1
|
Lorke DE, Oz M. A review on oxidative stress in organophosphate-induced neurotoxicity. Int J Biochem Cell Biol 2025; 180:106735. [PMID: 39855621 DOI: 10.1016/j.biocel.2025.106735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/27/2025]
Abstract
Acetylcholinesterase inhibition, the principal mechanism of acute organophosphorus compound toxicity, cannot explain neuropsychiatric symptoms occurring after exposure to low organophosphate concentrations causing no cholinergic symptoms. Organophosphate-triggered oxidative stress has increasingly come into focus, occurring when the action of reactive oxygen species, generated from free radicals, is not compensated by antioxidant free radical scavengers. Being nucleophilic, organophosphates can easily accept an electron, thereby generating free radicals. Organophosphates inhibit the antioxidant paraoxonase, and reactive oxygen species are produced during organophosphate metabolism. Organophosphates disrupt the function of mitochondria, the principal source of free radicals. Organophosphates also induce neuroinflammation, which generates reactive oxygen species, and reactive oxygen species in turn stimulate neuroinflammation. Markers of reactive oxygen species are elevated in vitro and in vivo after exposure to organophosphates and in individuals professionally exposed to organophosphates. This most probably contributes to the pathogenesis of the intermediate syndrome, chronic organophosphate-induced neuropsychiatric disorders and neurodegeneration occurring in patients after organophosphate exposure. Evidence for beneficial effects of antioxidants in organophosphate poisoning is discussed.
Collapse
Affiliation(s)
- Dietrich E Lorke
- Department of Basic Sciences, College of Medicine, Roseman University of Health Sciences, Las Vegas, NV, United States; Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates.
| | - Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait.
| |
Collapse
|
2
|
Urquizu E, Paratusic S, Goyenechea J, Gómez-Canela C, Fumàs B, Pubill D, Raldúa D, Camarasa J, Escubedo E, López-Arnau R. Acute Paraoxon-Induced Neurotoxicity in a Mouse Survival Model: Oxidative Stress, Dopaminergic System Alterations and Memory Deficits. Int J Mol Sci 2024; 25:12248. [PMID: 39596313 PMCID: PMC11594717 DOI: 10.3390/ijms252212248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
The secondary neurotoxicity induced by severe organophosphorus (OP) poisoning, including paraoxon (POX), is associated with cognitive impairments in survivors, who, despite receiving appropriate emergency treatments, may still experience lasting neurological deficits. Thus, the present study provides a survival mouse model of acute and severe POX poisoning to examine secondary neurotoxicity. Swiss CD-1 male mice were injected with POX (4 mg/kg, s.c.) followed by atropine (4 mg/kg, i.p.), pralidoxime (2-PAM; Pyridine-2-aldoxime methochloride) (25 mg/kg, i.p., twice, 1 h apart) and diazepam (5 mg/kg, i.p.), resulting in a survival rate >90% and Racine score of 5-6. Our results demonstrated that the model showed increased lipid peroxidation, downregulation of antioxidant enzymes and astrogliosis in the mouse hippocampus (HP) and prefrontal cortex (PFC), brain areas involved in cognitive functions. Moreover, dopamine (DA) levels were reduced in the hp, but increased in the PFC. Furthermore, the survival mouse model of acute POX intoxication did not exhibit phenotypic manifestations of depression, anxiety or motor incoordination. However, our results demonstrated long-term recognition memory impairments, which are in accordance with the molecular and neurochemical effects observed. In conclusion, this mouse model can aid in researching POX exposure's effects on memory and developing potential countermeasures against the secondary neurotoxicity induced by severe OP poisoning.
Collapse
Affiliation(s)
- Edurne Urquizu
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - Selma Paratusic
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - Júlia Goyenechea
- Department of Analytical Chemistry and Applied (Chromatography Section), School of Engineering, Institut Químic de Sarrià—Universitat Ramon Llull, 08017 Barcelona, Spain
| | - Cristian Gómez-Canela
- Department of Analytical Chemistry and Applied (Chromatography Section), School of Engineering, Institut Químic de Sarrià—Universitat Ramon Llull, 08017 Barcelona, Spain
| | - Berta Fumàs
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - David Pubill
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - Demetrio Raldúa
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Jordi Camarasa
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - Elena Escubedo
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| | - Raúl López-Arnau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Pharmacology Section and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (E.U.)
| |
Collapse
|
3
|
Farkhondeh T, Zardast M, Rajabi S, Abdollahi-Karizno M, Roshanravan B, Havangi J, Aschner M, Samarghandian S. Neuroprotective Effects of Curcumin against Chronic Chlorpyrifos- Induced Oxidative Damage in Rat Brain Tissue. Curr Aging Sci 2024; 17:205-209. [PMID: 38347791 DOI: 10.2174/0118746098244014240119112706] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/10/2024]
Abstract
BACKGROUND Chlorpyrifos (CPF) is an organophosphate pesticide that inhibits acetylcholinesterase (AChE) activity. Investigations have also focused on its neurotoxicity, which is independent of AChE inhibition. Here, we evaluated the effect of CPF on oxidative indices in the brain tissue and explored the protective effect of curcumin (Cur) against its toxicity. METHODS Forty male Wistar rats were divided into five groups, each consisting of eight rats (n = 8) per group. Animals were administrated by oral gavage for 90 days with the following treatments: control (C), CPF, CPF + CUR 25 mg/kg, CPF + CUR50, and CPF + cur 100 received olive oil, CPF, CPF plus 25 mg/kg of CUR, CPF plus 50 mg/kg of CUR, and CPF plus 100 mg/kg of CUR, respectively. After anesthetization, animal brain tissues were obtained for assessment of oxidative stress indices. RESULTS The concentration of MDA significantly increased in the brains of the CPF group as compared to the control group (p < 0.01). Also, a significant decrease in MDA concentrations was observed in the brains of rats in the CPF + Cur 100 group compared to the CPF group (p < 0.05). A significant decrease was noted in the GSH concentration in the brains of the CPF group compared to the control group (p < 0.05). Treatment with Cur at 100 mg/kg exhibited a significant increase in GSH concentrations in the brains of the CPF-exposed group compared to the CPF group without Cur administration (p < 0.05). The concentration of NO exhibited a significant increase in the brains of the CPF group when compared to the control group (p < 0.05). Also, a significant decrease in NO concentration was observed in the brain tissue of the CPF + Cur 100 group compared to the CPF group (p < 0.05). CONCLUSION Our data establish that chronic exposure to CPF induced oxidative stress in brain tissue, which was reversed by CUR administration. Additional experimental and clinical investigations are needed to validate the efficacy of CUR as a potential antidote for CPF poisoning.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahmoud Zardast
- Department of Pathology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Shahnaz Rajabi
- Department of Pathology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Babak Roshanravan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Jalal Havangi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
4
|
Piel S, Janowska JI, Ward JL, McManus MJ, Jose JS, Starr J, Sheldon M, Clayman CL, Elmér E, Hansson MJ, Jang DH, Karlsson M, Ehinger JK, Kilbaugh TJ. Succinate prodrugs in combination with atropine and pralidoxime protect cerebral mitochondrial function in a rodent model of acute organophosphate poisoning. Sci Rep 2022; 12:20329. [PMID: 36434021 PMCID: PMC9700731 DOI: 10.1038/s41598-022-24472-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
Pesticides account for hundreds of millions of cases of acute poisoning worldwide each year, with organophosphates (OPs) being responsible for the majority of all pesticide-related deaths. OPs inhibit the enzyme acetylcholinesterase (AChE), which leads to impairment of the central- and peripheral nervous system. Current standard of care (SOC) alleviates acute neurologic-, cardiovascular- and respiratory symptoms and reduces short term mortality. However, survivors often demonstrate significant neurologic sequelae. This highlights the critical need for further development of adjunctive therapies with novel targets. While the inhibition of AChE is thought to be the main mechanism of injury, mitochondrial dysfunction and resulting metabolic crisis may contribute to the overall toxicity of these agents. We hypothesized that the mitochondrially targeted succinate prodrug NV354 would support mitochondrial function and reduce brain injury during acute intoxication with the OP diisopropylfluorophosphate (DFP). To this end, we developed a rat model of acute DFP intoxication and evaluated the efficacy of NV354 as adjunctive therapy to SOC treatment with atropine and pralidoxime. We demonstrate that NV354, in combination with atropine and pralidoxime therapy, significantly improved cerebral mitochondrial complex IV-linked respiration and reduced signs of brain injury in a rodent model of acute DFP exposure.
Collapse
Affiliation(s)
- Sarah Piel
- grid.239552.a0000 0001 0680 8770Resuscitation Science Center of Emphasis, The Children’s Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104 USA ,grid.239552.a0000 0001 0680 8770Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, USA
| | - Joanna I. Janowska
- grid.239552.a0000 0001 0680 8770Resuscitation Science Center of Emphasis, The Children’s Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104 USA ,grid.239552.a0000 0001 0680 8770Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, USA
| | - J. Laurenson Ward
- grid.239552.a0000 0001 0680 8770Resuscitation Science Center of Emphasis, The Children’s Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104 USA ,grid.239552.a0000 0001 0680 8770Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, USA
| | - Meagan J. McManus
- grid.239552.a0000 0001 0680 8770Resuscitation Science Center of Emphasis, The Children’s Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104 USA ,grid.239552.a0000 0001 0680 8770Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, USA
| | - Joshua S. Jose
- grid.239552.a0000 0001 0680 8770Resuscitation Science Center of Emphasis, The Children’s Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104 USA ,grid.239552.a0000 0001 0680 8770Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, USA
| | - Jonathan Starr
- grid.239552.a0000 0001 0680 8770Resuscitation Science Center of Emphasis, The Children’s Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104 USA ,grid.239552.a0000 0001 0680 8770Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, USA
| | - Malkah Sheldon
- grid.239552.a0000 0001 0680 8770Resuscitation Science Center of Emphasis, The Children’s Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104 USA ,grid.239552.a0000 0001 0680 8770Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, USA
| | - Carly L. Clayman
- grid.239552.a0000 0001 0680 8770Resuscitation Science Center of Emphasis, The Children’s Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104 USA ,grid.239552.a0000 0001 0680 8770Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, USA
| | - Eskil Elmér
- grid.4514.40000 0001 0930 2361Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden ,Abliva AB, Lund, Sweden
| | - Magnus J. Hansson
- grid.4514.40000 0001 0930 2361Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden ,Abliva AB, Lund, Sweden
| | - David H. Jang
- grid.25879.310000 0004 1936 8972Division of Medical Toxicology, Department of Emergency Medicine, University of Pennsylvania School of Medicine, Philadelphia, USA
| | - Michael Karlsson
- grid.475435.4Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
| | - Johannes K. Ehinger
- grid.4514.40000 0001 0930 2361Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden ,grid.4514.40000 0001 0930 2361Otorhinolaryngology, Head and Neck Surgery, Department of Clinical Sciences Lund, Lund University, Skåne University Hospital, Lund, Sweden
| | - Todd J. Kilbaugh
- grid.239552.a0000 0001 0680 8770Resuscitation Science Center of Emphasis, The Children’s Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104 USA ,grid.239552.a0000 0001 0680 8770Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, USA
| |
Collapse
|
5
|
N-acetylcysteine aggravates seizures while improving depressive-like and cognitive impairment comorbidities in the WAG/Rij rat model of absence epilepsy. Mol Neurobiol 2022; 59:2702-2714. [PMID: 35167014 DOI: 10.1007/s12035-021-02720-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022]
Abstract
N-acetylcysteine (NAC) is an antioxidant with some demonstrated efficacy in a range of neuropsychiatric disorders. NAC has shown anticonvulsant effects in animal models. NAC effects on absence seizures are still not uncovered, and considering its clinical use as a mucolytic in patients with lung diseases, people with epilepsy are also likely to be exposed to the drug. Therefore, we aimed to study the effects of NAC on absence seizures in the WAG/Rij rat model of absence epilepsy with neuropsychiatric comorbidities. The effects of NAC chronic treatment in WAG/Rij rats were evaluated on: absence seizures at 15 and 30 days by EEG recordings and animal behaviour at 30 days on neuropsychiatric comorbidities. Furthermore, the mechanism of action of NAC was evaluated by analysing brain expression levels of some possible key targets: the excitatory amino acid transporter 2, cystine-glutamate antiporter, metabotropic glutamate receptor 2, the mechanistic target of rapamycin and p70S6K as well as levels of total glutathione. Our results demonstrate that in WAG/Rij rats, NAC treatment significantly increased the number and duration of SWDs, aggravating absence epilepsy while ameliorating neuropsychiatric comorbidities. NAC treatment was linked to an increase in brain mGlu2 receptor expression with this being likely responsible for the observed absence seizure-promoting effects. In conclusion, while confirming the positive effects on animal behaviour induced by NAC also in epileptic animals, we report the aggravating effects of NAC on absence seizures which could have some serious consequences for epilepsy patients with the possible wider use of NAC in clinical therapeutics.
Collapse
|
6
|
Rebalance of the Polyamine Metabolism Suppresses Oxidative Stress and Delays Senescence in Nucleus Pulposus Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8033353. [PMID: 35178160 PMCID: PMC8844099 DOI: 10.1155/2022/8033353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/05/2022] [Indexed: 11/18/2022]
Abstract
Intervertebral disk degeneration (IDD) is a major cause of low back pain that becomes a prevalent age-related disease. However, the pathophysiological processes behind IDD are rarely known. Here, we used bioinformatics analysis based on the microarray datasets (GSE34095) to identify the differentially expressed genes (DEGs) as biomarkers and therapeutic targets in degenerated discs. From the previous studies, oxidative stress has been notified as a positive inducement of IDD, which causes DNA damage and accelerates cell senescence. Polyamine oxidase (PAOX), a member of the observed 1057 DEGs, is involved in polyamine metabolism and influences the oxidative balance in cells. However, it is uncertain if the IDD is implicated in the dysregulation of PAOX and polyamine metabolism. This study firstly verified the PAOX upregulation in human degenerated disc samples and applied an IL-1β-induced nucleus pulposus (NP) cell degeneration model to demonstrate that spermidine supplementation balanced polyamine metabolism and delayed NP cell senescence. Moreover, we confirmed that spermidine/N-acetylcysteine supplementation or Cdkn2a gene deletion stabilized the polyamine metabolism, suppressed oxidative stress, and therefore delayed the progress of IDD in older mice. Collectively, our study highlights the role of polyamine metabolism in IDD and foresees spermidine would be the advanced therapeutical drug for IDD.
Collapse
|
7
|
Osman KA, Ezz El-Din EM, Ahmed NS, El-Seedy AS. Effect of N-acetylcysteine on attenuation of chlropyrifos and its methyl analogue toxicity in male rats. Toxicology 2021; 461:152904. [PMID: 34425170 DOI: 10.1016/j.tox.2021.152904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 02/01/2023]
Abstract
The attenuating effect of 150 mg/kg of N-acetylcysteine (NAC) against the oral administration of 7.88 and 202.07 mg/kg/day for 14 days of either chlropyrifos-ethyl (CPE-E) or chlropyrifos-methyl (CPF-M), respectively, in male rat was investigated using biochemical and genetic markers. Biomarkers such as acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), paraoxonase (PON), adenosine 5'-triphosphatase (ATP-ase), glutathione-S-transferase (GST), catalase (CAT), glutathione reduced (GSH) in serum showed a significant decline in their levels, while calcium (Ca+2), cytochrome C reduction (CYC-R), lipid peroxidation (LPO), nitric oxide (NO) levels showed a significant increase in serum of treated rats. Regarding the genotoxic parameters, when rats are treated either with CPE-E or CPF-M, liver DNA, chromosomal aberration (CA), and micronucleated polychromatic erythrocytes (MnPCE) significantly increased, while the mitotic index (MI) and polychromatic erythrocytes (PCE)/ normochromatic erythrocytes (NCE) ratio were significantly decreased. However, the administration of NAC following the intoxication of CPF-E or CPF-M attenuated the tested biochemical and genotoxic markers. It can be concluded that NAC can be used to ameliorate the toxicity of certain organophosphorus compounds such as CPF-E and CPF-M.
Collapse
Affiliation(s)
- Khaled A Osman
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Egypt.
| | - Eslam M Ezz El-Din
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Egypt
| | - Nabila S Ahmed
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture, Alexandria University, Egypt
| | - Ayman S El-Seedy
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Faculty of Agriculture, Alexandria University, P.O Box 21545, Alexandria, Egypt
| |
Collapse
|