1
|
He M, Jin Q, Deng C, Fu W, Xu J, Xu L, Song Y, Wang R, Wang W, Wang L, Zhou W, Jing B, Chen Y, Gao T, Xie M, Zhang L. Amplification of Plasma MicroRNAs for Non-invasive Early Detection of Acute Rejection after Heart Transplantation With Ultrasound-Targeted Microbubble Destruction. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1647-1657. [PMID: 37120328 DOI: 10.1016/j.ultrasmedbio.2023.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
OBJECTIVE Acute rejection (AR) screening has always been the focus of patient management in the first several years after heart transplantation (HT). As potential biomarkers for the non-invasive diagnosis of AR, microRNAs (miRNAs) are limited by their low abundance and complex origin. Ultrasound-targeted microbubble destruction (UTMD) technique could temporarily alter vascular permeability through cavitation. We hypothesized that increasing the permeability of myocardial vessels might enhance the abundance of circulating AR-related miRNAs, thus enabling the non-invasive monitoring of AR. METHODS The Evans blue assay was applied to determine efficient UTMD parameters. Blood biochemistry and echocardiographic indicators were used to ensure the safety of the UTMD. AR of the HT model was constructed using Brown-Norway and Lewis rats. Grafted hearts were sonicated with UTMD on postoperative day (POD) 3. The polymerase chain reaction was used to identify upregulated miRNA biomarkers in graft tissues and their relative amounts in the blood. RESULTS Amounts of six kinds of plasma miRNA, including miR-142-3p, miR-181a-5p, miR-326-3p, miR-182, miR-155-5p and miR-223-3p, were 10.89 ± 1.36, 13.54 ± 2.15, 9.84 ± 0.70, 8.55 ± 2.00, 12.50 ± 3.96 and 11.02 ± 3.47 times higher in the UTMD group than those in the control group on POD 3. Plasma miRNA abundance in the allograft group without UTMD did not differ from that in the isograft group on POD 3. After FK506 treatment, no miRNAs increased in the plasma after UTMD. CONCLUSION UTMD can promote the transfer of AR-related miRNAs from grafted heart tissue to the blood, allowing non-invasive early detection of AR.
Collapse
Affiliation(s)
- Mengrong He
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Qiaofeng Jin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Cheng Deng
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wenpei Fu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jia Xu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Lingling Xu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yishu Song
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Rui Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wenyuan Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Lufang Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wuqi Zhou
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Boping Jing
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yihan Chen
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Tang Gao
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Clinical Research Center for Medical Imaging, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
| |
Collapse
|
2
|
Nagy PF, Pócsi M, Fejes Z, Bidiga L, Szabó E, Balogh O, Szőllősi GJ, Nagy B, Nemes B. Investigation of Circulating MicroRNA Levels in Antibody-Mediated Rejection After Kidney Transplantation. Transplant Proc 2022; 54:2570-2577. [PMID: 36400592 DOI: 10.1016/j.transproceed.2022.10.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND One of the most important possible complications determining long-term graft survival after kidney transplant is antibody-mediated rejection (ABMR). The criterion standard approach to recognize ABMR is currently the kidney biopsy with histopathologic analysis. However, this test has limitations because of difficulties in timing of sampling, the evaluability of histology because of the questionable representativeness of specimens, and the limited number of this intervention. Hence, new reliable, noninvasive biomarkers are required to detect the development of ABMR in time. METHODS In this study, we analyzed the clinical data of 45 kidney transplant patients (mean age of 44.51 years, 20 male and 25 female subjects). These participants were recruited into 5 subcohorts based on their clinical status, histologic findings, and level of donor-specific anti-HLA antibodies. Circulating microRNAs (miR-21, miR-181b, miR-146a, miR-223, miR-155, miR-150) in plasma samples were quantified by quantitative polymerase chain reaction and their levels were correlated with the clinical characteristics in different subgroups. RESULTS The relative expression of plasma miR-155 (P = .0003), miR-223 (P = .0316), and miR-21 (P = .0147) were significantly higher in patients who had subsequent histology-approved ABMR with donor-specific anti-HLA antibody positivity (n = 10) than in the "triple negative" group (n = 21), and miR-155 showed the highest sensitivity (90%) and specificity (81%) to indicate ABMR development based on receiver operating characteristic analysis. CONCLUSIONS According to our preliminary data, plasma miR-155, miR-21, and miR-223 can indicate the development of ABMR after kidney transplant in correlation with classic clinical parameters. However, future studies with larger number of participants are necessary to further evaluate the diagnostic properties of blood miRNAs in prediction of this life-threatening condition.
Collapse
Affiliation(s)
- Péter Ferenc Nagy
- Institute of Surgery, Department of Organ Transplantation, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - Marianna Pócsi
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsolt Fejes
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Bidiga
- Department of Pathology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Eszter Szabó
- Institute of Surgery, Department of Organ Transplantation, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Orsolya Balogh
- Institute of Surgery, Department of Organ Transplantation, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gergő József Szőllősi
- Department of Interventional Epidemiology, Faculty of Public Health, University of Debrecen, Debrecen, Hungary
| | - Béla Nagy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs Nemes
- Institute of Surgery, Department of Organ Transplantation, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
3
|
Xiang X, Zhu J, Dong G, Dong Z. Epigenetic Regulation in Kidney Transplantation. Front Immunol 2022; 13:861498. [PMID: 35464484 PMCID: PMC9024296 DOI: 10.3389/fimmu.2022.861498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/17/2022] [Indexed: 12/29/2022] Open
Abstract
Kidney transplantation is a standard care for end stage renal disease, but it is also associated with a complex pathogenesis including ischemia-reperfusion injury, inflammation, and development of fibrosis. Over the past decade, accumulating evidence has suggested a role of epigenetic regulation in kidney transplantation, involving DNA methylation, histone modification, and various kinds of non-coding RNAs. Here, we analyze these recent studies supporting the role of epigenetic regulation in different pathological processes of kidney transplantation, i.e., ischemia-reperfusion injury, acute rejection, and chronic graft pathologies including renal interstitial fibrosis. Further investigation of epigenetic alterations, their pathological roles and underlying mechanisms in kidney transplantation may lead to new strategies for the discovery of novel diagnostic biomarkers and therapeutic interventions.
Collapse
Affiliation(s)
- Xiaohong Xiang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veteran Affairs (VA) Medical Center, Augusta, GA, United States.,Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiefu Zhu
- Center of Nephrology and Dialysis, Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guie Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veteran Affairs (VA) Medical Center, Augusta, GA, United States
| | - Zheng Dong
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veteran Affairs (VA) Medical Center, Augusta, GA, United States
| |
Collapse
|
4
|
KLF4 Affects Acute Renal Allograft Injury via Binding to MicroRNA-155-5p Promoter to Regulate ERRFI1. DISEASE MARKERS 2022; 2022:5845627. [PMID: 35340414 PMCID: PMC8947908 DOI: 10.1155/2022/5845627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 11/18/2022]
Abstract
Kruppel-like factor 4 (KLF4) owns the promising potential in treating kidney injury, which inevitably occurs during renal allograft. Given that, this research targets to unveil KLF4-oriented mechanism from microRNA-155-5p/ERBB receptor feedback inhibitor 1 (miR-155-5p/ERRFI1) axis in acute renal allograft injury. Mice were injected with miR-155-5p-related sequences before acute renal allograft modeling. Afterwards, serum inflammation, along with oxidative stress, renal tubular injury, and apoptosis in renal tissues were detected. HK-2 cells were processed by hypoxia/reoxygenation (H/R) and transfected with miR-155-5p- or ERRFI1-related sequences, after which cell proliferation and apoptosis were measured. KLF4, miR-155-5p, and ERRFI1 expressions and their interaction were tested. KLF4 and miR-155-5p levels were enhanced, and ERRFI1 level was repressed in mice after acute renal allograft and in H/R-treated HK-2 cells. KLF4 bound to the promoter of miR-155-5p. Depleting miR-155-5p reduced serum inflammation and attenuated oxidative stress, renal tubular injury, and apoptosis in mice with acute renal allograft injury. Downregulating miR-155-5p facilitated proliferation and repressed apoptosis of H/R-treated HK-2 cells. miR-155-5p targeted ERRFI1. Knocking down ERRFI1 antagonized the effects of downregulated miR-155-5p on acute renal allograft injury, as well as on H/R-treated HK-2 cell proliferation and apoptosis. A summary displays that silencing KLF4 suppresses miR-155-5p to attenuate acute renal allograft injury by upregulating ERRFI1, which provides a way to control acute renal allograft injury.
Collapse
|
5
|
Lin Y, Wang L, Ge W, Hui Y, Zhou Z, Hu L, Pan H, Huang Y, Shen B. Multi-omics network characterization reveals novel microRNA biomarkers and mechanisms for diagnosis and subtyping of kidney transplant rejection. J Transl Med 2021; 19:346. [PMID: 34389032 PMCID: PMC8361655 DOI: 10.1186/s12967-021-03025-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Kidney transplantation is an optimal method for treatment of end-stage kidney failure. However, kidney transplant rejection (KTR) is commonly observed to have negative effects on allograft function. MicroRNAs (miRNAs) are small non-coding RNAs with regulatory role in KTR genesis, the identification of miRNA biomarkers for accurate diagnosis and subtyping of KTR is therefore of clinical significance for active intervention and personalized therapy. METHODS In this study, an integrative bioinformatics model was developed based on multi-omics network characterization for miRNA biomarker discovery in KTR. Compared with existed methods, the topological importance of miRNA targets was prioritized based on cross-level miRNA-mRNA and protein-protein interaction network analyses. The biomarker potential of identified miRNAs was computationally validated and explored by receiver-operating characteristic (ROC) evaluation and integrated "miRNA-gene-pathway" pathogenic survey. RESULTS Three miRNAs, i.e., miR-145-5p, miR-155-5p, and miR-23b-3p, were screened as putative biomarkers for KTR monitoring. Among them, miR-155-5p was a previously reported signature in KTR, whereas the remaining two were novel candidates both for KTR diagnosis and subtyping. The ROC analysis convinced the power of identified miRNAs as single and combined biomarkers for KTR prediction in kidney tissue and blood samples. Functional analyses, including the latent crosstalk among HLA-related genes, immune signaling pathways and identified miRNAs, provided new insights of these miRNAs in KTR pathogenesis. CONCLUSIONS A network-based bioinformatics approach was proposed and applied to identify candidate miRNA biomarkers for KTR study. Biological and clinical validations are further needed for translational applications of the findings.
Collapse
Affiliation(s)
- Yuxin Lin
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215000 China
| | - Liangliang Wang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215000 China
| | - Wenqing Ge
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215000 China
| | - Yu Hui
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215000 China
| | - Zheng Zhou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215000 China
| | - Linkun Hu
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215000 China
| | - Hao Pan
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215000 China
| | - Yuhua Huang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215000 China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212 China
| |
Collapse
|
6
|
Novák J, Macháčková T, Krejčí J, Bienertová-Vašků J, Slabý O. MicroRNAs as theranostic markers in cardiac allograft transplantation: from murine models to clinical practice. Theranostics 2021; 11:6058-6073. [PMID: 33897899 PMCID: PMC8058726 DOI: 10.7150/thno.56327] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/21/2021] [Indexed: 12/11/2022] Open
Abstract
Congestive heart failure affects about 23 million people worldwide, and cardiac allograft transplantation remains one of the last options for patients with terminal refractory heart failure. Besides the infectious or oncological complications, the prognosis of patients after heart transplantation is affected by acute cellular or antibody-mediated rejection and allograft vasculopathy development. Current monitoring of both conditions requires the performance of invasive procedures (endomyocardial biopsy sampling and coronary angiography or optical coherence tomography, respectively) that are costly, time-demanding, and non-comfortable for the patient. Within this narrative review, we focus on the potential pathophysiological and clinical roles of microRNAs (miRNAs, miRs) in the field of cardiac allograft transplantation. Firstly, we provide a general introduction about the status of cardiac allograft function monitoring and the discovery of miRNAs as post-transcriptional regulators of gene expression and clinically relevant biomarkers found in the extracellular fluid. After this general introduction, information from animal and human studies are summarized to underline the importance of miRNAs both in the pathophysiology of the rejection process, the possibility of its modulation by altering miRNAs levels, and last but not least, about the use of miRNAs in the clinical practice to diagnose or predict the rejection occurrence.
Collapse
Affiliation(s)
- Jan Novák
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5-A18, 625 00, Brno, Czech Republic
- Second Department of Internal Medicine, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Pekařská 53, 65691, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Kamenice 5-A35, 625 00, Brno, Czech Republic
| | - Táňa Macháčková
- Central European Institute of Technology, Masaryk University, Kamenice 5-A35, 625 00, Brno, Czech Republic
| | - Jan Krejčí
- Department of Cardiovascular Diseases, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Pekařská 53, 65691, Brno, Czech Republic
| | - Julie Bienertová-Vašků
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5-A18, 625 00, Brno, Czech Republic
- RECETOX, Faculty of Sciences, Masaryk University, Kamenice 5-A29, 625 00, Brno, Czech Republic
| | - Ondřej Slabý
- Central European Institute of Technology, Masaryk University, Kamenice 5-A35, 625 00, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| |
Collapse
|
7
|
Wu J, Zhang F, Zhang J, Sun Z, Wang W. Advances of miRNAs in kidney graft injury. Transplant Rev (Orlando) 2020; 35:100591. [PMID: 33309915 DOI: 10.1016/j.trre.2020.100591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/14/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022]
Abstract
Kidney transplantation is the preferred treatment for patients with end-stage renal disease. However, various types of kidney graft injury after transplantation are still key factors that affect the survival of the kidney graft. Therefore, exploring the underlying mechanisms involved is very important. Current diagnostic measures for kidney graft injury (including needle biopsy, blood creatinine, eGFR, etc.) have many limiting factors such as invasiveness, insufficient sensitivity and specificity, so they cannot provide timely and effective information to clinicians. As for kidney grafts that have occurred injury, the traditional treatment has a little efficacy and many side effects. Therefore, there is an urgent need for developing new biomarkers and targeted treatment for kidney graft injury. Recently, studies have found that miRNAs are involved in the regulation of the progression of kidney graft injury. At the same time, it has high stability in blood, urine, and other body fluids, so it is suggested to have the potential as a biomarker and therapeutic target for kidney graft injury. Here, we reviewed the miRNAs involved in the pathophysiology of kidney graft injury such as ischemia/reperfusion injury, acute rejection, drug-induced nephrotoxicity, chronic allograft dysfunction, BK virus infection, and the latest advances of miRNAs as biomarkers and therapeutic targets of kidney graft injury, then summarized the specific data of miRNAs expression level in kidney graft injury, which aims to provide a reference for subsequent basic research and clinical transformation.
Collapse
Affiliation(s)
- Jiyue Wu
- Institute of Urology, Beijing Chaoyang Hospital, Capital Medical Unversity, China
| | - Feilong Zhang
- Institute of Urology, Beijing Chaoyang Hospital, Capital Medical Unversity, China
| | - Jiandong Zhang
- Institute of Urology, Beijing Chaoyang Hospital, Capital Medical Unversity, China
| | - Zejia Sun
- Institute of Urology, Beijing Chaoyang Hospital, Capital Medical Unversity, China
| | - Wei Wang
- Institute of Urology, Beijing Chaoyang Hospital, Capital Medical Unversity, China.
| |
Collapse
|
8
|
Freitas RCC, Bortolin RH, Genvigir FDV, Bonezi V, Hirata TDC, Felipe CR, Tedesco-Silva H, Medina-Pestana JO, Cerda A, Doi SQ, Hirata MH, Hirata RDC. Differentially expressed urinary exo-miRs and clinical outcomes in kidney recipients on short-term tacrolimus therapy: a pilot study. Epigenomics 2020; 12:2019-2034. [PMID: 33275448 DOI: 10.2217/epi-2020-0160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aim: To analyze the expression of urinary exosome-derived miRNAs (exo-miRs) in kidney recipients on tacrolimus-based therapy. Patients & methods: Clinical and drug monitoring data were recorded from 23 kidney recipients. Expression of 93 exo-miRs was measured by quantitative PCR array and mRNA targets were explored. Results: 16 exo-miRs were differentially expressed, including marked upregulation of miR-155-5p, and downregulation of miR-223-3p and miR-1228-3p. Expression of miR-155-5p and miR-223-3p correlated with tacrolimus dose (p < 0.05), miR-223-3p with serum creatinine (p < 0.05), and miR-223-3p and miR-1228-3p with blood leukocytes (p < 0.05). 12 miRNAs have predicted targets involved in cell proliferation, apoptosis, stress response, PIK3/AKT/mTOR and TGF-β signaling pathways. Conclusion: Differentially expressed urinary exo-miRs may be useful markers to monitor tacrolimus therapy and graft function in kidney transplantation.
Collapse
Affiliation(s)
- Renata Caroline Costa Freitas
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Raul Hernandes Bortolin
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Fabiana Dalla Vecchia Genvigir
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Vivian Bonezi
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Thiago Dominguez Crespo Hirata
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Claudia Rosso Felipe
- Nephrology Division, Hospital do Rim, Federal University of Sao Paulo, Sao Paulo 04038-002, Brazil
| | - Helio Tedesco-Silva
- Nephrology Division, Hospital do Rim, Federal University of Sao Paulo, Sao Paulo 04038-002, Brazil
| | | | - Alvaro Cerda
- Department of Basic Sciences, Center of Excellence in Translational Medicine, BIOREN, Universidad de La Frontera, Temuco 4810296, Chile
| | - Sonia Quateli Doi
- School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA
| | - Mario Hiroyuki Hirata
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| |
Collapse
|
9
|
Ruiz P, Millán O, Ríos J, Díaz A, Sastre L, Colmenero J, Crespo G, Brunet M, Navasa M. MicroRNAs 155-5p, 122-5p, and 181a-5p Identify Patients With Graft Dysfunction Due to T Cell-Mediated Rejection After Liver Transplantation. Liver Transpl 2020; 26:1275-1286. [PMID: 32615025 DOI: 10.1002/lt.25842] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/05/2020] [Accepted: 06/14/2020] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that can be detected in plasma and whose expression is associated with pathological processes. The role of miRNAs in the noninvasive diagnosis of T cell-mediated rejection (TCMR) after liver transplantation (LT) is unclear. Thus, we aimed to assess the effectiveness of a panel of 4 miRNAs (155-5p, 122-5p, 181a-5p, and 148-3p) in diagnosing TCMR in LT recipients with graft dysfunction (GD), and we compared its accuracy with previously published tests for diagnosing TCMR based on routine laboratory parameters. From a prospective cohort of 145 patients followed during the first year after transplant, 49 developed GD and underwent a liver biopsy and plasma collection for miRNA analysis using quantitative real-time polymerase chain reaction. Patients with GD due to TCMR (n = 21) exhibited significantly higher (P < 0.001) expression of miRNA 155-5p (2.05 versus 0.07), 122-5p (19.36 versus 1.66), and 181a-5p (1.33 versus 0.37) compared with those with GD from other causes (n = 28). The area under the receiver operating characteristic curve of miRNAs 155-5p, 122-5p, and 181a-5p for the diagnosis of TCMR was 0.87, 0.91, and 0.89, respectively, significantly higher than those of the other noninvasive tests (P < 0.001). Furthermore, miRNA 155-5p identified all patients who presented TCMR during the first 2 weeks after transplant. miRNA plasmatic expression differentiates TCMR from other causes of GD in patients who have undergone LT and may be a useful tool in clinical practice.
Collapse
Affiliation(s)
- Pablo Ruiz
- Liver Transplant Unit, Hospital Clínic Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | - Olga Millán
- Pharmacology and Toxicology, Biochemistry and Molecular Genetics, Hospital Clínic Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | - Jose Ríos
- Pathology Department, Biochemical Diagnostic Centre, Hospital Clínic Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain.,Biostatistics Unit, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alba Díaz
- Medical Statistics Core Facility, Hospital Clínic Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | - Lydia Sastre
- Liver Transplant Unit, Hospital Clínic Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | - Jordi Colmenero
- Liver Transplant Unit, Hospital Clínic Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | - Gonzalo Crespo
- Liver Transplant Unit, Hospital Clínic Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | - Mercè Brunet
- Pharmacology and Toxicology, Biochemistry and Molecular Genetics, Hospital Clínic Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | - Miquel Navasa
- Liver Transplant Unit, Hospital Clínic Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Xiu MX, Liu ZT, Tang J. Screening and identification of key regulatory connections and immune cell infiltration characteristics for lung transplant rejection using mucosal biopsies. Int Immunopharmacol 2020; 87:106827. [PMID: 32791489 PMCID: PMC7417178 DOI: 10.1016/j.intimp.2020.106827] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/03/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
This study aimed to explore key regulatory connections underlying lung transplant rejection. The differentially expressed genes (DEGs) between rejection and stable lung transplantation (LTx) samples were screened using R package limma, followed by functional enrichment analysis and protein-protein interaction network construction. Subsequently, a global triple network, including miRNAs, mRNAs, and transcription factors (TFs), was constructed. Furthermore, immune cell infiltration characteristics were analyzed to investigate the molecular immunology of lung transplant rejection. Finally, potential drug-target interactions were generated. In brief, 739 DEGs were found between rejection and stable LTx samples. PTPRC, IL-6, ITGAM, CD86, TLR8, TYROBP, CXCL10, ITGB2, and CCR5 were defined as hub genes. Eight TFs, including STAT1, SPIB, NFKB1, SPI1, STAT5A, RUNX1, VENTX, and BATF, and five miRNAs, including miR-335-5p, miR-26b-5p, miR-124-3p, miR-1-3p, and miR-155-5p, were involved in regulating hub genes. The immune cell infiltration analysis revealed higher proportions of activated memory CD4 T cells, follicular helper T cells, γδ T cells, monocytes, M1 and M2 macrophages, and eosinophils in rejection samples, besides lower proportions of resting memory CD4 T cells, regulatory T cells, activated NK cells, M0 macrophages, and resting mast cells. This study provided a comprehensive perspective of the molecular co-regulatory network underlying lung transplant rejection.
Collapse
Affiliation(s)
- Meng-Xi Xiu
- Medical School of Nanchang University, Nanchang, PR China
| | - Zu-Ting Liu
- Medical School of Nanchang University, Nanchang, PR China
| | - Jian Tang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|