1
|
Alhajlah S, Jasim SA, Altalbawy FMA, Bansal P, Kaur H, Mohammed JS, Fenjan MN, Edan RT, Sharma MK, Zwamel AH. Exploring the role of exosomal lncRNA in cancer immunopathogenesis: Unraveling the immune response and EMT pathways. Exp Cell Res 2025; 445:114401. [PMID: 39740727 DOI: 10.1016/j.yexcr.2024.114401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 01/02/2025]
Abstract
Exosomes are membrane-bound vesicles secreted by diverse cell types, serving as crucial mediators in intercellular communication and significantly influencing cancer development. Exosomes facilitate complex signaling processes in the tumor microenvironment for immunomodulation, metastasis, angiogenesis, and treatment resistance. Notably, long non-coding RNAs (lncRNAs), a class of non-coding RNAs, engage with mRNA, DNA, proteins, and miRNAs to modulate gene expression through multiple mechanisms, including transcriptional, post-transcriptional, translational, and epigenetic pathways. The quantitative dynamics of exosomal lncRNAs show a consistent variation correlating with cancer progression and metastasis, suggesting their potential utility as biomarkers for cancer diagnosis and prognosis. Additionally, exosomal lncRNAs can yield critical insights into therapeutic responses in patients. The identification of exosomal lncRNAs as indicators for various cancer subtypes presents them not only as prognostic tools but also as promising therapeutic targets. Despite their potential, the precise functions of exosomal lncRNAs in the cancer biology landscape remain inadequately understood. This paper delves into the multifaceted roles of exosomal lncRNAs, particularly in the context of breast cancer, highlighting their promise for therapeutic applications. A thorough comprehension of exosomal lncRNAs is imperative for advancing our knowledge of the underlying mechanisms of breast cancer, ultimately paving the way for the development of more effective treatment strategies for patients.
Collapse
Affiliation(s)
- Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra, 11961, Saudi Arabia.
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-maarif, Anbar, Iraq.
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, 71911, Saudi Arabia; National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza, 12613, Egypt.
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India.
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India.
| | - Jaafaru Sani Mohammed
- Medical Analysis Department, Faculty of Applied Science, Tishk International University, Erbil, Iraq.
| | - Mohammed N Fenjan
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq.
| | - Reem Turki Edan
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq.
| | - M K Sharma
- Chaudhary Charan Singh University Meerut, Uttar Pradesh, India.
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq.
| |
Collapse
|
2
|
Campo A, Aliquò F, Velletri T, Scuruchi M, Avenoso A, Campo GM, D'Ascola A, Campo S, De Pasquale M. Involvement of selected circulating ncRNAs in the regulation of cognitive dysfunction induced by anesthesia. Gene 2024; 928:148806. [PMID: 39074643 DOI: 10.1016/j.gene.2024.148806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Post-operative cognitive dysfunction (POCD) refers to the functional impairment of the nervous system caused by prolonged exposure to anesthetics. It is known that prolonged exposure to anesthetics may increase the risk for the development of several cognitive impairments. The drugs used to induce general anesthesia are generally safe, owing to the CNS's direct and/or indirect self-protective activity against drug-induced damages. Non-coding RNAs have recently started to gain attention to better understand the mechanism of gene regulation correlated to cellular physiology and pathology. In order to provide new insights for the neuroprotective function of highly expressed ncRNAs in the central nervous system, we investigated their expression profile in the circulating exosomes of patients exposed to anesthesia vs healthy controls. The experimental design envisaged the recruitment of 30 adult patients undergoing general anesthesia and healthy controls. The effects of anesthetics have been evaluated on miR-34a and miR-124, on the lncRNAs MALAT-1, HOTAIR, GAS5, BLACAT1, HULC, PANDA, and on YRNAs. NcRNAs miR-34a, miR-124, MALAT-1, HOTAIR, GAS5, BLACAT1, and YRNA1 are significantly overexpressed following anesthesia, while YRNA5 is significantly down regulated. Some of them have neuroprotective function, while other correlate with neurological dysfunctions. Our data suggests that, during anesthesia, the toxic action of some non-coding RNAs could be compensated by other non-coding RNAs, both synthesized by the CNS or also transported into neurons from other tissues. It is reasonable to suppose a mutual action of these molecules likely to secure the CNS from anesthetics, that drive a convoluted cascade of ncRNA-dependent biological counter-responses. Our findings are novel in the field of brain dysfunction, indicating that some of the analyzed ncRNAs, although several of their functions still need to be addressed, could be suggested as potential biomarkers and therapeutic targets in post-operative cognitive dysfunction-related processes.
Collapse
Affiliation(s)
- Adele Campo
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125 Messina, Italy
| | - Federica Aliquò
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125 Messina, Italy
| | - Tania Velletri
- Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125 Messina, Italy
| | - Michele Scuruchi
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125 Messina, Italy
| | - Angela Avenoso
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125 Messina, Italy
| | - Giuseppe Maurizio Campo
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125 Messina, Italy
| | - Angela D'Ascola
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125 Messina, Italy
| | - Salvatore Campo
- Department of Biomedical and Dental Sciences and Morphofunctional Images, University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125 Messina, Italy.
| | - Maria De Pasquale
- Department of Human Pathology of Adult and Childhood "Gaetano Barresi", University of Messina, Policlinico Universitario, via Consolare Valeria, 1, 98125 Messina, Italy
| |
Collapse
|
3
|
Li P, Cao G. PDCD4 silencing alleviates KA‑induced neurotoxicity of HT22 cells by inhibiting endoplasmic reticulum stress via blocking the MAPK/NF‑κB signaling pathway. Exp Ther Med 2024; 27:55. [PMID: 38234627 PMCID: PMC10790171 DOI: 10.3892/etm.2023.12343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/11/2023] [Indexed: 01/19/2024] Open
Abstract
Human programmed cell death 4 (PDCD4) has been reported to participate in multiple neurological diseases. However, the role of PDCD4 in epilepsy, as well as its underlying mechanism, remains unclear. To induce excitotoxicity, 100 µM kainic acid (KA) was applied for the stimulation of HT22 cells for 12 h. Initially, the mRNA and protein expression levels of PDCD4 were evaluated using reverse transcription-quantitative PCR and western blotting. A lactate dehydrogenase assay was performed to detect cell injury. Cell apoptosis was assessed using flow cytometry and western blotting was performed to determine the expression levels of apoptosis-related proteins. Oxidative stress was detected using dichlorodihydrofluorescein diacetate staining, and malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) assay kits. Furthermore, the expression levels of MAPK/NF-κB signaling-related proteins and endoplasmic reticulum (ER) stress-related proteins C/EBP homologous protein, glucose-regulated protein 78, activating transcription factor 4 and phosphorylated-eukaryotic initiation factor-2α were assessed by western blotting. It was revealed that PDCD4 expression was markedly elevated in KA-induced HT22 cells, whereas PDCD4 silencing alleviated KA-induced neurotoxicity of HT22 cells by alleviating cell injury and inhibiting apoptosis. In addition, PDCD4 silencing reduced the levels of reactive oxygen species and MDA, but elevated those of SOD and GSH-Px. PDCD4 silencing also suppressed ER stress by blocking the MAPK/NF-κB signaling pathway. By contrast, the MAPK agonist phorbol myristate acetate reversed the effects of PDCD4 silencing on KA-induced neurotoxicity and oxidative stress in HT22 cells. In conclusion, PDCD4 silencing alleviated KA-induced neurotoxicity and oxidative stress in HT22 cells by suppressing ER stress through the inhibition of the MAPK/NF-κB signaling pathway, which may provide novel insights into the treatment of epilepsy.
Collapse
Affiliation(s)
- Peng Li
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Guiling Cao
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
4
|
Wang J, Liu Z. Research progress on molecular mechanisms of general anesthetic-induced neurotoxicity and cognitive impairment in the developing brain. Front Neurol 2022; 13:1065976. [PMID: 36504660 PMCID: PMC9729288 DOI: 10.3389/fneur.2022.1065976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
General anesthetics-induced neurotoxicity and cognitive impairment in developing brains have become one of the current research hotspots in the medical science community. The underlying mechanisms are complex and involve various related molecular signaling pathways, cell mediators, autophagy, and other pathological processes. However, few drugs can be directly used to treat neurotoxicity and cognitive impairment caused by general anesthetics in clinical practice. This article reviews the molecular mechanism of general anesthesia-induced neurotoxicity and cognitive impairment in the neonatal brain after surgery in the hope of providing critical references for the treatments of clinical diseases.
Collapse
Affiliation(s)
- Jiaojiao Wang
- Department of Anesthesiology, Baotou Central Hospital, Baotou, China,Baotou Clinical Medical College, Inner Mongolia Medical University, Baotou, China
| | - Zhihui Liu
- Department of Anesthesiology, Baotou Central Hospital, Baotou, China,*Correspondence: Zhihui Liu
| |
Collapse
|
5
|
Bezu L, Kepp O, Kroemer G. Impact of local anesthetics on epigenetics in cancer. Front Oncol 2022; 12:849895. [PMID: 36110954 PMCID: PMC9468863 DOI: 10.3389/fonc.2022.849895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Defective silencing of tumor suppressor genes through epigenetic alterations contributes to oncogenesis by perturbing cell cycle regulation, DNA repair or cell death mechanisms. Reversal of such epigenetic changes including DNA hypermethylation provides a promising anticancer strategy. Until now, the nucleoside derivatives 5-azacytidine and decitabine are the sole DNA methyltransferase (DNMT) inhibitors approved by the FDA for the treatment of specific hematological cancers. Nevertheless, due to their nucleoside structure, these inhibitors directly incorporate into DNA, which leads to severe side effects and compromises genomic stability. Much emphasis has been placed on the development of less toxic epigenetic modifiers. Recently, several preclinical studies demonstrated the potent epigenetic effects of local anesthetics, which are routinely used during primary tumor resection to relief surgical pain. These non-nucleoside molecules inhibit DNMT activity, affect the expression of micro-RNAs and repress histone acetylation, thus exerting cytotoxic effects on malignant cells. The in-depth mechanistic comprehension of these epigenetic effects might promote the use of local anesthetics as anticancer drugs.
Collapse
Affiliation(s)
- Lucillia Bezu
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
- Service d’Anesthésie Gustave Roussy Cancer Campus, Villejuif, France
- *Correspondence: Lucillia Bezu, ; Guido Kroemer,
| | - Oliver Kepp
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Guido Kroemer
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- *Correspondence: Lucillia Bezu, ; Guido Kroemer,
| |
Collapse
|
6
|
Sun L, Yuan R. LncRNA SNHG12 ameliorates bupivacaine-induced neurotoxicity by sponging miR-497-5p to upregulate NLRX1. Hum Exp Toxicol 2022; 41:9603271221089001. [PMID: 35410500 DOI: 10.1177/09603271221089001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Long non-coding RNA (lncRNA) small nucleolar RNA host gene 12 (SNHG12) has been reported to participate in the regulation of various nervous system disorders. Bupivacaine (BV), a commonly used local anesthetic, could generate neurotoxicity in neurons. This work intended to investigate the role and specific mechanism of SNHG12 in BV-induced neurotoxicity. In this study, we established an in vitro cell model of BV-induced neurotoxicity by exposing human neuroblastoma cells (SH-SY5Y) to BV. It was found that SNHG12 and NLRX1 levels were gradually downregulated, while miR-497-5p enrichment was upregulated accordingly with the increase of BV concentration. As indicated by functional assays, SNHG12 overexpression promoted cell viability but inhibited cell apoptosis and oxidative stress in BV-treated SH-SY5Y cells. In addition, it was identified that SNHG12 directly targeted miR-497-5p and attenuated BV-induced neurotoxicity via interaction with miR-497-5p. Besides, it was confirmed that SNHG12 could upregulate NLRX1 expression by absorbing miR-497-5p. Moreover, miR-497-5p decreased cell viability and induced cell apoptosis and oxidative stress, which was partly reversed by NLRX1 upregulation. In conclusion, our findings indicated that SNHG12 might relieve BV-associated neurotoxicity by upregulating NLRX1 via miR-497-5p in vitro, providing novel clues and biomarkers for the treatment and prevention of BV-associated neurotoxicity.
Collapse
Affiliation(s)
- Lijie Sun
- Department of Anesthesiology, Changzhou Wujin People's Hospital Affiliated to Jiangsu University, Changzhou, China
| | - Ru Yuan
- Department of Anesthesiology, Changzhou Wujin People's Hospital Affiliated to Jiangsu University, Changzhou, China
| |
Collapse
|
7
|
Targeting miRNAs with anesthetics in cancer: Current understanding and future perspectives. Biomed Pharmacother 2021; 144:112309. [PMID: 34653761 DOI: 10.1016/j.biopha.2021.112309] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
Anesthetics are extensively used during cancer surgeries. The progression of cancer can be influenced by perioperative events such as exposure to general or local anesthesia. However, whether they inhibit cancer or act as a causative factor for metastasis and exert deleterious effects on cancer growth differs based on the type of cancer and the therapy administration. Recent experimental data suggested that many of the most commonly used anesthetics in surgical oncology, whether general or local agents, can alter gene expression and cause epigenetic changes via modulating miRNAs. miRNAs are single-stranded non-coding RNAs that regulate gene expression at various levels, and their dysregulation contributes to the pathogenesis of cancers. However, anesthetics via regulating miRNAs can concurrently target several effectors of cellular signaling pathways involved in cell differentiation, proliferation, and viability. This review summarized the current research about the effects of different anesthetics in regulating cancer, with a particular emphasis on the role of miRNAs. A significant number of studies conducted in this area of research illuminate the effects of anesthetics on the regulation of miRNA expression; therefore, we hope that a thorough understanding of the underlying mechanisms involved in the regulation of miRNA in the context of anesthesia-induced cancer regulation could help to define optimal anesthetic regimens and provide better perspectives for further studies.
Collapse
|
8
|
Wei X, Xu S, Chen L. LncRNA Neat1/miR-298-5p/Srpk1 Contributes to Sevoflurane-Induced Neurotoxicity. Neurochem Res 2021; 46:3356-3364. [PMID: 34524595 DOI: 10.1007/s11064-021-03436-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 01/02/2023]
Abstract
Sevoflurane is a widely used volatile anesthetic, that can cause long-term neurotoxicity and learning and memory impairment. Long non-coding RNAs (lncRNAs) have been demonstrated to function as key mediators in neurotoxicity. This study aimed to investigate the effects of lncRNA Neat1 on sevoflurane-induced neurotoxicity. The expression of Neat1, miR-298-5p, and Srpk1 was measured by RT-qPCR. Cell viability, cell apoptosis, inflammation markers, and reactive oxygen species (ROS) generation were examined by CCK-8, TUNEL, ELISA, and the ROS kit. The interaction between miR-298-5p and Neat1 or Srpk1 was confirmed by luciferase reporter assay. In our study, it was found that sevoflurane aggravated neurotoxicity through inhibiting cell viability and enhancing cell apoptosis, neuroinflammation, and ROS generation. Neat1 was up-regulated in sevoflurane-treated HT22 cells, and Neat1 knockdown improved sevoflurane-mediated neurotoxicity. Through the exploration of the ceRNA mechanism, we found that Neat1 bound with miR-298-5p, and Srpk1 was a direct target gene of miR-298-5p. Finally, rescue assays proved that up-regulation of Srpk1 reversed the effects of Neat1 knockdown on neurotoxicity. In conclusion, our study revealed that lncRNA Neat1 facilitated sevoflurane-stimulated neurotoxicity by sponging miR-298-5p to up-regulate Srpk1. These findings might provide novel insights into the treatment of sevoflurane-induced neurotoxicity.
Collapse
Affiliation(s)
- Xiang Wei
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, No. 415, Fengyang Road, Huangpu District, 200003, Shanghai, China
| | - Shan Xu
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, No. 415, Fengyang Road, Huangpu District, 200003, Shanghai, China
| | - Liang Chen
- Department of Anesthesiology, Second Affiliated Hospital of Naval Medical University, No. 415, Fengyang Road, Huangpu District, 200003, Shanghai, China.
| |
Collapse
|
9
|
Pant T, DiStefano JK, Logan S, Bosnjak ZJ. Emerging Role of Long Noncoding RNAs in Perioperative Neurocognitive Disorders and Anesthetic-Induced Developmental Neurotoxicity. Anesth Analg 2021; 132:1614-1625. [PMID: 33332892 DOI: 10.1213/ane.0000000000005317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Preclinical investigations in animal models have consistently demonstrated neurobiological changes and life-long cognitive deficits following exposure to widely used anesthetics early in life. However, the mechanisms by which these exposures affect brain function remain poorly understood, therefore, limiting the efficacy of current diagnostic and therapeutic options in human studies. The human brain exhibits an abundant expression of long noncoding RNAs (lncRNAs). These biologically active transcripts play critical roles in a diverse array of functions, including epigenetic regulation. Changes in lncRNA expression have been linked with brain development, normal CNS processes, brain injuries, and the development of neurodegenerative diseases, and many lncRNAs are known to have brain-specific expression. Aberrant lncRNA expression has also been implicated in areas of growing importance in anesthesia-related research, including anesthetic-induced developmental neurotoxicity (AIDN), a condition defined by neurological changes occurring in patients repeatedly exposed to anesthesia, and the related condition of perioperative neurocognitive disorder (PND). In this review, we detail recent advances in PND and AIDN research and summarize the evidence supporting roles for lncRNAs in the brain under both normal and pathologic conditions. We also discuss lncRNAs that have been linked with PND and AIDN, and conclude with a discussion of the clinical potential for lncRNAs to serve as diagnostic and therapeutic targets for the prevention of these neurocognitive disorders and the challenges facing the identification and characterization of associated lncRNAs.
Collapse
Affiliation(s)
- Tarun Pant
- Department of Diabetes and Fibrotic Disease Unit, Translational Genomic Research Institute, Phoenix, Arizona
| | | | - Sara Logan
- Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Zeljko J Bosnjak
- From the Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin.,Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
10
|
Zhang W, Yu T, Cui X, Yu H, Li X. Analgesic effect of dexmedetomidine in rats after chronic constriction injury by mediating microRNA‐101 expression and the E2F2–TLR4–NF‐κB axis. Exp Physiol 2020; 105:1588-1597. [PMID: 32706450 DOI: 10.1113/ep088596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Wenwen Zhang
- Department of Anesthesiologythe First Hospital of Jilin University Changchun Jilin 130021 P.R. China
| | - Tingting Yu
- Department of OtolaryngologyHead and Neck Surgerythe First Hospital of Jilin University Changchun Jilin 130021 P.R. China
| | - Xiangyan Cui
- Department of OtolaryngologyHead and Neck Surgerythe First Hospital of Jilin University Changchun Jilin 130021 P.R. China
| | - Hong Yu
- Department of OtolaryngologyHead and Neck Surgerythe First Hospital of Jilin University Changchun Jilin 130021 P.R. China
| | - Xinbai Li
- Department of Anesthesiologythe First Hospital of Jilin University Changchun Jilin 130021 P.R. China
| |
Collapse
|
11
|
He W, Chi S, Jin X, Lu J, Zheng W, Yan J, Zhang D. Long Non-Coding RNA BACE1-AS Modulates Isoflurane-Induced Neurotoxicity to Alzheimer's Disease Through Sponging miR-214-3p. Neurochem Res 2020; 45:2324-2335. [PMID: 32681443 DOI: 10.1007/s11064-020-03091-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 01/27/2023]
Abstract
Isoflurane, an anesthetic, can aggravate the progression of Alzheimer's disease (AD). Long non-coding RNA β-secretase 1 (BACE1)-antisense transcript (BACE1-AS) and miR-214-3p are related to AD progression. Nevertheless, it is unclear whether BACE1-AS is involved in the development of isoflurane-mediated AD via miR-214-3p. Amyloid beta peptide (Aβ) was employed to construct the AD cell model. The expression of BACE1-AS and miR-214-3p in the plasma of AD patients and SK-N-SH and SK-N-AS cells treated with Aβ and isoflurane was assessed through quantitative reverse transcription polymerase chain reaction (qRT-PCR). The proliferation and apoptosis of Aβ-treated SK-N-SH and SK-N-AS cells were determined via 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) or flow cytometry assays, respectively. Protein levels of B cell lymphoma 2 (Bcl-2), Bcl-2-associated X (Bax), CyclinD1, microtubule-associated protein A1/1B-light chain3 (LC3 I/LC3 II), p62 and Beclin1 were detected via western blot analysis. The relationship between BACE1-AS and miR-214-3p was verified by dual-luciferase reporter assay. We found that BACE1-AS was upregulated and miR-214-3p was downregulated in the plasma of AD patients and SK-N-SH and SK-N-AS cells treated with Aβ and isoflurane. Both BACE1-AS depletion and miR-214-3p augmentation restored the suppression of proliferation and the facilitation of apoptosis and autophagy of Aβ-treated SK-N-SH and SK-N-AS cells induced by isoflurane. Importantly, BACE1-AS acted as a sponge for miR-214-3p. Additionally, miR-214-3p silencing reversed the influence of BACE1-AS knockdown on isoflurane-mediated proliferation, apoptosis and autophagy in Aβ-induced SK-N-SH and SK-N-AS cells. In conclusion, BACE1-AS aggravated isoflurane-induced neurotoxicity to AD via sponging miR-214-3p.
Collapse
Affiliation(s)
- Wei He
- Department of Anesthesiology, The Affiliated Hospital of Beihua University, No. 12 Jiefang Middle Road, Chuanying District, Jilin City, 132001, Jilin Province, China
| | - Songyuan Chi
- Department of Anesthesiology, The Affiliated Hospital of Beihua University, No. 12 Jiefang Middle Road, Chuanying District, Jilin City, 132001, Jilin Province, China
| | - Xing Jin
- Department of Anesthesiology, The Affiliated Hospital of Beihua University, No. 12 Jiefang Middle Road, Chuanying District, Jilin City, 132001, Jilin Province, China
| | - Jieyu Lu
- Department of Anesthesiology, The Affiliated Hospital of Beihua University, No. 12 Jiefang Middle Road, Chuanying District, Jilin City, 132001, Jilin Province, China
| | - Wei Zheng
- Department of Anesthesiology, The Affiliated Hospital of Beihua University, No. 12 Jiefang Middle Road, Chuanying District, Jilin City, 132001, Jilin Province, China
| | - Jie Yan
- Department of Anesthesiology, The Affiliated Hospital of Beihua University, No. 12 Jiefang Middle Road, Chuanying District, Jilin City, 132001, Jilin Province, China
| | - Duo Zhang
- Department of Anesthesiology, The Affiliated Hospital of Beihua University, No. 12 Jiefang Middle Road, Chuanying District, Jilin City, 132001, Jilin Province, China.
| |
Collapse
|