1
|
Zhu C, Zuo Z, Xu C, Ji M, He J, Li J. Tumstatin (69-88) alleviates heart failure via attenuating oxidative stress in rats with myocardial infarction. Heliyon 2022; 8:e10582. [PMID: 36158078 PMCID: PMC9489976 DOI: 10.1016/j.heliyon.2022.e10582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/30/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Background This study aimed to elucidate the effects of tumstatin (69–88) on heart failure and the underlying mechanism. Materials and methods Myocardial infarction (MI) was induced by ligating the left coronary artery in rats to trigger heart failure. Results Tumstatin (69–88) can reduce cardiac insufficiency in rats with heart failure. The increased cardiac fibrosis in MI rat was attenuated by tumstatin (69–88). Increase of cardiac atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) in rats with myocardial infarction, and Ang II-treated NRCMs or H9C2 cells was inhibited by tumstatin (69–88). In the heart of MI rats, and Ang II-treated NRCMs or H9C2 cells, the superoxide anions and NADPH oxidase (Nox) activity rose and the superoxide dismutase (SOD) activity was reduced, which was inhibited by tumstatin (69–88). Diethyldithiocarbamate, an SOD inhibitor, increased the ANP and BNP in NRCMs or H9C2 cells. Tumstatin (69–88) inhibited the Ang II-induced raises of ANP and BNP in NRCMs or H9C2 cells, which was reversed by DETC. Conclusions These results indicate that tumstatin (69–88) alleviates cardiac dysfunction of heart failure. Tumstatin (69–88) improves the hypertrophy of cardiomyocytes via attenuation of oxidative stress. Tumstatin (69–88) may be a potential drug for heart failure in the future.
Collapse
Affiliation(s)
- Congfei Zhu
- Department of Cardiology, Lianshui County People's Hospital, Huaian, China
| | - Zhi Zuo
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cheng Xu
- Department of Cardiology, Lianshui County People's Hospital, Huaian, China
| | - Mingyue Ji
- Department of Cardiology, Lianshui County People's Hospital, Huaian, China
| | - Junjie He
- Department of Cardiology, Lianshui County People's Hospital, Huaian, China
| | - Jinshuang Li
- Department of Cardiology, Suqian Hospital Affiliated of Xuzhou Medical University, Suqian, China
| |
Collapse
|
2
|
Shi X, Dorsey A, Qiu H. New Progress in the Molecular Regulations and Therapeutic Applications in Cardiac Oxidative Damage Caused by Pressure Overload. Antioxidants (Basel) 2022; 11:antiox11050877. [PMID: 35624741 PMCID: PMC9137593 DOI: 10.3390/antiox11050877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic pressure overload is a key risk factor for mortality due to its subsequent development of heart failure, in which the underlying molecular mechanisms remain vastly undetermined. In this review, we updated the latest advancements for investigating the role and relevant mechanisms of oxidative stress involved in the pathogenesis of pressure-overload-induced cardiomyopathy and cardiac dysfunction, focusing on significant biological sources of reactive oxygen species (free radical) production, antioxidant defenses, and their association with the cardiac metabolic remodeling in the stressed heart. We also summarize the newly developed preclinical therapeutic approaches in animal models for pressure-overload-induced myocardial damage. This review aims to enhance the current understanding of the mechanisms of chronic hypertensive heart failure and potentially improve the development of better therapeutic strategies for the associated diseases.
Collapse
Affiliation(s)
| | | | - Hongyu Qiu
- Correspondence: ; Tel.: +1-404-413-3371; Fax: +1-404-413-9566
| |
Collapse
|
3
|
Yang S, Yang J, Zhao H, Deng R, Fan H, Zhang J, Yang Z, Zeng H, Kuang B, Shao L. The Protective Effects of γ-Tocotrienol on Muscle Stem Cells Through Inhibiting Reactive Oxidative Stress Production. Front Cell Dev Biol 2022; 10:820520. [PMID: 35372342 PMCID: PMC8965065 DOI: 10.3389/fcell.2022.820520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/01/2022] [Indexed: 11/25/2022] Open
Abstract
Pseudotrophic muscular dystrophy is a common clinical skeletal muscle necrotic disease, among which Duchenne muscular dystrophy (DMD) is the predominant. For such diseases, there is no clinically effective treatment, which is only symptomatic or palliative treatment. Oxidative stress and chronic inflammation are common pathological features of DMD. In recent years, it has been found that the pathophysiological changes of skeletal muscle in DMD mice are related to muscle stem cell failure. In the present study, we established a DMD mice model and provided tocotrienol (γ-tocotrienol, GT3), an antioxidant compound, to explore the relationship between the physiological state of muscle stem cells and oxidative stress. The results showed that the application of GT3 can reduce ROS production and cellular proliferation in the muscle stem cells of DMD mice, which is beneficial to promote the recovery of muscle stem cell function in DMD mice. GT3 treatment improved the differentiation ability of muscle stem cells in DMD mice with increasing numbers of MyoD+ cells. GT3 application significantly decreased percentages of CD45+ cells and PDGFRα+ fibro-adipogenic progenitors in the tibialis anterior of DMD mice, indicating that the increased inflammation and fibro-adipogenic progenitors were attenuated in GT3-treated DMD mice. These data suggest that increased ROS production causes dysfunctional muscle stem cell in DMD mice, which might provide a new avenue to treat DMD patients in the clinic.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Juan Yang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Huiwen Zhao
- Department of Biological Genetics, School of Basic Medicine, Nanchang University, Nanchang, China
| | - Rong Deng
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Hancheng Fan
- Department of Histology and Embryology, School of Basic Medicine, Nanchang University, Nanchang, China
| | - Jinfu Zhang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Zihao Yang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
| | - Huihong Zeng
- Department of Histology and Embryology, School of Basic Medicine, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang, China
| | - Bohai Kuang
- Department of Biological Genetics, School of Basic Medicine, Nanchang University, Nanchang, China
| | - Lijian Shao
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang, China
- *Correspondence: Lijian Shao,
| |
Collapse
|
4
|
Potnuri AG, Purushothaman S, Saheera S, Nair RR. Mito-targeted antioxidant prevents cardiovascular remodelling in spontaneously hypertensive rat by modulation of energy metabolism. Clin Exp Pharmacol Physiol 2021; 49:35-45. [PMID: 34459495 DOI: 10.1111/1440-1681.13585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 08/17/2021] [Accepted: 08/26/2021] [Indexed: 12/30/2022]
Abstract
Hypertension induced left ventricular hypertrophy (LVH) augments the risk of cardiovascular anomalies. Mitochondrial alterations result in oxidative stress, accompanied by decrease in fatty acid oxidation, leading to the activation of the hypertrophic program. Targeted antioxidants are expected to reduce mitochondrial reactive oxygen species more effectively than general antioxidants. This study was designed to assess whether the mito-targeted antioxidant, Mito-Tempol (Mito-TEMP) is more effective than the general oxidant, Tempol (TEMP) in reduction of hypertension and hypertrophy and prevention of shift in cardiac energy metabolism. Spontaneously hypertensive rats were administered either TEMP (20 mg/kg/day) or Mito-TEMP (2 mg/kg/day) intraperitoneally for 30 days. Post treatment, animals were subjected to 2D-echocardiography. Myocardial lysates were subjected to RPLC - LTQ-Orbitrap-MS analysis. Mid-ventricular sections were probed for markers of energy metabolism and fibrosis. The beneficial effect on cardiovascular structure and function was significantly higher for Mito-TEMP. Increase in mitochondrial antioxidants and stimulation of fatty acid metabolism; with significant improvement in cardiovascular function was apparent in spontaneously hypertensive rats (SHR) treated with Mito-TEMP. The study indicates that Mito-TEMP is superior to its non- targeted isoform in preventing hypertension induced LVH, and the beneficial effects on heart are possibly mediated by reversal of metabolic remodelling.
Collapse
Affiliation(s)
- Ajay Godwin Potnuri
- Department of Animal Physiology, Resource Facility for Biomedical Research, Indian Council for Medical Research - National Animal, Hyderabad, India.,Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrom, India
| | - Sreeja Purushothaman
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrom, India
| | - Sherin Saheera
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrom, India
| | - Renuka R Nair
- Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrom, India
| |
Collapse
|
5
|
Cell seeding accelerates the vascularization of tissue engineering constructs in hypertensive mice. Hypertens Res 2020; 44:23-35. [PMID: 32778779 DOI: 10.1038/s41440-020-0524-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 11/08/2022]
Abstract
Rapid blood vessel ingrowth into transplanted constructs represents the key requirement for successful tissue engineering. Seeding three-dimensional scaffolds with suitable cells is an approved technique for this challenge. Since a plethora of patients suffer from widespread diseases that limit the capacity of neoangiogenesis (e.g., hypertension), we investigated the incorporation of cell-seeded poly-L-lactide-co-glycolide scaffolds in hypertensive (BPH/2J, group A) and nonhypertensive (BPN/3J, group B) mice. Collagen-coated scaffolds (A1 and B1) were additionally seeded with osteoblast-like (A2 and B2) and mesenchymal stem cells (A3 and B3). After implantation into dorsal skinfold chambers, inflammation and newly formed microvessels were measured using repetitive intravital fluorescence microscopy for 2 weeks. Apart from a weak inflammatory response in all groups, significantly increased microvascular densities were found in cell-seeded scaffolds (day 14, A2: 192 ± 12 cm/cm2, A3: 194 ± 10 cm/cm2, B2: 249 ± 19 cm/cm2, B3: 264 ± 17 cm/cm2) when compared with controls (A1: 129 ± 10 cm/cm2, B1: 185 ± 8 cm/cm2). In this context, hypertensive mice showed reduced neoangiogenesis in comparison with nonhypertensive animals. Therefore, seeding approved scaffolds with organ-specific or pluripotent cells is a very promising technique for tissue engineering in hypertensive organisms.
Collapse
|
6
|
Oyagbemi AA, Omobowale TO, Adejumobi OA, Owolabi AM, Ogunpolu BS, Falayi OO, Hassan FO, Ogunmiluyi IO, Asenuga ER, Ola-Davies OE, Soetan KO, Saba AB, Adedapo AA, Nkadimeng SM, McGaw LJ, Oguntibeju OO, Yakubu MA. Antihypertensive power of Naringenin is mediated via attenuation of mineralocorticoid receptor (MCR)/ angiotensin converting enzyme (ACE)/ kidney injury molecule (Kim-1) signaling pathway. Eur J Pharmacol 2020; 880:173142. [PMID: 32422184 DOI: 10.1016/j.ejphar.2020.173142] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 02/08/2023]
Abstract
Hypertension is a condition with chronic elevation of blood pressure and a common preventable risk factor for cardiovascular disease with attendant global morbidity and mortality. The present study investigated the novel antihypertensive and neuroprotective effect of Naringenin on L-NG-Nitro arginine methyl ester (L-NAME) induced hypertension together with possible molecular mechanism of action. Rats were divided into four groups. Rats in Group A were normotensive. The hypertensive group (Group B) received 40 mg/kg) of L-NAME alone while Groups C and D were concurrently administered Naringenin (50 mg/kg) or Lisinopril (10 mg/Kg) together with L-NAME orally for 3 weeks. Blood pressure parameters, markers of oxidative stress and renal damage were measured. The immunohistochemistry of kidney injury molecule 1, mineralocorticoid receptor and angiotensin converting enzyme were also determined. Results indicated significant increases in malondialdehyde, advanced oxidation protein products, protein carbonyl contents and decrease in serum nitric oxide bioavailability in hypertensive rats. Furthermore, there were significant increases in serum myeloperoxidase, urinary creatinine, albumin and blood urea nitrogen in hypertensive rats in comparison to hypertensive rats treated with either Naringenin or Lisinopril. Immunohistochemistry reveal significant expressions of kidney injury molecule 1, mineralocorticoid receptor and angiotensin converting enzyme in hypertensive rats. However, co-treatment with either Naringenin or Lisinopril mitigated both renal and neuronal oxidative stress, normalized blood pressure and lowered the expressions of kidney injury molecule 1, mineralocorticoid receptor and angiotensin converting enzyme. Collectively, Naringenin offered a novel antihypertensive and neuroprotective effect through down regulation of kidney injury molecule 1, mineralocorticoid receptor and angiotensin converting enzyme.
Collapse
Affiliation(s)
- Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria.
| | | | | | - Abiodun Mary Owolabi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Blessing Seun Ogunpolu
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Olufunke Olubunmi Falayi
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Fasilat Oluwakemi Hassan
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | | | - Ebunoluwa Racheal Asenuga
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Benin, Nigeria
| | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Kehinde Olugboyega Soetan
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Adebowale Benard Saba
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - Sanah Malomile Nkadimeng
- Phytomedicine Programme, Department of Paraclinical Science, University of Pretoria Faculty of Veterinary Science, Old Soutpan Road, Onderstepoort, 0110, South Africa
| | - Lyndy Joy McGaw
- Phytomedicine Programme, Department of Paraclinical Science, University of Pretoria Faculty of Veterinary Science, Old Soutpan Road, Onderstepoort, 0110, South Africa
| | - Oluwafemi Omoniyi Oguntibeju
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, 7535, South Africa
| | - Momoh Audu Yakubu
- Department of Environmental & Interdisciplinary Sciences, College of Science, Engineering & Technology, Texas Southern University, Houston, TX, USA
| |
Collapse
|
7
|
Saheera S, Krishnamurthy P. Cardiovascular Changes Associated with Hypertensive Heart Disease and Aging. Cell Transplant 2020; 29:963689720920830. [PMID: 32393064 PMCID: PMC7586256 DOI: 10.1177/0963689720920830] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases are the leading cause of mortality and morbidity worldwide and account for more than 17.9 million deaths (World Health Organization report). Hypertension and aging are two major risk factors for the development of cardiac structural and functional abnormalities. Hypertension, or elevated blood pressure, if left untreated can result in myocardial hypertrophy leading to heart failure (HF). Left ventricular hypertrophy consequent to pressure overload is recognized as the most important predictor of congestive HF and sudden death. The pathological changes occurring during hypertensive heart disease are very complex and involve many cellular and molecular alterations. In contrast, the cardiac changes that occur with aging are a slow but life-long process and involve all of the structural components in the heart and vasculature. However, these structural changes in the cardiovascular system lead to alterations in overall cardiac physiology and function. The pace at which these pathophysiological changes occur varies between individuals owing to many genetic and environmental risk factors. This review highlights the molecular mechanisms of cardiac structural and functional alterations associated with hypertension and aging.
Collapse
Affiliation(s)
- Sherin Saheera
- Department of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, USA
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, School of Medicine and School of Engineering, The University of Alabama at Birmingham, USA
| |
Collapse
|