1
|
Isah MB, Tajuddeen N, Yusuf A, Mohammed A, Ibrahim MA, Melzig M, Zhang X. The antidiabetic properties of lignans: a comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156717. [PMID: 40220408 DOI: 10.1016/j.phymed.2025.156717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Diabetes mellitus (DM) is a chronic metabolic disease with a high global prevalence. Lignans, a class of plant natural compounds found in commonly consumed foods, are well-tolerated by humans and have demonstrated promising potential in the management of DM. Consumption of lignan-rich foods has been associated with improved overall health and quality of life. PURPOSE The clinical and preclinical evidence on the role of lignans in managing DM are critically examined. METHODS A thorough literature search was conducted across major scientific databases, focusing on studies that reported the effects of individual lignans on key diabetes indicators, such as glucose utilisation and insulin sensitivity, in both human and animal models, as well as in cell-based studies. RESULTS A total of 180 lignans were included in the review. Out of these, only three were investigated in randomised clinical trials in humans and 31 in animal models. The reviewed evidence suggests some beneficial effects of lignans in preventing the development of obesity-related diabetes. Their therapeutic benefits in preventing diabetes-related complications, particularly diabetic nephropathy, in both type 1 and type 2 diabetes, are also supported. Metabolites of various lignans, produced by microbial metabolism in the gut and serum enzymes, appear to be key bioactive forms, highlighting the need for detailed pharmacodynamic studies, optimised dosage designs, and the use of the appropriate lignan molecules for cell-based screening. CONCLUSION Lignans and their microbial metabolites show promise in preventing obesity-related diabetes and mitigating diabetes-related complications such as diabetic nephropathy, though further clinical studies are needed to optimize their therapeutic potential.
Collapse
Affiliation(s)
- Murtala Bindawa Isah
- Chinese-German Joint Laboratory for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China; Department of Biochemistry, Umaru Musa Yar'adua University Katsina, Nigeria.
| | - Nasir Tajuddeen
- Department of Chemistry, Ahmadu Bello University Zaria, Nigeria
| | - Anas Yusuf
- Chinese-German Joint Laboratory for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China
| | - Aminu Mohammed
- Department of Biochemistry, Ahmadu Bello University Zaria, Nigeria
| | | | - Matthias Melzig
- Chinese-German Joint Laboratory for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China; Freie Universitaet Berlin, Institute of Pharmacy, Berlin, Germany.
| | - Xiaoying Zhang
- Chinese-German Joint Laboratory for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China; Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal; Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
2
|
Drygalski K, Maciejczyk M, Miksza U, Ustymowicz A, Godzień J, Buczyńska A, Chomentowski A, Walczak I, Pietrowska K, Siemińska J, Pawlukianiec C, Czajkowski P, Fiedorczuk J, Moroz M, Modzelewska B, Zalewska A, Kutryb-Zając B, Kleszczewski T, Ciborowski M, Hady HR, Foretz M, Adamska-Patruno E. New Application of an Old Drug: Anti-Diabetic Properties of Phloroglucinol. Int J Mol Sci 2024; 25:10291. [PMID: 39408621 PMCID: PMC11477119 DOI: 10.3390/ijms251910291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
Phloroglucinol (PHG), an analgesic and spasmolytic drug, shows promise in preventing high-fat-diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) and insulin resistance. In Wistar rats, 10 weeks of PHG treatment did not prevent HFD-induced weight gain but significantly mitigated fasting hyperglycemia, impaired insulin responses, and liver steatosis. This protective effect was not linked to hepatic lipogenesis or AMP-activated protein kinase (AMPK) activation. Instead, PHG improved mitochondrial function by reducing oxidative stress, enhancing ATP production, and increasing anti-oxidant enzyme activity. PHG also relaxed gastric smooth muscles via potassium channel activation and nitric oxide (NO) signaling, potentially delaying gastric emptying. A pilot intervention in pre-diabetic men confirmed PHG's efficacy in improving postprandial glycemic control and altering lipid metabolism. These findings suggest PHG as a potential therapeutic for NAFLD and insulin resistance, acting through mechanisms involving mitochondrial protection, anti-oxidant activity, and gastric motility modulation. Further clinical evaluation is warranted to explore PHG's full therapeutic potential.
Collapse
Affiliation(s)
- Krzysztof Drygalski
- Department of Hypertension and Diabetology, Medical University of Gdansk, 80-214 Gdansk, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | - Urszula Miksza
- Clinical Research Support Centre, Medical University of Bialystok, 15-089 Bialystok, Poland; (U.M.); (P.C.); (J.F.); (M.M.); (E.A.-P.)
| | - Andrzej Ustymowicz
- Department of Radiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Joanna Godzień
- Clinical Research Centre, Medical University of Bialystok, 15-089 Bialystok, Poland (A.B.); (K.P.); (J.S.); (M.C.)
| | - Angelika Buczyńska
- Clinical Research Centre, Medical University of Bialystok, 15-089 Bialystok, Poland (A.B.); (K.P.); (J.S.); (M.C.)
| | - Andrzej Chomentowski
- Department of Biophysics, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.C.); (B.M.); (T.K.)
| | - Iga Walczak
- Department of Biochemistry, Medical University of Gdansk, 80-214 Gdansk, Poland; (I.W.); (B.K.-Z.)
| | - Karolina Pietrowska
- Clinical Research Centre, Medical University of Bialystok, 15-089 Bialystok, Poland (A.B.); (K.P.); (J.S.); (M.C.)
| | - Julia Siemińska
- Clinical Research Centre, Medical University of Bialystok, 15-089 Bialystok, Poland (A.B.); (K.P.); (J.S.); (M.C.)
| | - Cezary Pawlukianiec
- Students Scientific Club “Biochemistry of Civilization Diseases”, Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Przemysław Czajkowski
- Clinical Research Support Centre, Medical University of Bialystok, 15-089 Bialystok, Poland; (U.M.); (P.C.); (J.F.); (M.M.); (E.A.-P.)
| | - Joanna Fiedorczuk
- Clinical Research Support Centre, Medical University of Bialystok, 15-089 Bialystok, Poland; (U.M.); (P.C.); (J.F.); (M.M.); (E.A.-P.)
| | - Monika Moroz
- Clinical Research Support Centre, Medical University of Bialystok, 15-089 Bialystok, Poland; (U.M.); (P.C.); (J.F.); (M.M.); (E.A.-P.)
| | - Beata Modzelewska
- Department of Biophysics, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.C.); (B.M.); (T.K.)
| | - Anna Zalewska
- Experimental Dentistry Laboratory, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | - Barbara Kutryb-Zając
- Department of Biochemistry, Medical University of Gdansk, 80-214 Gdansk, Poland; (I.W.); (B.K.-Z.)
| | - Tomasz Kleszczewski
- Department of Biophysics, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.C.); (B.M.); (T.K.)
| | - Michał Ciborowski
- Clinical Research Centre, Medical University of Bialystok, 15-089 Bialystok, Poland (A.B.); (K.P.); (J.S.); (M.C.)
| | - Hady Razak Hady
- Clinical Department of General and Endocrine Surgery, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Marc Foretz
- Institut Cochin, Université Paris Cité, CNRS, INSERM, F-75014 Paris, France;
| | - Edyta Adamska-Patruno
- Clinical Research Support Centre, Medical University of Bialystok, 15-089 Bialystok, Poland; (U.M.); (P.C.); (J.F.); (M.M.); (E.A.-P.)
| |
Collapse
|
3
|
Zeng X, Li X, Li X, Wei C, Shi C, Hu K, Kong D, Luo Q, Xu Y, Shan W, Zhang M, Shi J, Feng J, Han Y, Huang H, Qian P. Fecal microbiota transplantation from young mice rejuvenates aged hematopoietic stem cells by suppressing inflammation. Blood 2023; 141:1691-1707. [PMID: 36638348 PMCID: PMC10646769 DOI: 10.1182/blood.2022017514] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/05/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Hematopoietic stem cell (HSC) aging is accompanied by hematopoietic reconstitution dysfunction, including loss of regenerative and engraftment ability, myeloid differentiation bias, and elevated risks of hematopoietic malignancies. Gut microbiota, a key regulator of host health and immunity, has recently been reported to affect hematopoiesis. However, there is currently limited empirical evidence explaining the direct impact of gut microbiome on aging hematopoiesis. In this study, we performed fecal microbiota transplantation (FMT) from young mice to aged mice and observed a significant increment in lymphoid differentiation and decrease in myeloid differentiation in aged recipient mice. Furthermore, FMT from young mice rejuvenated aged HSCs with enhanced short-term and long-term hematopoietic repopulation capacity. Mechanistically, single-cell RNA sequencing deciphered that FMT from young mice mitigated inflammatory signals, upregulated the FoxO signaling pathway, and promoted lymphoid differentiation of HSCs during aging. Finally, integrated microbiome and metabolome analyses uncovered that FMT reshaped gut microbiota composition and metabolite landscape, and Lachnospiraceae and tryptophan-associated metabolites promoted the recovery of hematopoiesis and rejuvenated aged HSCs. Together, our study highlights the paramount importance of the gut microbiota in HSC aging and provides insights into therapeutic strategies for aging-related hematologic disorders.
Collapse
Affiliation(s)
- Xiangjun Zeng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Xiaoqing Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Xia Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Cong Wei
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Ce Shi
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Kejia Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Delin Kong
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Qian Luo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yulin Xu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Wei Shan
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Meng Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Jimin Shi
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Jingjing Feng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yingli Han
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Pengxu Qian
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
- Center of Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Zhang W, Cui Y, Liu Z, Wang S, Yang A, Li X, Zhang J. Astragalus membranaceus ultrafine powder alleviates hyperuricemia by regulating the gut microbiome and reversing bile acid and adrenal hormone biosynthesis dysregulation. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
5
|
Modzelewska B, Drygalski K, Hady HR, Kiełczewska A, Chomentowski A, Koryciński K, Głuszyńska P, Kleszczewski T. Resveratrol Relaxes Human Gastric Smooth Muscles Through High Conductance Calcium-Activated Potassium Channel in a Nitric Oxide-independent Manner. Front Pharmacol 2022; 13:823887. [PMID: 35145416 PMCID: PMC8822120 DOI: 10.3389/fphar.2022.823887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/03/2022] [Indexed: 11/25/2022] Open
Abstract
Resveratrol, as a polyphenolic compound that can be isolated from plants, and also a component of red wine has broad beneficial pharmacological properties. The aim was to investigate the role of nitric oxide and potassium channels in resveratrol-induced relaxation of human gastric smooth muscle. Gastric tissues were obtained from patients who underwent sleeve gastrectomy for severe obesity (n = 10 aged 21–48; BMI 48.21 ± 1.14). The mechanical activity from the muscle strips was detected under isometric conditions as the response to increasing concentrations of resveratrol before and after different pharmacological treatments. Resveratrol caused an observable, dose-dependent gastric muscle relaxation. The maximal response caused by the highest concentration of resveratrol was 83.49 ± 2.85% (p < 0.0001) of the control. Preincubation with L-NNA, L-NAME, or ODQ did not prevent the resveratrol-induced relaxation. Apamin, glibenclamide, 4AP or tamoxifen, did not inhibit the relaxing effect of resveratrol, as well. In turn, blocking BKCa by TEA, iberiotoxin, or charybdotoxin resulted in inhibition of resveratrol-induced relaxation (91.08 ± 2.07, p < 0.05; 95.60 ± 1.52, p < 0.01 and 89.58 ± 1.98, p < 0.05, respectively). This study provides the first observation that the relaxant effects of resveratrol in human gastric muscle strips occur directly through BKCa channels and independently of nitric oxide signaling pathways. Furthermore, there is considerable potential for further extensive clinical studies with resveratrol as an effective new drug or health supplement to treat gastrointestinal dyspepsia and other gastric hypermotility disorders.
Collapse
Affiliation(s)
- Beata Modzelewska
- Department of Biophysics, Faculty of Medicine, Medical University of Bialystok, Bialystok, Poland
- *Correspondence: Beata Modzelewska,
| | - Krzysztof Drygalski
- Department of Biophysics, Faculty of Medicine, Medical University of Bialystok, Bialystok, Poland
- Clinical Research Center, Medical University of Bialystok, Bialystok, Poland
| | - Hady Razak Hady
- Clinical Department of General and Endocrine Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Aleksandra Kiełczewska
- Department of Biophysics, Faculty of Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Andrzej Chomentowski
- Department of Biophysics, Faculty of Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Krzysztof Koryciński
- Department of Biophysics, Faculty of Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Paulina Głuszyńska
- Clinical Department of General and Endocrine Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Tomasz Kleszczewski
- Department of Biophysics, Faculty of Medicine, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
6
|
Drygalski K, Fereniec E, Zalewska A, Krętowski A, Żendzian-Piotrowska M, Maciejczyk M. Phloroglucinol prevents albumin glycation as well as diminishes ROS production, glycooxidative damage, nitrosative stress and inflammation in hepatocytes treated with high glucose. Biomed Pharmacother 2021; 142:111958. [PMID: 34333287 DOI: 10.1016/j.biopha.2021.111958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/18/2022] Open
Abstract
The treatment of diabetes mellitus aftermaths became one of medicine's most significant therapeutical and financial issues in the XXI century. Most of which are related to protein glycation and oxidative stress caused by long lasting periods of hyperglycemia. Thus, even within a venerable one, searching for new drugs, displaying anti-glycation and anti-oxidative properties seem useful as an additive therapy of diabetes. In this paper, we assessed the anti-glycating properties of phloroglucinol, a drug discovered in the XIX century and still used in many countries for its antispasmodic action. Herewith, we present its effect on protein glycation, glycoxidation, and oxidative damage in an albumin glycation/oxidation model and HepG2 cells treated with high glucose concentrations. The phloroglucinol showed the strongest and the widest protective effect within all analyzed antiglycating (aminoguanidine, pioglitazone) and anti-oxidative (vitamin C, GSH) agents. To the very best of our knowledge, this is the first study showing the properties of phloroglucinol in vitro what once is proven in other models might deepen its clinical applications.
Collapse
Affiliation(s)
- Krzysztof Drygalski
- Clinical Research Center, Medical University of Bialystok, Poland; Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Poland.
| | | | - Anna Zalewska
- Experimental Dentistry Laboratory, Medical University of Bialystok, Poland
| | - Adam Krętowski
- Clinical Research Center, Medical University of Bialystok, Poland; Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Poland
| | | | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Poland.
| |
Collapse
|
7
|
Drygalski K, Siewko K, Chomentowski A, Odrzygóźdź C, Zalewska A, Krętowski A, Maciejczyk M. Phloroglucinol Strengthens the Antioxidant Barrier and Reduces Oxidative/Nitrosative Stress in Nonalcoholic Fatty Liver Disease (NAFLD). OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8872702. [PMID: 33510844 PMCID: PMC7822696 DOI: 10.1155/2021/8872702] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/12/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most commonly occurring diseases within western dietary patterns. Usually untreated, it may lead to type 2 diabetes mellitus (T2DM), steatohepatitis (NASH), and hepatocellular carcinoma (HCC). Besides its severe aftermath, up to now, there is no known therapeutic approach to this disease in everyday clinical practice. Most NAFLD patients are encouraged to do physical activities or diet change and remain without pharmacological treatment. In this study, we present phloroglucinol (PHG) as a novel and promising compound in NAFLD treatment. PHG significantly increased the level of enzymatic and nonenzymatic antioxidants both in palmitate and hydrogen peroxide-induced oxidative stress models. Strengthened antioxidative defense reduced the oxidative/nitrosative damage to cell proteins, lipids, and carbohydrates. Furthermore, PHG treatment reduced hepatic steatosis; lowered inflammatory markers, such as NF-κB or HIF-1α; and inhibited cell apoptosis. Moreover, PHG had a more comprehensive effect than other commonly used antioxidants: N-acetylcysteine (NAC) and α-lipoic acid (ALA), suggesting its clinical usability. Therefore, our paper supports the benefits of natural compounds as a therapeutical approach to NAFLD.
Collapse
Affiliation(s)
- Krzysztof Drygalski
- Clinical Research Center, Medical University of Bialystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Poland
| | - Katarzyna Siewko
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Poland
| | | | - Cezary Odrzygóźdź
- Department of Molecular and Systems Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Anna Zalewska
- Experimental Dentistry Laboratory, Medical University of Bialystok, Poland
| | - Adam Krętowski
- Clinical Research Center, Medical University of Bialystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Poland
| |
Collapse
|
8
|
Mora-Ramiro B, Jiménez-Estrada M, Zentella-Dehesa A, Ventura-Gallegos JL, Gomez-Quiroz LE, Rosiles-Alanis W, Alarcón-Aguilar FJ, Almanza-Pérez JC. Cacalol Acetate, a Sesquiterpene from Psacalium decompositum, Exerts an Anti-inflammatory Effect through LPS/NF-KB Signaling in Raw 264.7 Macrophages. JOURNAL OF NATURAL PRODUCTS 2020; 83:2447-2455. [PMID: 32672964 DOI: 10.1021/acs.jnatprod.0c00300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Inflammatory diseases remain critical health problems worldwide. The search for anti-inflammatory drugs is a primary activity in the pharmaceutical industry. Cacalol is a sesquiterpene with anti-inflammatory potential that is isolated from Psacalium decompositum, a medicinal plant with several scientific reports supporting its anti-inflammatory activity. Cacalol acetate (CA) is the most stable form. Nevertheless, the participation of CA in the main signaling pathway associated with inflammation is unknown. Our aim was to study the anti-inflammatory effect of CA and to determine its participation in NF-κB signaling. In TPA-induced edema in mice, CA produced 70.3% inhibition. To elucidate the influence of CA on the NF-κB pathway, RAW 264.7 macrophages were pretreated with CA and then stimulated with LPS, evaluating NF-ΚB activation, IKK phosphorylation, IΚB-α, p65, cytokine expression, and COX-2 release and activity. CA inhibited NF-κB activation and its upstream signaling, decreasing phosphorylation IKB-α and p65 levels. CA also reduced expression and secretion of TNF-α, IL-1β, and IL-6. Additionally, it decreased the activity and expression of COX-2 mRNA. These data support that CA regulates the NF-κB signaling pathway, which might explain, at least in part, its anti-inflammatory effect. CA is a bioactive molecule useful for the development of anti-inflammatory agents with innovative mechanisms of action.
Collapse
Affiliation(s)
- B Mora-Ramiro
- Posgrado en Biología Experimental, Division de CBS, UAM-Iztapalapa., San Rafael Atlixco 186, Vicentina, Delegación Iztapalapa, C.P. 09340, Ciudad de México, México
| | - M Jiménez-Estrada
- Departamento de Productos Naturales, Instituto de Química, UNAM, Circuito, Mario de La Cueva s/n, C.U., 04510 Ciudad de México, México
| | - A Zentella-Dehesa
- Programa Institucional de Cáncer de Mama, Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, Circuito, Mario de La Cueva s/n, C.U., 04510 Ciudad de México, México
- Unidad de Bioquímica, Instituto de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Secc 16, Tlalpan, 14080 Ciudad de México, México
| | - J L Ventura-Gallegos
- Programa Institucional de Cáncer de Mama, Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, Circuito, Mario de La Cueva s/n, C.U., 04510 Ciudad de México, México
- Unidad de Bioquímica, Instituto de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Belisario Domínguez Secc 16, Tlalpan, 14080 Ciudad de México, México
| | - L E Gomez-Quiroz
- Departamento de Ciencias de la Salud, CBS, UAM-Iztapalapa, San Rafael Atlixco 186, Vicentina, Delegación Iztapalapa, C.P. 09340, Ciudad de México, México
| | - W Rosiles-Alanis
- Posgrado en Biología Experimental, Division de CBS, UAM-Iztapalapa., San Rafael Atlixco 186, Vicentina, Delegación Iztapalapa, C.P. 09340, Ciudad de México, México
| | - F J Alarcón-Aguilar
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, División de CBS, UAM-Iztapalapa, San Rafael Atlixco 186, Vicentina, Delegación Iztapalapa, C.P. 09340, Ciudad de México, México
| | - J C Almanza-Pérez
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, División de CBS, UAM-Iztapalapa, San Rafael Atlixco 186, Vicentina, Delegación Iztapalapa, C.P. 09340, Ciudad de México, México
| |
Collapse
|
9
|
Beneficial and Deleterious Effects of Female Sex Hormones, Oral Contraceptives, and Phytoestrogens by Immunomodulation on the Liver. Int J Mol Sci 2019; 20:ijms20194694. [PMID: 31546715 PMCID: PMC6801544 DOI: 10.3390/ijms20194694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/13/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022] Open
Abstract
The liver is considered the laboratory of the human body because of its many metabolic processes. It accomplishes diverse activities as a mixed gland and is in continuous cross-talk with the endocrine system. Not only do hormones from the gastrointestinal tract that participate in digestion regulate the liver functions, but the sex hormones also exert a strong influence on this sexually dimorphic organ, via their receptors expressed in liver, in both health and disease. Besides, the liver modifies the actions of sex hormones through their metabolism and transport proteins. Given the anatomical position and physiological importance of liver, this organ is evidenced as an immune vigilante that mediates the systemic immune response, and, in turn, the immune system regulates the hepatic functions. Such feedback is performed by cytokines. Pro-inflammatory and anti-inflammatory cytokines are strongly involved in hepatic homeostasis and in pathological states; indeed, female sex hormones, oral contraceptives, and phytoestrogens have immunomodulatory effects in the liver and the whole organism. To analyze the complex and interesting beneficial or deleterious effects of these drugs by their immunomodulatory actions in the liver can provide the basis for either their pharmacological use in therapeutic treatments or to avoid their intake in some diseases.
Collapse
|