1
|
Mohamed B, Ghareib SA, Alsemeh AE, El-Sayed SS. Telmisartan ameliorates nephropathy and restores the hippo pathway in rats with metabolic syndrome. Eur J Pharmacol 2024; 973:176605. [PMID: 38653362 DOI: 10.1016/j.ejphar.2024.176605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
The main objective of this study was to determine if the telmisartan-ameliorative effects of metabolic syndrome (MetS)-evoked nephropathy are attributed to the Hippo pathway. A secondary objective was to investigate the potential of vitamin D3 to enhance telmisartan-favourable effects. A diet composed of 24% fat and 3% salt, along with drinking water containing 10% fructose, was administered for 12 weeks to induce MetS. MetS-rats were given telmisartan (5 mg/kg/day), vitamin D3 (10 μg/kg/day) or both by gavage, starting in the sixth week of experimental diet administration. Assessments performed at closure included renal function, histological examination, catalase, malondialdehyde (MDA), nuclear factor kappa-B (NF-κB), interleukin-6 (IL-6), peroxisome proliferator-activated receptor-γ (PPAR-γ), phosphatase and tensin homolog (PTEN), and transforming growth factor-β (TGF-β). Matrix metalloproteinase-9 (MMP-9) immunostaining was conducted. The expression of the Hippo pathway components, as well as that of angiotensin II type 1 and type 2 (AT1 and AT2), receptors was evaluated. Telmisartan attenuated MetS-evoked nephropathy, as demonstrated by improvement of renal function and histological features, enhancement of catalase, reduction of MDA, inflammation (NF-κB, IL-6), and renal fibrosis (increased PPAR-γ and PTEN and reduced MMP-9 and TGF-β). Telmisartan downregulated AT1-receptor, upregulated AT2-receptor and restored the Hippo pathway. Vitamin D3 replicated most of the telmisartan-elicited effects and enhanced the antifibrotic actions of telmisartan. The alleviative effects of telmisartan on MetS-evoked nephropathy may be related to the restoration of the Hippo pathway. The combination of vitamin D3 and telmisartan exerted more favourable effects on metabolic and nephropathic biomarkers compared with either one administered alone.
Collapse
Affiliation(s)
- Badria Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Salah A Ghareib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Amira Ebrahim Alsemeh
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Shaimaa S El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
2
|
Gironacci MM, Bruna-Haupt E. Unraveling the crosstalk between renin-angiotensin system receptors. Acta Physiol (Oxf) 2024; 240:e14134. [PMID: 38488216 DOI: 10.1111/apha.14134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 04/24/2024]
Abstract
The renin-angiotensin system (RAS) plays a key role in blood pressure regulation. The RAS is a complex interconnected system composed of two axes with opposite effects. The pressor arm, represented by angiotensin (Ang) II and the AT1 receptor (AT1R), mediates the vasoconstrictor, proliferative, hypertensive, oxidative, and pro-inflammatory effects of the RAS, while the depressor/protective arm, represented by Ang-(1-7), its Mas receptor (MasR) and the AT2 receptor (AT2R), opposes the actions elicited by the pressor arm. The AT1R, AT2R, and MasR belong to the G-protein-coupled receptor (GPCR) family. GPCRs operate not only as monomers, but they can also function in dimeric (homo and hetero) or higher-order oligomeric states. Due to the interaction with other receptors, GPCR properties may change: receptor affinity, trafficking, signaling, and its biological function may be altered. Thus, heteromerization provides a newly recognized means of modulation of receptor function, as well as crosstalk between GPCRs. This review is focused on angiotensin receptors, and how their properties are influenced by crosstalk with other receptors, adding more complexity to an already complex system and potentially opening up new therapeutic approaches.
Collapse
Affiliation(s)
- Mariela M Gironacci
- Facultad de Farmacia y Bioquímica, IQUIFIB (UBA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ezequiel Bruna-Haupt
- INTEQUI (CONICET), Departamento de Química, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| |
Collapse
|
3
|
Potential for Prebiotic Stabilized Cornus mas L. Lyophilized Extract in the Prophylaxis of Diabetes Mellitus in Streptozotocin Diabetic Rats. Antioxidants (Basel) 2022; 11:antiox11020380. [PMID: 35204262 PMCID: PMC8868578 DOI: 10.3390/antiox11020380] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/16/2022] Open
Abstract
As a systemic disease, diabetes mellitus (DM) is characterized by the disruption of many glucose metabolic pathways. Therefore, it seems critical to study new therapies to support treatment to develop therapeutic systems that can operate across a broad metabolic spectrum. The current state of knowledge indicates an essential role of the gut microbiota in the development and course of the disease. Cornus mas fruits have demonstrated a rich biological activity profile and potential for application in the treatment of DM. As part of a preliminary analysis, the activity of four cultivars of Cornus mas fruits was analyzed. The cultivar Wydubieckij was selected as having the highest activity in in vitro conditions for further prebiotic system preparation. The study aimed to develop a unique therapeutic system based, first of all, on the mechanism of α-glucosidase inhibition and the antioxidant effect resulting from the activity of the plant extract used, combined with the prebiotic effect of inulin. The obtained system was characterized in vitro in terms of antioxidant activity and enzyme inhibition capacity, and was then tested on diabetic rats. The study was coupled with an analysis of changes in the intestinal microflora. The system of prebiotic stabilized Cornus mas L. lyophilized extract with inulin offers valuable support for the prophylaxis and treatment of DM.
Collapse
|
4
|
Antar SA, Abdo W, Taha RS, Farage AE, El-Moselhy LE, Amer ME, Abdel Monsef AS, Abdel Hamid AM, Kamel EM, Ahmeda AF, Mahmoud AM. Telmisartan attenuates diabetic nephropathy by mitigating oxidative stress and inflammation, and upregulating Nrf2/HO-1 signaling in diabetic rats. Life Sci 2022; 291:120260. [DOI: 10.1016/j.lfs.2021.120260] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/29/2022]
|
5
|
Liang Q, Liu T, Guo T, Tao W, Chen X, Chen W, Chen L, Xiao Y. ATF4 promotes renal tubulointerstitial fibrosis by suppressing autophagy in diabetic nephropathy. Life Sci 2020; 264:118686. [PMID: 33129879 DOI: 10.1016/j.lfs.2020.118686] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/18/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022]
Abstract
AIM Diabetic nephropathy (DN) is the dominant cause of end-stage renal disease which is characterized by extracellular matrix accumulation. The purpose of this study was to investigate the role of activating transcription factor 4 (ATF4) in regulating renal fibrosis and autophagy in DN. MAIN METHOD Streptozotocin (STZ) was administered to heterozygous ATF4 knockout (KO) and wild-type (WT) mice via an intraperitoneal injection to induce DN. NRK-52E cells were cultured in high glucose to mimic diabetic pathological. qRT-PCR, western blot, immunofluorescence, histology and electron microscopic analysis were performed. The autophagy flux was observed by tandem mRFP-GFP-LC3 fluorescence microscopy. KEY FINDINGS DN mice experienced severe renal injury and fibrosis and showed increased expression of ATF4 and inhibition of autophagy in kidney tissues. We found that STZ-induced ATF4 KO mice showed significant improvement in urinary albumin, serum creatinine and blood urea nitrogen and the pathological changes of renal tubulointerstitial fibrosis compared with STZ-induced WT mice. Furthermore, inhibition of ATF4 could restore autophagy in DN mice. Similar results were shown in vitro. Overexpression of ATF4 in NRK-52E cells cultured in high glucose condition suppressed autophagy and upregulated Collagen type 4 (Col-IV) expression, while inhibition of ATF4 could increase the number of the autophagosomes, improve autophagic flux and decrease Col-IV level. SIGNIFICANCE Our study provided the evidence of a crucial role for ATF4 in inhibiting autophagy against diabetic kidney damage. Suppression of ATF4 may be an effective therapy in restraining renal tubulointerstitial fibrosis in DN.
Collapse
Affiliation(s)
- Qiuer Liang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Tianhao Liu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Tingting Guo
- Department of Nephrology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Wencong Tao
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Xudong Chen
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Weihao Chen
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China; Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Liguo Chen
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Ya Xiao
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
6
|
Piotrowska A, Chmielewska M, Andrzejewski W, Dziegiel P, Podhorska-Okolow M. Influence of Angiotensin II on cell viability and apoptosis in rat renal proximal tubular epithelial cells in in vitro studies. J Renin Angiotensin Aldosterone Syst 2020; 21:1470320320949850. [PMID: 32962526 PMCID: PMC7649907 DOI: 10.1177/1470320320949850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Introduction: Angiotensin II (Ang II) is multifunctional peptide that plays an important role in blood pressure regulation and maintenance electrolyte homeostasis. It shows biological effects by activating two main receptors: AT1 and AT2. The aim of the present work was to investigate the effect of Ang II on NRK-52E cells in in vitro studies. Furthermore, an attempt was made to determine the effectiveness of the AT1 and AT2 receptor blocker activity (respectively, losartan and PD123319). Methods: The study was carried out using adherent NRK-52E cell line. Immunofluorescence and Western Blot method were used to confirm the presence of AT1 and AT2 receptors in the cells. The SRB and MTT tests showed decrease in the viability of NRK-52E cells incubated with Ang II in comparison to the control (without Ang II). Results: The blockade of the AT1 receptor caused an increase in cell viability in comparison to cells incubated with Ang II only. The blockade of AT2 receptor also triggered statistically significant increase in cell viability in comparison with cells only exposed to Ang II. Combined administration of blockers for both receptors (losartan and PD123319) decreased Ang II cytotoxicity against NRK-52E cell line. The apoptosis was only observed in cells incubated with Ang II in comparison with control cells. However, simultaneous use of both blockers caused statistically significant decrease in apoptosis. Conclusions: The result of our study indicates that Ang II causes damaging effect on NRK-52E cells by directing them to programmed cell death. It seems that not only does the AT2 receptor itself play an important role in the induction of apoptosis, but also its interaction with AT1 receptor does as well.
Collapse
Affiliation(s)
- Aleksandra Piotrowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Poland
| | - Magdalena Chmielewska
- Amphibian Biology Group, Department of Evolutionary Biology and Conservation of Vertebrates, Faculty of Biological Sciences, University of Wroclaw, Poland
| | - Waldemar Andrzejewski
- Department of Physiotherapy, Wroclaw University School of Physical Education, Poland
| | - Piotr Dziegiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Poland.,Department of Physiotherapy, Wroclaw University School of Physical Education, Poland
| | | |
Collapse
|
7
|
Guo J, Zheng HJ, Zhang W, Lou W, Xia C, Han XT, Huang WJ, Zhang F, Wang Y, Liu WJ. Accelerated Kidney Aging in Diabetes Mellitus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1234059. [PMID: 32774664 PMCID: PMC7407029 DOI: 10.1155/2020/1234059] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/25/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023]
Abstract
With aging, the kidney undergoes inexorable and progressive changes in structural and functional performance. These aging-related alterations are more obvious and serious in diabetes mellitus (DM). Renal accelerated aging under DM conditions is associated with multiple stresses such as accumulation of advanced glycation end products (AGEs), hypertension, oxidative stress, and inflammation. The main hallmarks of cellular senescence in diabetic kidneys include cyclin-dependent kinase inhibitors, telomere shortening, and diabetic nephropathy-associated secretory phenotype. Lysosome-dependent autophagy and antiaging proteins Klotho and Sirt1 play a fundamental role in the accelerated aging of kidneys in DM, among which the autophagy-lysosome system is the convergent mechanism of the multiple antiaging pathways involved in renal aging under DM conditions. Metformin and the inhibitor of sodium-glucose cotransporter 2 are recommended due to their antiaging effects independent of antihyperglycemia, besides angiotensin-converting enzyme inhibitors/angiotensin receptor blockers. Additionally, diet intervention including low protein and low AGEs with antioxidants are suggested for patients with diabetic nephropathy (DN). However, their long-term benefits still need further study. Exploring the interactive relationships among antiaging protein Klotho, Sirt1, and autophagy-lysosome system may provide insight into better satisfying the urgent medical needs of elderly patients with aging-related DN.
Collapse
Affiliation(s)
- Jing Guo
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Hui Juan Zheng
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Wenting Zhang
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Wenjiao Lou
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Chenhui Xia
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xue Ting Han
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Wei Jun Huang
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Fan Zhang
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yaoxian Wang
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Wei Jing Liu
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
- Institute of Nephrology, and Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, No. 57th South Renmin Road, Zhanjiang, Guangdong 524001, China
| |
Collapse
|
8
|
Hitsumoto T. Correlation Between the Cardio-Ankle Vascular Index and Renal Resistive Index in Patients With Essential Hypertension. Cardiol Res 2020; 11:106-112. [PMID: 32256917 PMCID: PMC7092774 DOI: 10.14740/cr1026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 02/17/2020] [Indexed: 01/18/2023] Open
Abstract
Background Renal resistive index (RRI) is a parameter determined by Doppler sonography that reflects renal hemodynamics. Significant relationships connecting increases in the RRI with cardiovascular risk factors and the incidence of cardiovascular disease in hypertensive patients have been reported. This cross-sectional study aimed to clarify the relationship between cardio-ankle vascular index (CAVI), a novel marker of arterial stiffness, and the RRI in patients with essential hypertension with the goal of primary prevention of cardiovascular disease. Methods The study included 245 patients undergoing treatment for essential hypertension (95 men and 150 women; mean age ± standard deviation, 65 ± 13 years) with no history of cardiovascular disease. The CAVI and RRI were measured using commercial devices, and their relationships to various clinical parameters were examined. Results A significant positive correlation was observed between the CAVI and RRI (r = 0.43, P < 0.001). Multiple regression analyses revealed a value of β of 0.28 (P < 0.001) when CAVI was evaluated as the independent and RRI as the dependent variable. Receiver-operating characteristic curve analysis indicated that the CAVI cutoff point for high RRI (> 0.70) was 9.0 with area under the curve of 0.700 (P < 0.001). Conclusion The results from this study indicate that the CAVI varies directly with measures of renal vascular hemodynamics (RRI) in patients with essential hypertension. These findings identified a cardiovascular risk value of the CAVI from the perspective of renal hemodynamics as 9.0 in this patient population.
Collapse
Affiliation(s)
- Takashi Hitsumoto
- Hitsumoto Medical Clinic, 2-7-7, Takezakicyou, Shimonoseki City, Yamaguchi 750-0025, Japan.
| |
Collapse
|