anti-cancer effects in PC-3 and DU145 cells. ATP2A3 was slightly expressed, but the ER stress biomarkers showed strong staining in prostate cancer tissues. We also found that salinomycin could trigger ER stress, which might be related to ATP2A3-mediated Ca2+ release in PC-3 cells. Furthermore, we found that salinomycin-triggered ER stress could promote apoptosis and thus exert anti-cancer effects in prostate cancer cells. Conclusion This study demonstrates that ATP2A3 might be one of the potential targets for salinomycin, which can inhibit Ca2+ release and trigger ER stress to exert anti-cancer effects.
Collapse
Affiliation(s)
- Yunsheng Zhang
- Clinical Research Institute, The Second Affiliated Hospital, University of South China; Clinical Research Center For Breast & Thyroid Disease Prevention In Hunan Province, Hengyang, 421001, People's Republic of China
| | - Fang Li
- College of Nursing, Hunan Polytechnic of Environment and Biology, Hengyang, 421005, People's Republic of China
| | - Luogen Liu
- Clinical Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, 421001, People's Republic of China
| | - Hongtao Jiang
- Department of Urology, The Second Hospital, University of South China, Hengyang, 421001, People's Republic of China
| | - Hua Hu
- Cancer Research Institute, The Second Hospital, University of South China, Hengyang, 421001, People's Republic of China
| | - Xiaobo Du
- Department of Urology, The First People's Hospital Yueyang, Yueyang, 414000, People's Republic of China
| | - Xin Ge
- Clinical Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, 421001, People's Republic of China
| | - Jingsong Cao
- Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, People's Republic of China
| | - Yi Wang
- Department of Urology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570102; Clinical Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, 421001, People's Republic of China.
| |
Collapse
|
11
|
Antoszczak M. A medicinal chemistry perspective on salinomycin as a potent anticancer and anti-CSCs agent. Eur J Med Chem 2019; 164:366-377. [DOI: 10.1016/j.ejmech.2018.12.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/20/2018] [Accepted: 12/24/2018] [Indexed: 01/30/2023]
|
12
|
Chen YX. Protective effect of microRNA-224 on acute lower extremity ischemia through activation of the mTOR signaling pathway via CHOP in mice. J Cell Physiol 2018; 234:8888-8898. [PMID: 30488423 DOI: 10.1002/jcp.27550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 09/13/2018] [Indexed: 01/08/2023]
Abstract
Acute lower extremity ischemia (ALEXI) is known worldwide as an urgent condition, occurring when there is an abrupt interruption in blood flow into an extremity. This study aims to investigate whether microRNA-224 (miR-224) affects the ALEXI mice and the underlying mechanism. The miR-224 expression and C/EBP homologous protein (CHOP), mammalian target of rapamycin (mTOR), translation initiation factor 4E-binding protein 1 (4E-BP1), and phosphoprotein 70 ribosomal protein S6 kinase (p70S6K) messenger RNA (mRNA), as well as protein expressions, were determined. The target gene of miR-224 was also verified by using a luciferase reporter gene assay. The vascular endothelial cells from the ALEXI mice were transfected with miR-224 mimics, miR-224 inhibitors, or small-interfering RNA against CHOP. Cell proliferation was assessed using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cell cycle distribution along with the cell apoptosis were both evaluated by using a flow cytometry. The muscle fibers of the lower extremities found in the ALEXI mice were evidently swollen and rounded, presenting with a remarkably narrowed gap. The positive CHOP expression increased in ALEXI mice than normal mice, while the miR-224 expression and mTOR, 4E-BP1, and p70S6K mRNA, as well as the protein expression, decreased. Luciferase reporter gene assay validated that the miR-224 gene directly targeted CHOP. MiR-224 facilitated cell proliferation but inhibited cell apoptosis; by contrast, CHOP increased cell apoptosis. Moreover, the cells transfected along with miR-224 mimic exhibited a lower CHOP expression as well as increased mTOR, 4E-BP1, and p70S6K expression. Our study provided evidence that miR-224 could alleviate the occurrence and development of ALEXI in mice through activation of the mTOR signaling pathway by downregulating CHOP.
Collapse
Affiliation(s)
- Yang-Xi Chen
- Department of Hematology Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|