1
|
Azevedo VAN, De Assis EIT, Silva AWB, Costa FDC, Souza LF, Silva JRV. α-Pinene Improves Follicle Morphology and Increases the Expression of mRNA for Nuclear Factor Erythroid 2-Related Factor 2 and Peroxiredoxin 6 in Bovine Ovarian Tissues Cultured In Vitro. Animals (Basel) 2024; 14:1443. [PMID: 38791661 PMCID: PMC11117312 DOI: 10.3390/ani14101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Oxidative stress during in vitro of ovarian tissues has adverse effects on follicle survival. α-pinene is a monoterpenoid molecule with antioxidant activity that has great potential to maintain cell survival in vitro. This study investigated the effect of α-pinene (1.25, 2.5, 5.0, 10.0, or 20.0 μg/mL) on primordial follicle growth and morphology, as well as on stromal cells and collagen fibers in bovine ovarian slices cultured for six days. The effect of α-pinene on transcripts of catalase (CAT), superoxide dismutase (SOD), peroxiredoxin 6 (PRDX6), glutathione peroxidase (GPX1), and nuclear factor erythroid 2-related factor 2 (NRF2) was investigated by real-time PCR. The tissues were processed for histological analysis to evaluate follicular growth, morphology, stromal cell density, and collagen fibers. The results showed that 2.5, 5.0, or 10.0 µg/mL α-pinene increased the percentages of normal follicles but did not influence follicular growth. The α-pinene (10.0 µg/mL) kept the stromal cell density and collagen levels in cultured bovine ovarian tissue like uncultured tissues. Ovarian tissues cultured in control medium had reduced expression of mRNA for NRF2, SOD, CAT, GPX1, and PRDX6, but α-pinene (10.0 µg/mL) increased mRNA levels for NRF2 and PRDX6. In conclusion, 10.0 µg/mL α-pinene improves the follicular survival, preserves stromal cell density and collagen levels, and increases transcripts of NRF2 and PRDX6 after in vitro culture of bovine ovarian tissue.
Collapse
Affiliation(s)
| | - Ernando Igo Teixeira De Assis
- Laboratory of Biotechnology and Physiology of Reproduction, Federal University of Ceara, Sobral 62041-040, CE, Brazil
| | - Anderson Weiny Barbalho Silva
- Laboratory of Biotechnology and Physiology of Reproduction, Federal University of Ceara, Sobral 62041-040, CE, Brazil
| | - Francisco Das Chagas Costa
- Laboratory of Biotechnology and Physiology of Reproduction, Federal University of Ceara, Sobral 62041-040, CE, Brazil
| | - Layana Freitas Souza
- Laboratory of Biochemistry and Gene Expression, State University of Ceara, Fortaleza 60714-903, CE, Brazil
| | - José Roberto Viana Silva
- Laboratory of Biotechnology and Physiology of Reproduction, Federal University of Ceara, Sobral 62041-040, CE, Brazil
| |
Collapse
|
2
|
Li F, Zhi J, Zhao R, Sun Y, Wen H, Cai H, Chen W, Jiang X, Bai R. Discovery of matrix metalloproteinase inhibitors as anti-skin photoaging agents. Eur J Med Chem 2024; 267:116152. [PMID: 38278079 DOI: 10.1016/j.ejmech.2024.116152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Photodamage is the result of prolonged exposure of the skin to sunlight. This exposure causes an overexpression of matrix metalloproteinases (MMPs), leading to the abnormal degradation of collagen in the skin tissue and resulting in skin aging and damage. This review presents a detailed overview of MMPs as a potential target for addressing skin aging. Specifically, we elucidated the precise mechanisms by which MMP inhibitors exert their anti-photoaging effects. Furthermore, we comprehensively analyzed the current research progress on MMP inhibitors that demonstrate significant inhibitory activity against MMPs and anti-skin photoaging effects. The review also provides insights into the structure-activity relationships of these inhibitors. Our objective in conducting this review is to provide valuable practical information to researchers engaged in investigations on anti-skin photoaging.
Collapse
Affiliation(s)
- Feifan Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Jia Zhi
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Rui Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Yinyan Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Hao Wen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Hong Cai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Wenchao Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaoying Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Renren Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China; Key Laboratory of Elemene Class Anti-tumor Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
3
|
Stoykova ID, Koycheva IK, Binev BK, Mihaylova LV, Benina MY, Alipieva KI, Georgiev MI. Myconoside and Calceolarioside E Restrain UV-Induced Skin Photoaging by Activating NRF2-Mediated Defense Mechanisms. Int J Mol Sci 2024; 25:2441. [PMID: 38397118 PMCID: PMC10888667 DOI: 10.3390/ijms25042441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Chronic and excessive ultraviolet (UVA/UVB) irradiation exposure is known as a major contributor to premature skin aging, which leads to excessive reactive oxygen species generation, disturbed extracellular matrix homeostasis, DNA damage, and chronic inflammation. Sunscreen products are the major preventive option against UVR-induced photodamage, mostly counteracting the acute skin effects and only mildly counteracting accelerated aging. Therefore, novel anti-photoaging and photopreventive compounds are a subject of increased scientific interest. Our previous investigations revealed that the endemic plant Haberlea rhodopensis Friv. (HRE) activates the antioxidant defense through an NRF2-mediated mechanism in neutrophiles. In the present study, we aimed to investigate the photoprotective potential of HRE and two of its specialized compounds-the phenylethanoid glycosides myconoside (MYC) and calceolarioside E (CAL)-in UVA/UVB-stimulated human keratinocytes in an in vitro model of photoaging. The obtained data demonstrated that the application of HRE, MYC, and CAL significantly reduced intracellular ROS formation in UVR-exposed HaCaT cells. The NRF2/PGC-1α and TGF-1β/Smad/Wnt signaling pathways were pointed out as having a critical role in the observed CAL- and MYC-induced photoprotective effect. Collectively, CAL is worth further evaluation as a potent natural NRF2 activator and a promising photoprotective agent that leads to the prevention of UVA/UVB-induced premature skin aging.
Collapse
Affiliation(s)
- Iva D. Stoykova
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria (L.V.M.)
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
| | - Ivanka K. Koycheva
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
| | - Biser K. Binev
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
| | - Liliya V. Mihaylova
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria (L.V.M.)
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
| | - Maria Y. Benina
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria (L.V.M.)
| | - Kalina I. Alipieva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Milen I. Georgiev
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria (L.V.M.)
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
| |
Collapse
|
4
|
Zuzarte M, Sousa C, Alves-Silva J, Salgueiro L. Plant Monoterpenes and Essential Oils as Potential Anti-Ageing Agents: Insights from Preclinical Data. Biomedicines 2024; 12:365. [PMID: 38397967 PMCID: PMC10886757 DOI: 10.3390/biomedicines12020365] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Ageing is a natural process characterized by a time-dependent decline of physiological integrity that compromises functionality and inevitably leads to death. This decline is also quite relevant in major human pathologies, being a primary risk factor in neurodegenerative diseases, metabolic disorders, cardiovascular diseases and musculoskeletal disorders. Bearing this in mind, it is not surprising that research aiming at improving human health during this process has burst in the last decades. Importantly, major hallmarks of the ageing process and phenotype have been identified, this knowledge being quite relevant for future studies towards the identification of putative pharmaceutical targets, enabling the development of preventive/therapeutic strategies to improve health and longevity. In this context, aromatic plants have emerged as a source of potential bioactive volatile molecules, mainly monoterpenes, with many studies referring to their anti-ageing potential. Nevertheless, an integrated review on the current knowledge is lacking, with several research approaches studying isolated ageing hallmarks or referring to an overall anti-ageing effect, without depicting possible mechanisms of action. Herein, we aim to provide an updated systematization of the bioactive potential of volatile monoterpenes on recently proposed ageing hallmarks, and highlight the main mechanisms of action already identified, as well as possible chemical entity-activity relations. By gathering and categorizing the available scattered information, we also aim to identify important research gaps that could help pave the way for future research in the field.
Collapse
Affiliation(s)
- Mónica Zuzarte
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.A.-S.); (L.S.)
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Cátia Sousa
- iNOVA4HEALTH, NOVA Medical School, Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, 1159-056 Lisboa, Portugal;
- Centro Clínico e Académico de Lisboa, 1156-056 Lisboa, Portugal
| | - Jorge Alves-Silva
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.A.-S.); (L.S.)
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Lígia Salgueiro
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.A.-S.); (L.S.)
- Univ Coimbra, Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| |
Collapse
|
5
|
Kotb EA, El-Shiekh RA, Abd-Elsalam WH, El Sayed NSED, El Tanbouly N, El Senousy AS. Protective potential of frankincense essential oil and its loaded solid lipid nanoparticles against UVB-induced photodamage in rats via MAPK and PI3K/AKT signaling pathways; A promising anti-aging therapy. PLoS One 2023; 18:e0294067. [PMID: 38127865 PMCID: PMC10735031 DOI: 10.1371/journal.pone.0294067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 10/24/2023] [Indexed: 12/23/2023] Open
Abstract
Frankincense oil has gained increased popularity in skin care, yet its anti-aging effect remains unclear. The current study aimed to investigate the anti-photoaging effect of frankincense (Boswellia papyrifera (Del.) Hochst., Family Burseraceae) essential oil in an in vivo model. The oil was initially extracted by two methods: hydro-distillation (HD) and microwave-assisted hydro-distillation (MAHD). GC/MS analysis revealed the dominance of n-octyl acetate, along with other marker compounds of B. papyrifera including octanol and diterpene components (verticilla 4(20) 7, 11-triene and incensole acetate). Thereafter, preliminary investigation of the anti-collagenase and anti-elastase activities of the extracted oils revealed the superior anti-aging effect of HD-extracted oil (FO), comparable to epigallocatechin gallate. FO was subsequently formulated into solid lipid nanoparticles (FO-SLNs) via high shear homogenization to improve its solubility and skin penetration characteristics prior to in vivo testing. The optimimal formulation prepared with 0.5% FO, and 4% Tween® 80, demonstrated nanosized spherical particles with high entrapment efficiency percentage and sustained release for 8 hours. The anti-photoaging effect of FO and FO-SLNs was then evaluated in UVB-irradiated hairless rats, compared to Vitamin A palmitate as a positive standard. FO and FO-SLNs restored the antioxidant capacity (SOD and CAT) and prohibited inflammatory markers (IL6, NFκB p65) in UVB-irradiated rats via downregulation of MAPK (pERK, pJNK, and pp38) and PI3K/AKT signaling pathways, alongside upregulating TGF-β expression. Subsequently, our treatments induced Procollagen I synthesis and downregulation of MMPs (MMP1, MMP9), where FO-SLNs exhibited superior anti-photoaging effect, compared to FO and Vitamin A, highlighting the use of SLNs as a promising nanocarrier for FO. In particular, FO-SLNs revealed normal epidermal and dermal histological structures, protected against UVβ-induced epidermal thickness and dermal collagen degradation. Our results indicated the potential use of FO-SLNs as a promising topical anti-aging therapy.
Collapse
Affiliation(s)
- Eman A. Kotb
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Riham A. El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Wessam H. Abd-Elsalam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Nebal El Tanbouly
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | |
Collapse
|
6
|
Indirapriyadarshini R, Radhiga T, Kanimozhi G, Prasad NR. Preventive effect of andrographolide against ultraviolet-B radiation-induced oxidative stress and apoptotic signaling in human dermal fibroblasts. Cell Biochem Funct 2023; 41:1370-1382. [PMID: 37842803 DOI: 10.1002/cbf.3871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/19/2023] [Accepted: 10/07/2023] [Indexed: 10/17/2023]
Abstract
Ultraviolet radiation induces oxidative photoaging in the skin cells. In this study, we investigated the ability of andrographolide (ADP) to protect human dermal fibroblasts (HDFa) from UVB radiation-induced oxidative stress and apoptosis. The HDFa cells were exposed to UVB (19.8 mJ/cm2 ) radiation in the presence or absence of ADP (7 μM) and then oxidative stress and apoptotic protein expression were analyzed. UVB exposure resulted in a significant decline in the activity of antioxidant enzymes and altered mitochondrial membrane potential (MMP). Furthermore, UVB-irradiation causes increased intracellular reactive oxygen species (ROS) production, apoptotic morphological changes, and lipid peroxidation levels in the HDFa. Moreover, the pretreatment with ADP reduced the UVB-induced cytotoxicity, ROS production, and increased antioxidant enzymes activity. Further, the ADP pretreatment prevents the UVB-induced loss of MMP and apoptotic signaling in HDFa cells. Therefore, the present results suggest that ADP protects HDFa cells from UVB-induced oxidative stress and apoptotic damage.
Collapse
Affiliation(s)
| | - Thangaiyan Radhiga
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamilnadu, India
| | - Govindasamy Kanimozhi
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamilnadu, India
- Department of Biochemistry, Dharmapuram Gnanambigai Government Arts College for Women, Mayiladuthurai, India
| | - N Rajendra Prasad
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamilnadu, India
| |
Collapse
|
7
|
Alves-Silva JM, Moreira P, Cavaleiro C, Pereira C, Cruz MT, Salgueiro L. Effect of Ferulago lutea (Poir.) Grande Essential Oil on Molecular Hallmarks of Skin Aging. PLANTS (BASEL, SWITZERLAND) 2023; 12:3741. [PMID: 37960097 PMCID: PMC10648677 DOI: 10.3390/plants12213741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
With the increase in global life expectancy, maintaining health into old age becomes a challenge, and research has thus concentrated on various strategies which aimed to mitigate the effects of skin aging. Aromatic plants stand out as promising sources of anti-aging compounds due to their secondary metabolites, particularly essential oils (EOs). The aim of this study was to ascribe to Ferulago lutea EO several biological activities that could be useful in the context of skin aging. The EO was obtained using hydrodistillation and characterized by gas chromatography-mass spectrometry (GC/MS). The anti-inflammatory potential was assessed using lipopolysaccharide (LPS)-stimulated macrophages. The effect on cell migration was disclosed using scratch wound assay. Lipogenesis was induced using T0901317, hyperpigmentation with 3-isobutyl-1-methylxantine (IBMX) and senescence with etoposide. Our results show that the EO was characterized mainly by α-pinene and limonene. The EO was able to decrease nitric oxide (NO) release as well as iNOS and pro-IL-1β protein levels. The EO promoted wound healing while decreasing lipogenesis and having depigmenting effects. The EO also reduced senescence-associated β-galactosidase, p21/p53 protein levels and the nuclear accumulation of γH2AX. Overall, our study highlights the properties of F. lutea EO that make it a compelling candidate for dermocosmetics applications.
Collapse
Affiliation(s)
- Jorge M. Alves-Silva
- Univ Coimbra, Institute for Clinical and Biomedical Research, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal;
- Univ Coimbra, Faculty of Pharmacy, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal;
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology, 3000-548 Coimbra, Portugal; (P.M.); (C.P.)
| | - Patrícia Moreira
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology, 3000-548 Coimbra, Portugal; (P.M.); (C.P.)
- Univ Coimbra, Center for Neuroscience and Cell Biology, Faculty of Medicine, Rua Larga, 3004-504 Coimbra, Portugal;
| | - Carlos Cavaleiro
- Univ Coimbra, Faculty of Pharmacy, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal;
- Univ Coimbra, Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, 3030-790 Coimbra, Portugal
| | - Cláudia Pereira
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology, 3000-548 Coimbra, Portugal; (P.M.); (C.P.)
- Univ Coimbra, Center for Neuroscience and Cell Biology, Faculty of Medicine, Rua Larga, 3004-504 Coimbra, Portugal;
- Univ Coimbra, Faculty of Medicine, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
| | - Maria Teresa Cruz
- Univ Coimbra, Center for Neuroscience and Cell Biology, Faculty of Medicine, Rua Larga, 3004-504 Coimbra, Portugal;
| | - Lígia Salgueiro
- Univ Coimbra, Faculty of Pharmacy, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal;
- Univ Coimbra, Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, 3030-790 Coimbra, Portugal
| |
Collapse
|
8
|
Rodrigues PR, Wang X, Li Z, Lyu J, Wang W, Vieira RP. A new nano hyperbranched β-pinene polymer: Controlled synthesis and nonviral gene delivery. Colloids Surf B Biointerfaces 2023; 222:113032. [PMID: 36463608 DOI: 10.1016/j.colsurfb.2022.113032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/05/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Recently, an extensive research effort has been directed toward the improvement of nonviral transfection vectors, such as polymeric materials. The macromolecular structure of polymers has a substantial effect on their transfection efficacy. In this context, the modern advances in polymer production techniques, such as the deactivation-enhanced radical atom transfer polymerization (DE-ATRP), have been fundamental for the synthesis of controlled architecture nanomaterials. In this study, hyperbranched poly(β-pinene)-PDMAEMA-PEGDMA nanometric copolymers were synthesised at high conversion via DE-ATRP using different concentrations of β-pinene for gene delivery applications. The structural characterization and the biological performance of the materials were investigated. The copolymers' molar mass (10,434-16,438 mol l-1), dispersity, and conversion (90-95%) varied significantly with β-pinene proportion on the polymerizations. The polymer-gene complexes generated (280-110 nm) presented excellent solution stability due to the β-pinene segment on the copolymers. Gene delivery and transfection were highly dependent on the copolymer composition. The copolymers containing the highest β-pinene proportions exhibited the best results with high transfection effectivity. In conclusion, the incorporation of β-pinene in DMAEMA-PEGMA copolymer formulations is a renewable option to improve the materials' branching ratio, polyplex stability, and gene delivery performance without causing cytotoxic effects.
Collapse
Affiliation(s)
- Plínio R Rodrigues
- Department of Bioprocesses and Materials Engineering, School of Chemical Engineering, University of Campinas, Albert Einstein St. N. 500, 13083-852 Campinas, São Paulo, Brazil; Charles Institute of Dermatology, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland
| | - Xianqing Wang
- Charles Institute of Dermatology, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland
| | - Zishan Li
- Charles Institute of Dermatology, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland
| | - Jing Lyu
- Charles Institute of Dermatology, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland.
| | - Wenxin Wang
- Charles Institute of Dermatology, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland
| | - Roniérik P Vieira
- Department of Bioprocesses and Materials Engineering, School of Chemical Engineering, University of Campinas, Albert Einstein St. N. 500, 13083-852 Campinas, São Paulo, Brazil.
| |
Collapse
|
9
|
Maksimovic S, Stankovic M, Roganovic S, Nesic I, Zvezdanovic J, Tadic V, Zizovic I. Towards a modern approach to traditional use of Helichrysum italicum in dermatological conditions: In vivo testing supercritical extract on artificially irritated skin. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115779. [PMID: 36202166 DOI: 10.1016/j.jep.2022.115779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Helichrysum italicum has been widely used in traditional medicine to treat allergies, colds, cough, skin, liver and gallbladder disorders, inflammation, infections, and sleeplessness. Furthermore, it possesses considerable wound healing and skin protective properties, documented by several in vivo studies performed on animals. However, there is a lack of experimental evidence supporting its potential as a topical agent tested by human clinical trials. AIM OF THE STUDY The study aimed to investigate the skin protective activity of cotton gauze and polypropylene non-woven fabric, impregnated with H. italicum extract by the integrated supercritical CO2 extraction-supercritical solvent impregnation process. MATERIALS AND METHODS The integrated process of supercritical CO2 extraction of H. italicum and the impregnation of cotton gauze and polypropylene non-woven fabric was performed under 350 bar and 40 °C with and without the addition of ethanol as a cosolvent. Impregnated textile materials were tested in vivo for their bioactivity on irritated human skin. Randomized in vivo studies performed involved assays of both safety and efficacy of the impregnated textiles. The effects were evaluated using the in vivo non-invasive biophysical measurements of the following skin parameters: electrical capacitance, transepidermal water loss, melanin index, erythema index, and skin pH. RESULTS Both cotton gauze and polypropylene non-woven fabric were impregnated with H. italicum extracts under supercritical conditions with considerable values of the impregnation yield (1.97%-4.25%). The addition of ethanol as a cosolvent during the process caused significant changes in the incorporated extracts' impregnation yield and chemical profile. Both impregnated textile materials were safe, evaluated by their testing on the human skin with no cause of any irritation and redness. However, efficacy studies revealed that polypropylene non-woven fabric impregnated with H. italicum extract with ethanol as a cosolvent, possessed significantly greater potential for skin protection than the other investigated samples. CONCLUSIONS The present study demonstrated the feasibility of the combined supercritical extraction and impregnation process in developing materials for topical application based on H. italicum extract. The results of in vivo studies performed on human volunteers confirmed the suitability of H. italicum active components to be a part of human skin protective preparations because of their ability to maintain the skin unimpaired. Traditionally claimed applications as a medicinal plant capable of regenerating skin have been scientifically proven, in addition to employing green technology in obtaining the impregnated materials with a broad spectrum of utilization.
Collapse
Affiliation(s)
- Svetolik Maksimovic
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120, Belgrade, Serbia.
| | - Milica Stankovic
- University of Nis, Faculty of Medicine, Dr. Zorana Djindjica 81, 18000, Nis, Serbia
| | - Sonja Roganovic
- University of Nis, Faculty of Medicine, Dr. Zorana Djindjica 81, 18000, Nis, Serbia
| | - Ivana Nesic
- University of Nis, Faculty of Medicine, Dr. Zorana Djindjica 81, 18000, Nis, Serbia
| | - Jelena Zvezdanovic
- University of Nis, Faculty of Technology, Bulevar Oslobodjenja 124, 16000, Leskovac, Serbia
| | - Vanja Tadic
- Institute for Medical Plant Research "Dr. Josif Pancic ", Tadeusa Koscuska 1, 11000, Belgrade, Serbia
| | - Irena Zizovic
- Wroclaw University of Science and Technology, Faculty of Chemistry, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| |
Collapse
|
10
|
Alves-Silva JM, Gonçalves MJ, Silva A, Cavaleiro C, Cruz MT, Salgueiro L. Chemical Profile, Anti-Microbial and Anti-Inflammaging Activities of Santolina rosmarinifolia L. Essential Oil from Portugal. Antibiotics (Basel) 2023; 12:antibiotics12010179. [PMID: 36671380 PMCID: PMC9854695 DOI: 10.3390/antibiotics12010179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Fungal infections and the accompanying inflammatory responses are associated with great morbidity and mortality due to the frequent relapses triggered by an increased resistance to antifungal agents. Furthermore, this inflammatory state can be exacerbated during inflammaging and cellular senescence. Essential oils (EO) are receiving increasing interest in the field of drug discovery due to their lipophilic nature and complex composition, making them suitable candidates in the development of new antifungal drugs and modulators of numerous molecular targets. This work chemically characterized the EO from Santolina rosmarinifolia L., collected in Setúbal (Portugal), and assessed its antifungal potential by determining its minimum inhibitory (MIC) and minimum lethal (MLC) concentration in accordance with the Clinical Laboratory Standard Guidelines (CLSI) guidelines, as well as its effect on several Candida albicans virulence factors. The anti-inflammatory effect was unveiled using lipopolysaccharide (LPS)-stimulated macrophages by assessing several pro-inflammatory mediators. The wound healing and anti-senescence potential of the EO was also disclosed. The EO was mainly characterized by β-pinene (29.6%), borneol (16.9%), myrcene (15.4%) and limonene (5.7%). It showed a strong antifungal effect against yeasts and filamentous fungi (MIC = 0.07-0.29 mg/mL). Furthermore, it inhibited dimorphic transition (MIC/16), decreased biofilm formation with a preeminent effect after 24 h (MIC/2) and disrupted preformed biofilms in C. albicans. Additionally, the EO decreased nitric oxide (NO) release (IC50 = 0.52 mg/mL) and pro-IL-1β and inducible nitric oxide synthase (iNOS) expression in LPS-stimulated macrophages, promoted wound healing (91% vs. 81% closed wound) and reduced cellular senescence (53% vs. 73% β-galactosidase-positive cells). Overall, this study highlights the relevant pharmacological properties of S. rosmarinifolia, opening new avenues for its industrial exploitation.
Collapse
Affiliation(s)
- Jorge M. Alves-Silva
- Institute for Clinical and Biomedical Research, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
| | - Maria José Gonçalves
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Ana Silva
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Carlos Cavaleiro
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, Health Sciences Campus, University of Coimbra, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
- Correspondence:
| |
Collapse
|
11
|
Khan N, Ahmed S, Sheraz MA, Anwar Z, Ahmad I. Pharmaceutical based cosmetic serums. PROFILES OF DRUG SUBSTANCES, EXCIPIENTS AND RELATED METHODOLOGY 2023; 48:167-210. [PMID: 37061274 DOI: 10.1016/bs.podrm.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The growth and demand for cosmeceuticals (cosmetic products that have medicinal or drug-like benefits) have been enhanced for the last few decades. Lately, the newly invented dosage form, i.e., the pharmaceutical-based cosmetic serum has been developed and widely employed in various non-invasive cosmetic procedures. Many pharmaceutical-based cosmetic serums contain natural active components that claim to have a medical or drug-like effect on the skin, hair, and nails, including anti-aging, anti-wrinkle, anti-acne, hydrating, moisturizing, repairing, brightening and lightening skin, anti-hair fall, anti-fungal, and nail growth effect, etc. In comparison with other pharmaceutical-related cosmetic products (creams, gels, foams, and lotions, etc.), pharmaceutical-based cosmetic serums produce more rapid and incredible effects on the skin. This chapter provides detailed knowledge about the different marketed pharmaceutical-based cosmetic serums and their several types such as facial serums, hair serums, nail serums, under the eye serum, lip serum, hand, and foot serum, respectively. Moreover, some valuable procedures have also been discussed which provide prolong effects with desired results in the minimum duration of time after the few sessions of the serum treatment.
Collapse
Affiliation(s)
- Nimra Khan
- Department of Pharmacy Practice, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| | - Sofia Ahmed
- Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| | - Muhammad Ali Sheraz
- Department of Pharmacy Practice, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan; Department of Pharmaceutics, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| | - Zubair Anwar
- Department of Pharmaceutical Chemistry, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| | - Iqbal Ahmad
- Department of Pharmaceutical Chemistry, Baqai Institute of Pharmaceutical Sciences, Baqai Medical University, Karachi, Pakistan
| |
Collapse
|
12
|
Sohail M, Muhammad Faran Ashraf Baig M, Akhtar N, Chen Y, Xie B, Li B. Topical lycopene emulgel significantly improves biophysical parameters of human skin. Eur J Pharm Biopharm 2022; 180:281-288. [DOI: 10.1016/j.ejpb.2022.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/10/2022] [Accepted: 10/16/2022] [Indexed: 11/04/2022]
|
13
|
Geng R, Wang Y, Fang J, Zhao Y, Li M, Kang SG, Huang K, Tong T. Ectopic odorant receptors responding to flavor compounds in skin health and disease: Current insights and future perspectives. Crit Rev Food Sci Nutr 2022; 63:9392-9408. [PMID: 35445618 DOI: 10.1080/10408398.2022.2064812] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Skin, the largest organ of human body, acts as a barrier to protect body from the external environment and is exposed to a myriad of flavor compounds, especially food- and plant essential oil-derived odorant compounds. Skin cells are known to express various chemosensory receptors, such as transient potential receptors, adenosine triphosphate receptors, taste receptors, and odorant receptors (ORs). We aim to provide a review of this rapidly developing field and discuss latest discoveries related to the skin ORs activated by flavor compounds, their impacts on skin health and disease, odorant ligands interacting with ORs exerting specific biological effects, and the mechanisms involved. ORs are recently found to be expressed in skin tissue and cells, such as keratinocytes, melanocytes, and fibroblasts. To date, several ectopic skin ORs responding to flavor compounds, are involved in different skin biological processes, such as wound healing, hair growth, melanin regulation, pressure stress, skin barrier function, atopic dermatitis, and psoriasis. The recognition of physiological role of skin ORs, combined with the fact that ORs belong to a highly druggable protein family (G protein-coupled receptors), underscores the potential of skin ORs responding to flavor compounds as a novel regulating strategy for skin health and disease.
Collapse
Affiliation(s)
- Ruixuan Geng
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yanan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jingjing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yuhan Zhao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Mengjie Li
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Seong-Gook Kang
- Department of Food Engineering, Mokpo National University, Chungkyemyon, Muangun, Jeonnam, Korea
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture, Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Tao Tong
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture, Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing, China
| |
Collapse
|
14
|
Park S, Kim IS, Park SY, Seo SA, Yang JE, Hwang E. The Protective Effect of Edible Bird's Nest against the Immune-senescence Process of UVB-irradiated Hairless Mice †. Photochem Photobiol 2021; 98:949-957. [PMID: 34808003 DOI: 10.1111/php.13564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/28/2022]
Abstract
Edible bird's nest (EBN) is a nutritious food with many beneficial effects, including protecting cells against oxidation and infection due to wounds, bacteria or viruses. EBN has shown antiaging, anti-inflammatory and wound-healing properties in skin cells. Here, we investigated whether EBN has protective effects against photoaging, inflammation and immune-senescence in hairless mice treated with UVB irradiation. The skin thickness was lower in mice on an EBN diet than in mice treated with UVB alone. The level of hydration was significantly increased, while the index of transepidermal water loss decreased, in groups on the EBN diet. EBN also reduced erythema index in UVB-irradiated mice. At the molecular level, skin elasticity and antiaging are associated with high expression of elastin, collagen and filaggrin and low expression of the membrane metalloproteinases, MMP-1 and MMP-2. Inflammatory markers such as interleukins, IL-1β and IL-6, and TNF-α decreased significantly in the EBN groups. Caspase-3, an important factor in the apoptotic pathway and in congenital and adaptive immune responses, decreased in the EBN groups. Moreover, EBN diminished the overexpression of immunoglobulin E and elevated mast cell counts in UVB-irradiated mice. Overall, these findings suggest that EBN protects skin against aging and alleviates inflammation in UVB-irradiated hairless mice.
Collapse
Affiliation(s)
| | | | | | - Seul A Seo
- SD Biotechnology Co. Ltd, Ganseo-Gu, Seoul, Korea
| | | | | |
Collapse
|
15
|
Pourbagher-Shahri AM, Farkhondeh T, Talebi M, Kopustinskiene DM, Samarghandian S, Bernatoniene J. An Overview of NO Signaling Pathways in Aging. Molecules 2021; 26:4533. [PMID: 34361685 PMCID: PMC8348219 DOI: 10.3390/molecules26154533] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Nitric Oxide (NO) is a potent signaling molecule involved in the regulation of various cellular mechanisms and pathways under normal and pathological conditions. NO production, its effects, and its efficacy, are extremely sensitive to aging-related changes in the cells. Herein, we review the mechanisms of NO signaling in the cardiovascular system, central nervous system (CNS), reproduction system, as well as its effects on skin, kidneys, thyroid, muscles, and on the immune system during aging. The aging-related decline in NO levels and bioavailability is also discussed in this review. The decreased NO production by endothelial nitric oxide synthase (eNOS) was revealed in the aged cardiovascular system. In the CNS, the decline of the neuronal (n)NOS production of NO was related to the impairment of memory, sleep, and cognition. NO played an important role in the aging of oocytes and aged-induced erectile dysfunction. Aging downregulated NO signaling pathways in endothelial cells resulting in skin, kidney, thyroid, and muscle disorders. Putative therapeutic agents (natural/synthetic) affecting NO signaling mechanisms in the aging process are discussed in the present study. In summary, all of the studies reviewed demonstrate that NO plays a crucial role in the cellular aging processes.
Collapse
Affiliation(s)
- Ali Mohammad Pourbagher-Shahri
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand 9717853577, Iran;
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| | - Marjan Talebi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran;
| | - Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu Pr. 13, LT-50161 Kaunas, Lithuania;
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur 9318614139, Iran
| | - Jurga Bernatoniene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu Pr. 13, LT-50161 Kaunas, Lithuania;
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu Pr. 13, LT-50161 Kaunas, Lithuania
| |
Collapse
|
16
|
Saguie BO, Martins RL, Fonseca ADSD, Romana-Souza B, Monte-Alto-Costa A. An ex vivo model of human skin photoaging induced by UVA radiation compatible with summer exposure in Brazil. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 221:112255. [PMID: 34271412 DOI: 10.1016/j.jphotobiol.2021.112255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/23/2021] [Accepted: 07/04/2021] [Indexed: 01/02/2023]
Abstract
Skin is the largest body organ and can be affected by several factors, such as ultraviolet (UV) radiation. UV radiation is subdivided in UVA, UVB and UVC according to the radiation wavelength. UVC radiation does not cross the ozone layer; UVB cause DNA damage and is closely related to carcinogenesis; UVA radiation penetrates deeply into the skin, reaching epidermis and dermis and is considered the main promoter of skin aging, known as photoaging. In order to understand photoaging mechanisms and propose efficient therapies, several photoaging study models have been developed, each with benefits and limitations, but most of them use very high doses of UVA radiation, which is not compatible with our daily sun exposure. The objective of this work was to develop a human ex vivo photoaging model induced by UVA exposure compatible to a summer in Brazil. For this, human skin fragments were obtained from healthy donors who underwent otoplasty surgery and skin explants were prepared and placed in plates, with the epidermis facing upwards. Skin explants were exposed to UVA at 16 J/cm2 carried out by protocols of 2 or 4 exposures. Results showed an increase of oxidative damage, inflammatory cells, collagenolytic and elastolytic MMPs expression as well as a decrease of elastin expression, suggesting that the experimental model based on skin explants is able to evaluate UVA-induced aging in human skin.
Collapse
Affiliation(s)
- Bianca Oliveira Saguie
- Department of Histology and Embryology, Rio de Janeiro State University, Avenida Marechal Rondon, 381/HLA, 20950-003 Rio de Janeiro-RJ, Brazil
| | - Rayssa Lopes Martins
- Department of Histology and Embryology, Rio de Janeiro State University, Avenida Marechal Rondon, 381/HLA, 20950-003 Rio de Janeiro-RJ, Brazil
| | - Adenilson de Souza da Fonseca
- Department of Biophysics and Biometrics, Rio de Janeiro State University, Av Professor Manoel de Abreu 444, 20950-170 Rio de Janeiro-RJ, Brazil
| | - Bruna Romana-Souza
- Department of Histology and Embryology, Rio de Janeiro State University, Avenida Marechal Rondon, 381/HLA, 20950-003 Rio de Janeiro-RJ, Brazil
| | - Andréa Monte-Alto-Costa
- Department of Histology and Embryology, Rio de Janeiro State University, Avenida Marechal Rondon, 381/HLA, 20950-003 Rio de Janeiro-RJ, Brazil.
| |
Collapse
|
17
|
Bo S, Lai J, Lin H, Luo X, Zeng Y, Du T. Purpurin, a anthraquinone induces ROS-mediated A549 lung cancer cell apoptosis via inhibition of PI3K/AKT and proliferation. J Pharm Pharmacol 2021; 73:1101-1108. [PMID: 33877317 DOI: 10.1093/jpp/rgab056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/13/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVES In this study, we sought to evaluate purpurin, a natural biomedicine and a potential inhibitor in decreasing the growth rate of lung cancer cells by modulating the role of PI3K/AKT signalling-associated proliferation and apoptosis. METHODS A549 cells were treated with purpurin (30 μM) for 24 and 48 h incubation, respectively, and it has been analysed for cytotoxicity, ROS-mediated apoptotic staining. Moreover, purpurin-mediated lipid peroxidation and GSH were measured by biochemical estimation. Furthermore, PI3K/AKT signalling-mediated cell proliferation and apoptotic gene expression done were by western blot. KEY FINDINGS In this study, we observed that purpurin could effectively kill A549 cancer cell lines and leads to cell death, thus conforming increased cytotoxicity, production of ROS-mediated enhancement of lipid peroxidation, nuclear fragmentation and apoptosis. Moreover, the GSH content of A549 cell lines was also diminished after treatment with purpurin. This study demonstrates that purpurin inhibits the phosphorylated PI3K/AKT molecules mediated cyclin-D1 and PCNA, thereby inducing apoptosis by observing increased proapoptotic mediators Bax, cleaved PARP, cytochrome-c, caspase-9 and caspase-3; and decreased Bcl-2 expression in the lung cancer cell lines. CONCLUSION This result concluded that purpurin eliminates the A549 lung cancer cells by blocking the PI3K/AKT pathway thereby inducing apoptosis.
Collapse
Affiliation(s)
- Su Bo
- Department of Cardiothoracic Surgery, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, China
| | - Jing Lai
- Nursing Department, The First People's Hospital of Longquanyi District, Chengdu, Sichuan 610100, China
| | - Honyu Lin
- The Third Affiliated Teaching Hospital of Xinjiang Medical University (Affiliated Cancer Hospital), Urumqi, Xinjiang 830011, China
| | - Xue Luo
- Nursing Department, The First People's Hospital of Longquanyi District, Chengdu, Sichuan 610100, China
| | - Yiqiong Zeng
- Nursing Department, The First People's Hospital of Longquanyi District, Chengdu, Sichuan 610100, China
| | - Tianying Du
- Department of Thoracic Oncology, Jilin Cancer Hospital, Jilin, Changchun 130000, China
| |
Collapse
|
18
|
Maksimovic S, Tadic V, Zvezdanovic J, Zizovic I. Utilization of supercritical CO2 in bioactive principles isolation from Helichrysum italicum and their adsorption on selected fabrics. J Supercrit Fluids 2021. [DOI: 10.1016/j.supflu.2021.105197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Zhang J, Zhou B, Sun J, Chen H, Yang Z. Betulin ameliorates 7,12-dimethylbenz(a)anthracene-induced rat mammary cancer by modulating MAPK and AhR/Nrf-2 signaling pathway. J Biochem Mol Toxicol 2021; 35:e22779. [PMID: 33759307 DOI: 10.1002/jbt.22779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/22/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022]
Abstract
The aim of the present study is to explore the preventive efficacy of betulin (BE) in 7,12-dimethylbenz(a)anthracene (DMBA)-administered mammary cancer by modulating Ahr/Nrf2 signaling in experimental models. The mammary cancer was stimulated by the addition of DMBA (25 mg/kg/b.Wt) mixed in 1 ml of vehicle solution (sunflower oil and saline 1:1) through subcutaneous injection. The DMBA-exposed mammary tumor models showed low bodyweight, elevated quantities of lipid peroxidation molecules (TBARS and LOOH), and low enzymatic (GPx, SOD, and CAT), and nonenzymatic (GSH, vitamin C, and vitamin E) antioxidant activities in plasma and mammary tissues. Moreover, histopathological studies confirmed that invasive ductal carcinoma was observed in DMBA-induced mammary tissue of the experimental model. Dietary oral supplementation of BE prevents the loss of bodyweight, overproduces lipid peroxidation, and restores the antioxidant activities in DMBA-exposed experimental animals. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a crucial antioxidant protein that involves preventing numerous cancers. Therefore, Nrf2-associated signaling concern is a significant target for preventing mammary cancer. This study observed an increased expression of MAPKs, Keap1, ARNT, AhR, and CYP1A1, whereas decreased expression of HO-1 and Nrf2 in DMBA-induced cancer-bearing experimental animals. The oral supplementation of BE effectively modulates the expression of MAPKs, AhR/Nrf2-associated protein expressions in DMBA-exposed experimental animals. This current study concluded that BE is a strong antioxidant, which triggers the MAPKs-mediated oxidative stress and inhibits proliferative markers by restoring the activity of Nrf2 signaling.
Collapse
Affiliation(s)
- Jinku Zhang
- Department of Pathology, Baoding First Central Hospital, Baoding, Hebei, China
| | - Bingjuan Zhou
- Department of Pathology, Baoding First Central Hospital, Baoding, Hebei, China
| | - Jirui Sun
- Department of Pathology, Baoding First Central Hospital, Baoding, Hebei, China
| | - Hong Chen
- Department of Pathology, Baoding First Central Hospital, Baoding, Hebei, China
| | - Zhao Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
20
|
kandan PV, Balupillai A, Kanimozhi G, Khan HA, Alhomida AS, Prasad NR. Opuntiol Prevents Photoaging of Mouse Skin via Blocking Inflammatory Responses and Collagen Degradation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5275178. [PMID: 33312336 PMCID: PMC7721505 DOI: 10.1155/2020/5275178] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/20/2020] [Accepted: 11/07/2020] [Indexed: 02/05/2023]
Abstract
In the present study, we investigated the potential of opuntiol, isolated from Opuntia ficus-indica, against UVA radiation-mediated inflammation and skin photoaging in experimental animals. The skin-shaved experimental mouse was subjected to UVA exposure at the dosage of 10 J/cm2 per day for ten consecutive days (cumulative UVA dose: 100 J/cm2). Opuntiol (50 mg/kg b.wt.) was topically applied one hour before each UVA exposure. UVA (100 J/cm2) exposure induces epidermal hyperplasia and collagen disarrangement which leads to the photoaging-associated molecular changes in the mouse skin. Opuntiol pretreatment prevented UVA-linked clinical macroscopic skin lesions and histological changes in the mouse skin. Further, opuntiol prevents UVA-linked dermal collagen fiber loss in the mouse skin. Short-term UVA radiation (100 J/cm2) activates MAPKs through AP-1 and NF-κB p65 transcriptional pathways and subsequently induces the expression of inflammatory proteins and matrix-degrading proteinases in the mouse skin. Interestingly, opuntiol pretreatment inhibited UVA-induced activation of iNOS, VEGF, TNF-α, and COX-2 proteins and consequent activation of MMP-2, MMP-9, and MMP-12 in the mouse skin. Moreover, opuntiol was found to prevent collagen I and III breakdown in UVA radiation-exposed mouse skin. Thus, opuntiol protects mouse skin from UVA radiation-associated photoaging responses through inhibiting inflammatory responses, MAPK activation, and degradation of matrix collagen molecules.
Collapse
Affiliation(s)
- P. Veeramani kandan
- Department of Biochemistry & Biotechnology, Annamalai University, Annamalainagar, 608 002 Tamil Nadu, India
| | - Agilan Balupillai
- Department of Biochemistry & Biotechnology, Annamalai University, Annamalainagar, 608 002 Tamil Nadu, India
- Department of Biotechnology, Thiruvalluvar University, Serkadu, 632115 Vellore, Tamil Nadu, India
| | - G. Kanimozhi
- Department of Biochemistry, Dharmapuram Gnanambigai Government Arts College for Women, Mayiladuthurai, Tamil Nadu, India
| | - Haseeb A. Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah S. Alhomida
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nagarajan Rajendra Prasad
- Department of Biochemistry & Biotechnology, Annamalai University, Annamalainagar, 608 002 Tamil Nadu, India
| |
Collapse
|
21
|
Garg C, Sharma H, Garg M. Skin photo-protection with phytochemicals against photo-oxidative stress, photo-carcinogenesis, signal transduction pathways and extracellular matrix remodeling-An overview. Ageing Res Rev 2020; 62:101127. [PMID: 32721499 DOI: 10.1016/j.arr.2020.101127] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/04/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022]
Abstract
Excessive exposure of skin to UV radiation triggers the generation of oxidative stress, inflammation, immunosuppression, apoptosis, matrix-metalloproteases production, and DNA mutations leading to the onset of photo ageing and photo-carcinogenesis. At the molecular level, these changes occur via activation of several protein kinases as well as transcription pathways, formation of reactive oxygen species, and release of cytokines, interleukins and prostaglandins together. Current therapies available on the market only provide limited solutions and exhibit several side effects. The present paper provides insight into scientific studies that have elucidated the positive role of phytochemicals in counteracting the UV-induced depletion of antioxidant enzymes, increased lipid peroxidation, inflammation, DNA mutations, increased senescence, dysfunctional apoptosis and immune suppression. The contribution of phytochemicals to the downregulation of expression of oxidative-stress sensitive transcription factors (Nrf2, NF-Kb, AP-1 and p53) and protein kinases (MSK, ERK, JNK, p38 MAPK, p90RSK2 and CaMKs) involved in inflammation, apoptosis, immune suppression, extracellular matrix remodelling, senescence, photo ageing and photo-carcinogenesis, is also discussed. Conclusively, several phytochemicals hold potential for the development of a viable solution against UV irradiation-mediated photo ageing, photo-carcinogenesis and related manifestations.
Collapse
|
22
|
Noordin MAM, Noor MM, Aizat WM. The Impact of Plant Bioactive Compounds on Aging and Fertility of Diverse Organisms: A Review. Mini Rev Med Chem 2020; 20:1287-1299. [DOI: 10.2174/1389557520666200429101942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 11/22/2022]
Abstract
It is expected that in 2050, there will be more than 20% of senior citizens aged over 60 years
worldwide. Such alarming statistics require immediate attention to improve the health of the aging
population. Since aging is closely related to the loss of antioxidant defense mechanisms, this situation
eventually leads to numerous health problems, including fertility reduction. Furthermore, plant extracts
have been used in traditional medicine as potent antioxidant sources. Although many experiments had
reported the impact of various bioactive compounds on aging or fertility, there is a lack of review papers
that combine both subjects. In this review, we have collected and discussed various bioactive
compounds from 26 different plant species known to affect both longevity and fertility. These compounds,
including phenolics and terpenes, are mostly involved in the antioxidant defense mechanisms
of diverse organisms such as rats, mites, fruit flies, roundworms, and even roosters. A human clinical
trial should be considered in the future to measure the effects of these bioactive compounds on human
health and longevity. Ultimately, these plant-derived compounds could be developed into health supplements
or potential medical drugs to ensure a healthy aging population.
Collapse
Affiliation(s)
- Muhammad Akram Mohd Noordin
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
| | - Mahanem Mat Noor
- Centre for Biotechnology and Functional Food, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
| | - Wan Mohd Aizat
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
| |
Collapse
|
23
|
Zhang B, Wang H, Yang Z, Cao M, Wang K, Wang G, Zhao Y. Protective effect of alpha-pinene against isoproterenol-induced myocardial infarction through NF-κB signaling pathway. Hum Exp Toxicol 2020; 39:1596-1606. [PMID: 32602371 DOI: 10.1177/0960327120934537] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Monoterpenes present in the essential oils exhibit anti-inflammatory properties. In this study, we investigated the preventive effect of alpha-pinene (AP), a monoterpene, against isoproterenol (ISO)-induced myocardial infarction and inflammation in Wistar rats. Male Wistar rats were pretreated with AP (50 mg/kg body weight (bw)) administration for 21 days and ISO (85 mg/kg bw) was administered subcutaneously for last two consecutive days (20th day and 21st day). We noticed that there was an increased activity of cardiac marker enzymes in ISO-treated rats. We also observed that elevated levels of lipid peroxidative indices decreased activities of antioxidant status in plasma, erythrocyte, and heart tissue in ISO-induced rats. Furthermore, ISO-treated rats showed an increase in the levels of inflammatory mediators like tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the serum. Besides, we confirmed the upregulated expression of TNF-α, IL-6, and nuclear factor kappa-light-chain-enhancer of activated B cells in ISO-induced rat heart tissue. Conversely, we found that AP pretreatment significantly decreased levels of cardiac markers like serum cardiac troponin T and cardiac troponin I, lipid peroxidative markers, and restored antioxidants status in ISO-treated rats. Besides, AP administration attenuated ISO-induced inflammatory marker expression. The present findings demonstrated that AP significantly protects the myocardium and exerts cardioprotective and anti-inflammatory effects in experimental rats.
Collapse
Affiliation(s)
- B Zhang
- Department of Health Care Center, Beijing Friendship Hospital Medical, 12517Capital Medical University, Beijing, China
| | - H Wang
- Department of Pharmacy, 34706The First Affiliated Hospital of Nanhua University, Hengyang City, Hunan Province, China
| | - Z Yang
- Department of ICU, 381901The First People's Hospital of Huaihua, Huaihua City, Hunan Province, China
| | - M Cao
- Department of Cardiovascular, 232831The People's Hospital of Tianjin, Tianjin City, China
| | - K Wang
- Department of Endocrinology, 12476Tianyou Hospital Affiliated to Tongji University, Shanghai, China
| | - G Wang
- Department of Endocrinology, 12476The Putuo People's Hospital Affiliated to Tongji University, Shanghai, China
| | - Y Zhao
- Department of Cardiovascular Biology, 12418Changsha Central Hospital, Changsha City, Hunan Province, China
| |
Collapse
|
24
|
Proshkina E, Plyusnin S, Babak T, Lashmanova E, Maganova F, Koval L, Platonova E, Shaposhnikov M, Moskalev A. Terpenoids as Potential Geroprotectors. Antioxidants (Basel) 2020; 9:antiox9060529. [PMID: 32560451 PMCID: PMC7346221 DOI: 10.3390/antiox9060529] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023] Open
Abstract
Terpenes and terpenoids are the largest groups of plant secondary metabolites. However, unlike polyphenols, they are rarely associated with geroprotective properties. Here we evaluated the conformity of the biological effects of terpenoids with the criteria of geroprotectors, including primary criteria (lifespan-extending effects in model organisms, improvement of aging biomarkers, low toxicity, minimal adverse effects, improvement of the quality of life) and secondary criteria (evolutionarily conserved mechanisms of action, reproducibility of the effects on different models, prevention of age-associated diseases, increasing of stress-resistance). The number of substances that demonstrate the greatest compliance with both primary and secondary criteria of geroprotectors were found among different classes of terpenoids. Thus, terpenoids are an underestimated source of potential geroprotectors that can effectively influence the mechanisms of aging and age-related diseases.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | - Sergey Plyusnin
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Tatyana Babak
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | - Ekaterina Lashmanova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | | | - Liubov Koval
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Elena Platonova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (S.P.); (T.B.); (E.L.); (L.K.); (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
- Correspondence: ; Tel.: +7-8212-312-894
| |
Collapse
|
25
|
Alves A, Sousa E, Kijjoa A, Pinto M. Marine-Derived Compounds with Potential Use as Cosmeceuticals and Nutricosmetics. Molecules 2020; 25:molecules25112536. [PMID: 32486036 PMCID: PMC7321322 DOI: 10.3390/molecules25112536] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
The cosmetic industry is among the fastest growing industries in the last decade. As the beauty concepts have been revolutionized, many terms have been coined to accompany the innovation of this industry, since the beauty products are not just confined to those that are applied to protect and enhance the appearance of the human body. Consequently, the terms such as cosmeceuticals and nutricosmetics have emerged to give a notion of the health benefits of the products that create the beauty from inside to outside. In the past years, natural products-based cosmeceuticals have gained a huge amount of attention not only from researchers but also from the public due to the general belief that they are harmless. Notably, in recent years, the demand for cosmeceuticals from the marine resources has been exponentially on the rise due to their unique chemical and biological properties that are not found in terrestrial resources. Therefore, the present review addresses the importance of marine-derived compounds, stressing new chemical entities with cosmeceutical potential from the marine natural resources and their mechanisms of action by which these compounds exert on the body functions as well as their related health benefits. Marine environments are the most important reservoir of biodiversity that provide biologically active substances whose potential is still to be discovered for application as pharmaceuticals, nutraceuticals, and cosmeceuticals. Marine organisms are not only an important renewable source of valuable bulk compounds used in cosmetic industry such as agar and carrageenan, which are used as gelling and thickening agents to increase the viscosity of cosmetic formulations, but also of small molecules such as ectoine (to promote skin hydration), trichodin A (to prevent product alteration caused by microbial contamination), and mytiloxanthin (as a coloring agent). Marine-derived molecules can also function as active ingredients, being the main compounds that determine the function of cosmeceuticals such as anti-tyrosinase (kojic acid), antiacne (sargafuran), whitening (chrysophanol), UV protection (scytonemin, mycosporine-like amino acids (MAAs)), antioxidants, and anti-wrinkle (astaxanthin and PUFAs).
Collapse
Affiliation(s)
- Ana Alves
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (A.A.); (E.S.)
| | - Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (A.A.); (E.S.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Anake Kijjoa
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Correspondence: (A.K.); (M.P.); Tel.: +35-(19)-6609-2514 (M.P.)
| | - Madalena Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (A.A.); (E.S.)
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
- Correspondence: (A.K.); (M.P.); Tel.: +35-(19)-6609-2514 (M.P.)
| |
Collapse
|
26
|
Gonçalves ECD, Baldasso GM, Bicca MA, Paes RS, Capasso R, Dutra RC. Terpenoids, Cannabimimetic Ligands, beyond the Cannabis Plant. Molecules 2020; 25:E1567. [PMID: 32235333 PMCID: PMC7181184 DOI: 10.3390/molecules25071567] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Medicinal use of Cannabis sativa L. has an extensive history and it was essential in the discovery of phytocannabinoids, including the Cannabis major psychoactive compound-Δ9-tetrahydrocannabinol (Δ9-THC)-as well as the G-protein-coupled cannabinoid receptors (CBR), named cannabinoid receptor type-1 (CB1R) and cannabinoid receptor type-2 (CB2R), both part of the now known endocannabinoid system (ECS). Cannabinoids is a vast term that defines several compounds that have been characterized in three categories: (i) endogenous, (ii) synthetic, and (iii) phytocannabinoids, and are able to modulate the CBR and ECS. Particularly, phytocannabinoids are natural terpenoids or phenolic compounds derived from Cannabis sativa. However, these terpenoids and phenolic compounds can also be derived from other plants (non-cannabinoids) and still induce cannabinoid-like properties. Cannabimimetic ligands, beyond the Cannabis plant, can act as CBR agonists or antagonists, or ECS enzyme inhibitors, besides being able of playing a role in immune-mediated inflammatory and infectious diseases, neuroinflammatory, neurological, and neurodegenerative diseases, as well as in cancer, and autoimmunity by itself. In this review, we summarize and critically highlight past, present, and future progress on the understanding of the role of cannabinoid-like molecules, mainly terpenes, as prospective therapeutics for different pathological conditions.
Collapse
Affiliation(s)
- Elaine C. D. Gonçalves
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
- Graduate Program of Neuroscience, Center of Biological Sciences, Campus Florianópolis, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| | - Gabriela M. Baldasso
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
| | - Maíra A. Bicca
- Neurosurgery Department, Neurosurgery Pain Research institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA;
| | - Rodrigo S. Paes
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80,055 Portici, Italy
| | - Rafael C. Dutra
- Laboratory of Autoimmunity and Immunopharmacology (LAIF), Department of Health Sciences, Campus Araranguá, Universidade Federal de Santa Catarina, Araranguá 88906-072, Brazil; (E.C.D.G.); (G.M.B.); (R.S.P.)
- Graduate Program of Neuroscience, Center of Biological Sciences, Campus Florianópolis, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil
| |
Collapse
|
27
|
Salehi B, Upadhyay S, Erdogan Orhan I, Kumar Jugran A, L.D. Jayaweera S, A. Dias D, Sharopov F, Taheri Y, Martins N, Baghalpour N, C. Cho W, Sharifi-Rad J. Therapeutic Potential of α- and β-Pinene: A Miracle Gift of Nature. Biomolecules 2019; 9:738. [PMID: 31739596 PMCID: PMC6920849 DOI: 10.3390/biom9110738] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/06/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023] Open
Abstract
α- and β-pinene are well-known representatives of the monoterpenes group, and are found in many plants' essential oils. A wide range of pharmacological activities have been reported, including antibiotic resistance modulation, anticoagulant, antitumor, antimicrobial, antimalarial, antioxidant, anti-inflammatory, anti-Leishmania, and analgesic effects. This article aims to summarize the most prominent effects of α- and β-pinene, namely their cytogenetic, gastroprotective, anxiolytic, cytoprotective, anticonvulsant, and neuroprotective effects, as well as their effects against H2O2-stimulated oxidative stress, pancreatitis, stress-stimulated hyperthermia, and pulpal pain. Finally, we will also discuss the bioavailability, administration, as well as their biological activity and clinical applications.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran;
| | - Shashi Upadhyay
- G. B. Pant National Institute of Himalayan Environment and Sustainable Development, Kosi-Katarmal, Almora-263643, Uttarakhand, India;
| | - Ilkay Erdogan Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Arun Kumar Jugran
- G. B. Pant National Institute of Himalayan Environment and Sustainable Development, Garhwal Regional Centre, Srinagar-246174, Uttarakhand, India
| | - Sumali L.D. Jayaweera
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, P.O. Box 71, Bundoora, VIC 3083, Australia (D.A.D.)
| | - Daniel A. Dias
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, P.O. Box 71, Bundoora, VIC 3083, Australia (D.A.D.)
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, 734003 Dushanbe, Tajikistan;
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran; (Y.T.); (N.B.)
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Navid Baghalpour
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran; (Y.T.); (N.B.)
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong, China
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran
| |
Collapse
|