1
|
Cristina Igreja Sá I, Tripska K, Alaei Faradonbeh F, Hroch M, Lastuvkova H, Schreiberova J, Kacerovsky M, Pericacho M, Nachtigal P, Micuda S. Labetalol and soluble endoglin aggravate bile acid retention in mice with ethinylestradiol-induced cholestasis. Front Pharmacol 2023; 14:1116422. [PMID: 36778021 PMCID: PMC9909014 DOI: 10.3389/fphar.2023.1116422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Labetalol is used for the therapy of hypertension in preeclampsia. Preeclampsia is characterized by high soluble endoglin (sEng) concentration in plasma and coincides with intrahepatic cholestasis during pregnancy (ICP), which threatens the fetus with the toxicity of cumulating bile acids (BA). Therefore, we hypothesized that both labetalol and increased sEng levels worsen BA cumulation in estrogen-induced cholestasis. C57BL/6J, transgenic mice overexpressing human sEng, and their wild-type littermates were administrated with ethinylestradiol (EE, 10 mg/kg s.c., the mice model of ICP) and labetalol (10 mg/kg s.c.) for 5 days with sample collection and analysis. Plasma was also taken from healthy pregnant women and patients with ICP. Administration of labetalol to mice with EE cholestasis aggravated the increase in BA plasma concentrations by induction of hepatic Mrp4 efflux transporter. Labetalol potentiated the increment of sEng plasma levels induced by estrogen. Increased plasma levels of sEng were also observed in patients with ICP. Moreover, increased plasma levels of human sEng in transgenic mice aggravated estrogen-induced cholestasis in labetalol-treated mice and increased BA concentration in plasma via enhanced reabsorption of BAs in the ileum due to the upregulation of the Asbt transporter. In conclusion, we demonstrated that labetalol increases plasma concentrations of BAs in estrogen-induced cholestasis, and sEng aggravates this retention. Importantly, increased sEng levels in experimental and clinical forms of ICPs might present a novel mechanism explaining the coincidence of ICP with preeclampsia. Our data encourage BA monitoring in the plasma of pregnant women with preeclampsia and labetalol therapy.
Collapse
Affiliation(s)
- Ivone Cristina Igreja Sá
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Katarina Tripska
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Fatemeh Alaei Faradonbeh
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Milos Hroch
- Department of Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Hana Lastuvkova
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Jolana Schreiberova
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Marian Kacerovsky
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Miguel Pericacho
- Biomedical Research Institute of Salamanca and Renal and Cardiovascular Physiopathology Unit, Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain
| | - Petr Nachtigal
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia,*Correspondence: Stanislav Micuda, ; Petr Nachtigal,
| | - Stanislav Micuda
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia,*Correspondence: Stanislav Micuda, ; Petr Nachtigal,
| |
Collapse
|
2
|
Zhou Y, Zhu X, Wang H, Duan C, Cui H, Shi J, Shi S, Yuan G, Hu Y. The Role of VEGF Family in Lipid Metabolism. Curr Pharm Biotechnol 2023; 24:253-265. [PMID: 35524661 DOI: 10.2174/1389201023666220506105026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/05/2022] [Accepted: 03/16/2022] [Indexed: 11/22/2022]
Abstract
The vascular endothelial growth factor (VEGF) family plays a major role in tumors and ophthalmic diseases. However, increasingly more data reported its potential in regulating lipids. With its biological functions mainly expressed in lymphatic vessels, some factors in the families, like VEGF-A and VEGF-C, have been proved to regulate intestinal absorption of lipids by affecting chylous ducts. Other effects, including regulating lipoprotein lipase (LPL), endothelial lipase (EL), and recombinant syndecan 1 (SDC1), have also been confirmed. However, given the scant-related studies, further research should be conducted to examine the concrete mechanisms and provide pragmatic ways to apply them in the clinic. The VEGF family may treat dyslipidemia in specific ways that are different from common methods and concurrently contribute to the treatment of other metabolic diseases, like diabetes and obesity.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Xueping Zhu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huan Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chenglin Duan
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hanming Cui
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingjing Shi
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuai Shi
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guozhen Yuan
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanhui Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Giroux P, Kyle PB, Tan C, Edwards JD, Nowicki MJ, Liu H. Evaluating the regulation of transporter proteins and P-glycoprotein in rats with cholestasis and its implication for digoxin clearance. World J Gastrointest Pathophysiol 2022; 13:73-84. [PMID: 35720166 PMCID: PMC9157686 DOI: 10.4291/wjgp.v13.i3.73] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/26/2021] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cardiac and hepatic functionality are intertwined in a multifaceted relationship. Pathologic processes involving one may affect the other through a variety of mechanisms, including hemodynamic and membrane transport effects.
AIM To better understand the effect of extrahepatic cholestasis on regulations of membrane transporters involving digoxin and its implication for digoxin clearance.
METHODS Twelve adult rats were included in this study; baseline hepatic and renal laboratory values and digoxin pharmacokinetic (PK) studies were established before evenly dividing them into two groups to undergo bile duct ligation (BDL) or a sham procedure. After 7 d repeat digoxin PK studies were completed and tissue samples were taken to determine the expressions of cell membrane transport proteins by quantitative western blot and real-time polymerase chain reaction. Data were analyzed using SigmaStat 3.5. Means between pre-surgery and post-surgery in the same experimental group were compared by paired t-test, while independent t-test was employed to compare the means between sham and BDL groups.
RESULTS Digoxin clearance was decreased and liver function, but not renal function, was impaired in BDL rats. BDL resulted in significant up-regulation of multidrug resistance 1 expression in the liver and kidney and its down-regulation in the small intestine. Organic anion transporting polypeptides (OATP)1A4 was up-regulated in the liver but down-regulated in intestine after BDL. OATP4C1 expression was markedly increased in the kidney following BDL.
CONCLUSION The results suggest that cell membrane transporters of digoxin are regulated during extrahepatic cholestasis. These regulations are favorable for increasing digoxin excretion in the kidney and decreasing its absorption from the intestine to compensate for reduced digoxin clearance due to cholestasis.
Collapse
Affiliation(s)
- Parker Giroux
- Division of Pediatric Gastroenterology, Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Patrick B Kyle
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Chalet Tan
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, Oxford, MS 38677, United States
| | - Joseph D Edwards
- Division of Pediatric Gastroenterology, Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Michael J Nowicki
- Division of Pediatric Gastroenterology, Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS 39216, United States
| | - Hua Liu
- Division of Pediatric Gastroenterology, Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS 39216, United States
| |
Collapse
|
4
|
Pawlak JB, Blobe GC. TGF-β superfamily co-receptors in cancer. Dev Dyn 2022; 251:137-163. [PMID: 33797167 PMCID: PMC8484463 DOI: 10.1002/dvdy.338] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 01/03/2023] Open
Abstract
Transforming growth factor-β (TGF-β) superfamily signaling via their cognate receptors is frequently modified by TGF-β superfamily co-receptors. Signaling through SMAD-mediated pathways may be enhanced or depressed depending on the specific co-receptor and cell context. This dynamic effect on signaling is further modified by the release of many of the co-receptors from the membrane to generate soluble forms that are often antagonistic to the membrane-bound receptors. The co-receptors discussed here include TβRIII (betaglycan), endoglin, BAMBI, CD109, SCUBE proteins, neuropilins, Cripto-1, MuSK, and RGMs. Dysregulation of these co-receptors can lead to altered TGF-β superfamily signaling that contributes to the pathophysiology of many cancers through regulation of growth, metastatic potential, and the tumor microenvironment. Here we describe the role of several TGF-β superfamily co-receptors on TGF-β superfamily signaling and the impact on cellular and physiological functions with a particular focus on cancer, including a discussion on recent pharmacological advances and potential clinical applications targeting these co-receptors.
Collapse
Affiliation(s)
| | - Gerard C. Blobe
- Department of Medicine, Duke University Medical Center,Department of Pharmacology and Cancer Biology, Duke University Medical Center,Corresponding author: Gerard Blobe, B354 LSRC, Box 91004 DUMC, Durham, NC 27708, , 919-668-1352
| |
Collapse
|
5
|
Nejmanová I, Vitverová B, Eissazadeh S, Tripská K, Igreja Sa IC, Hyšpler R, Němečkova I, Pericacho M, Nachtigal P. High Soluble Endoglin Levels Affect Aortic Vascular Function during Mice Aging. J Cardiovasc Dev Dis 2021; 8:jcdd8120173. [PMID: 34940528 PMCID: PMC8703792 DOI: 10.3390/jcdd8120173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 11/21/2022] Open
Abstract
Endoglin is a 180 kDa transmembrane glycoprotein that was demonstrated to be present in two different endoglin forms, namely membrane endoglin (Eng) and soluble endoglin (sEng). Increased sEng levels in the circulation have been detected in atherosclerosis, arterial hypertension, and type II diabetes mellitus. Moreover, sEng was shown to aggravate endothelial dysfunction when combined with a high-fat diet, suggesting it might be a risk factor for the development of endothelial dysfunction in combination with other risk factors. Therefore, this study hypothesized that high sEng levels exposure for 12 months combined with aging (an essential risk factor of atherosclerosis development) would aggravate vascular function in mouse aorta. Male transgenic mice with high levels of human sEng in plasma (Sol-Eng+) and their age-matched male transgenic littermates that do not develop high soluble endoglin (Control) on a chow diet were used. The aging process was initiated to contribute to endothelial dysfunction/atherosclerosis development, and it lasted 12 months. Wire myograph analysis showed impairment contractility in the Sol-Eng+ group when compared to the control group after KCl and PGF2α administration. Endothelium-dependent responsiveness to Ach was not significantly different between these groups. Western blot analysis revealed significantly decreased protein expression of Eng, p-eNOS, and ID1 expression in the Sol-Eng+ group compared to the control group suggesting reduced Eng signaling. In conclusion, we demonstrated for the first time that long-term exposure to high levels of sEng during aging results in alteration of vasoconstriction properties of the aorta, reduced eNOS phosphorylation, decreased Eng expression, and altered Eng signaling. These findings suggest that sEng can be considered a risk factor for the development of vascular dysfunction during aging and a potential therapeutical target for pharmacological intervention.
Collapse
Affiliation(s)
- Iveta Nejmanová
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (I.N.); (B.V.); (S.E.); (K.T.); (I.C.I.S.); (I.N.)
| | - Barbora Vitverová
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (I.N.); (B.V.); (S.E.); (K.T.); (I.C.I.S.); (I.N.)
| | - Samira Eissazadeh
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (I.N.); (B.V.); (S.E.); (K.T.); (I.C.I.S.); (I.N.)
| | - Katarina Tripská
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (I.N.); (B.V.); (S.E.); (K.T.); (I.C.I.S.); (I.N.)
| | - Ivone Cristina Igreja Sa
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (I.N.); (B.V.); (S.E.); (K.T.); (I.C.I.S.); (I.N.)
| | - Radomír Hyšpler
- Centrum for Research and Development, University Hospital, 500 05 Hradec Kralove, Czech Republic;
| | - Ivana Němečkova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (I.N.); (B.V.); (S.E.); (K.T.); (I.C.I.S.); (I.N.)
| | - Miguel Pericacho
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain;
| | - Petr Nachtigal
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (I.N.); (B.V.); (S.E.); (K.T.); (I.C.I.S.); (I.N.)
- Correspondence:
| |
Collapse
|
6
|
Atorvastatin Modulates Bile Acid Homeostasis in Mice with Diet-Induced Nonalcoholic Steatohepatitis. Int J Mol Sci 2021; 22:ijms22126468. [PMID: 34208774 PMCID: PMC8235314 DOI: 10.3390/ijms22126468] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
Bile acids (BA) play a significant role in the pathophysiology of nonalcoholic steatohepatitis (NASH). The present study evaluates the modulation of bile acid metabolomics by atorvastatin, a cholesterol-lowering agent commonly used to treat cardiovascular complications accompanying NASH. NASH was induced in mice by 24 weeks of consuming a high–saturated fat, high-fructose, and high-cholesterol diet (F), with atorvastatin administered orally (20 mg/kg/day) during the last three weeks. Biochemical and histological analyses confirmed the effectiveness of the F diet in inducing NASH. Untreated NASH animals had significantly reduced biliary secretion of BA and increased fecal excretion of BA via decreased apical sodium-dependent bile salt transporter (Asbt)-mediated reabsorption. Atorvastatin decreased liver steatosis and inflammation in NASH animals consistently with a reduction in crucial lipogenic enzyme stearoyl–coenzyme A (CoA) desaturase-1 and nuclear factor kappa light chain enhancer of activated B-cell pro-inflammatory signaling, respectively. In this group, atorvastatin also uniformly enhanced plasma concentration, biliary secretion and fecal excretion of the secondary BA, deoxycholic acid (DCA). However, in the chow diet–fed animals, atorvastatin decreased plasma concentrations of BA, and reduced BA biliary secretions. These changes stemmed primarily from the increased fecal excretion of BA resulting from the reduced Asbt-mediated BA reabsorption in the ileum and suppression of synthesis in the liver. In conclusion, our results reveal that atorvastatin significantly modulates BA metabolomics by altering their intestinal processing and liver synthesis in control and NASH mice.
Collapse
|
7
|
Faradonbeh FA, Sa II, Lastuvkova H, Cermanova J, Hroch M, Faistova H, Mokry J, Nova Z, Uher M, Nachtigal P, Pavek P, Micuda S. Metformin impairs bile acid homeostasis in ethinylestradiol-induced cholestasis in mice. Chem Biol Interact 2021; 345:109525. [PMID: 34058177 DOI: 10.1016/j.cbi.2021.109525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/28/2021] [Accepted: 05/16/2021] [Indexed: 12/12/2022]
Abstract
Metformin, an oral antidiabetic drug, recently demonstrated a reducing effect on bile acids (BA) plasma concentrations in one patient with intrahepatic cholestasis of pregnancy (ICP) by unknown mechanism. Therefore, the aim of the present study was to examine the effect of metformin on BA homeostasis and related molecular pathways in the liver and intestine using a mouse model of ICP. The cholestasis was induced in female C57BL/6 mice by repeated administration of ethinylestradiol (10 mg/kg BW s.c.) and/or metformin (150 mg/kg BW orally) over 5 consecutive days with subsequent bile collection and molecular analysis of samples. We demonstrated that metformin significantly increased the rate of bile secretion in control mice. This increase was BA dependent and was produced both by increased liver BA synthesis via induced cholesterol 7α-hydroxylase (Cyp7a1) and by increased BA reabsorption in the ileum via induction of the apical sodium-dependent BA transporter (Asbt). In contrast, metformin further worsened ethinylestradiol-induced impairment of bile secretion. This reduction was also BA dependent and corresponded with significant downregulation of Bsep, and Ntcp, major excretory and uptake transporters for BA in hepatocytes, respectively. The plasma concentrations of BA were consequently significantly increased in the metformin-treated mice. Altogether, our data indicate positive stimulation of bile secretion by metformin in the intact liver, but this drug also induces serious impairment of BA biliary secretion, with a marked increase in plasma concentrations in estrogen-induced cholestasis. Our results imply that metformin should be used with caution in situations with hormone-dependent cholestasis, such as ICP.
Collapse
Affiliation(s)
- Fatemeh Alaei Faradonbeh
- Department of Pharmacology, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ivone Igreja Sa
- Department of Biological and Medical Sciences, Charles University, Faculty of Pharmacy in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Hana Lastuvkova
- Department of Pharmacology, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jolana Cermanova
- Department of Pharmacology, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Milos Hroch
- Department of Medical Biochemistry, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Hana Faistova
- Department of Pathology, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jaroslav Mokry
- Department of Histology and Embryology, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Zuzana Nova
- Department of Pharmacology, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Martin Uher
- Department of Medical Biochemistry, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Petr Nachtigal
- Department of Biological and Medical Sciences, Charles University, Faculty of Pharmacy in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Stanislav Micuda
- Department of Pharmacology, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic.
| |
Collapse
|
8
|
Zhong L, Shi W, Gan L, Liu X, Huo Y, Wu P, Zhang Z, Wu T, Peng H, Huang Y, Zhao Y, Yuan Y, Deng Z, Tang H. Human endoglin-CD3 bispecific T cell engager antibody induces anti-tumor effect in vivo. Am J Cancer Res 2021; 11:6393-6406. [PMID: 33995664 PMCID: PMC8120215 DOI: 10.7150/thno.53121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/12/2021] [Indexed: 12/11/2022] Open
Abstract
Rationale: Endoglin, also known as CD105, is a homo-dimeric membrane glycoprotein required for angiogenesis and serves as a marker for cancer vasculature. In this study, we constructed a bispecific T-cell engager (BiTE) antibody that targets human endoglin and CD3 (hEND-CD3/BiTE). We examined BiTE binding to endoglin-expressing cells and its effects on the cytolytic activity of T cells and cancer development. Methods: The in vitro effects of hEND-CD3/BiTE, including binding to target cells, T-cell activation, proliferation, and cytotoxicity, were examined in endoglin-expressing 293T cells, human umbilical vascular endothelial cells, tumor-derived endothelial cells, and CD3+ T cells. An in vivo xenograft tumor model was established using A549 human lung cancer cells. The therapeutic efficacy of hEND-CD3/BiTE was assessed by monitoring tumor growth, angiogenesis, and mouse survival. Results: hEND-CD3/BiTE specifically bound to endoglin-expressing cells and CD3+ T cells in vitro and stimulated T-cell activation, proliferation, and Th1 cytokine secretion, and promoted T-cell-mediated cytolysis of endoglin-expressing cells. The hEND-CD3/BiTE in vivo caused minimal toxicity to major organs, reduced tumor neoangiogenesis, inhibited tumor growth, and significantly improved mouse survival. Conclusions: Our study demonstrated the therapeutic potential of hEND-CD3/BiTE and provided a novel approach to clinical cancer treatment.
Collapse
|
9
|
Vicen M, Igreja Sá IC, Tripská K, Vitverová B, Najmanová I, Eissazadeh S, Micuda S, Nachtigal P. Membrane and soluble endoglin role in cardiovascular and metabolic disorders related to metabolic syndrome. Cell Mol Life Sci 2021; 78:2405-2418. [PMID: 33185696 PMCID: PMC11072708 DOI: 10.1007/s00018-020-03701-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/05/2020] [Accepted: 10/31/2020] [Indexed: 02/07/2023]
Abstract
Membrane endoglin (Eng, CD105) is a transmembrane glycoprotein essential for the proper function of vascular endothelium. It might be cleaved by matrix metalloproteinases to form soluble endoglin (sEng), which is released into the circulation. Metabolic syndrome comprises conditions/symptoms that usually coincide (endothelial dysfunction, arterial hypertension, hyperglycemia, obesity-related insulin resistance, and hypercholesterolemia), and are considered risk factors for cardiometabolic disorders such as atherosclerosis, type II diabetes mellitus, and liver disorders. The purpose of this review is to highlight current knowledge about the role of Eng and sEng in the disorders mentioned above, in vivo and in vitro extent, where we can find a wide range of contradictory results. We propose that reduced Eng expression is a hallmark of endothelial dysfunction development in chronic pathologies related to metabolic syndrome. Eng expression is also essential for leukocyte transmigration and acute inflammation, suggesting that Eng is crucial for the regulation of endothelial function during the acute phase of vascular defense reaction to harmful conditions. sEng was shown to be a circulating biomarker of preeclampsia, and we propose that it might be a biomarker of metabolic syndrome-related symptoms and pathologies, including hypercholesterolemia, hyperglycemia, arterial hypertension, and diabetes mellitus as well, despite the fact that some contradictory findings have been reported. Besides, sEng can participate in the development of endothelial dysfunction and promote the development of arterial hypertension, suggesting that high levels of sEng promote metabolic syndrome symptoms and complications. Therefore, we suggest that the treatment of metabolic syndrome should take into account the importance of Eng in the endothelial function and levels of sEng as a biomarker and risk factor of related pathologies.
Collapse
Affiliation(s)
- Matej Vicen
- Faculty of Pharmacy in Hradec Kralove, Department of Biological and Medical Sciences, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 03, Czech Republic
| | - Ivone Cristina Igreja Sá
- Faculty of Pharmacy in Hradec Kralove, Department of Biological and Medical Sciences, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 03, Czech Republic
| | - Katarína Tripská
- Faculty of Pharmacy in Hradec Kralove, Department of Biological and Medical Sciences, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 03, Czech Republic
| | - Barbora Vitverová
- Faculty of Pharmacy in Hradec Kralove, Department of Biological and Medical Sciences, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 03, Czech Republic
| | - Iveta Najmanová
- Faculty of Pharmacy in Hradec Kralove, Department of Biological and Medical Sciences, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 03, Czech Republic
| | - Samira Eissazadeh
- Faculty of Pharmacy in Hradec Kralove, Department of Biological and Medical Sciences, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 03, Czech Republic
| | - Stanislav Micuda
- Faculty of Medicine in Hradec Kralove, Department of Pharmacology, Charles University, Simkova 870, Hradec Kralove, 500 03, Czech Republic
| | - Petr Nachtigal
- Faculty of Pharmacy in Hradec Kralove, Department of Biological and Medical Sciences, Charles University, Heyrovskeho 1203, Hradec Kralove, 500 03, Czech Republic.
| |
Collapse
|
10
|
Igreja Sá IC, Tripska K, Hroch M, Hyspler R, Ticha A, Lastuvkova H, Schreiberova J, Dolezelova E, Eissazadeh S, Vitverova B, Najmanova I, Vasinova M, Pericacho M, Micuda S, Nachtigal P. Soluble Endoglin as a Potential Biomarker of Nonalcoholic Steatohepatitis (NASH) Development, Participating in Aggravation of NASH-Related Changes in Mouse Liver. Int J Mol Sci 2020; 21:E9021. [PMID: 33261044 PMCID: PMC7731045 DOI: 10.3390/ijms21239021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is characterized by hepatic steatosis with inflammation and fibrosis. Membrane endoglin (Eng) expression is shown to participate in fibrosis, and plasma concentrations of soluble endoglin (sEng) are increased in patients with hypercholesterolemia and type 2 diabetes mellitus. We hypothesize that NASH increases both hepatic Eng expression and sEng in blood and that high levels of sEng modulate cholesterol and bile acid (BA) metabolism and affect NASH progression. Three-month-old transgenic male mice overexpressing human sEng and their wild type littermates are fed for six months with either a high-saturated fat, high-fructose high-cholesterol (FFC) diet or a chow diet. Evaluation of NASH, Liquid chromatography-mass spectrometry (LC/MS) analysis of BA, hepatic expression of Eng, inflammation, fibrosis markers, enzymes and transporters involved in hepatic cholesterol and BA metabolism are assessed using Real-Time Quantitative Reverse Transcription Polymerase Chain reaction (qRT-PCR) and Western blot. The FFC diet significantly increases mouse sEng levels and increases hepatic expression of Eng. High levels of human sEng results in increased hepatic deposition of cholesterol due to reduced conversion into BA, as well as redirects the metabolism of triglycerides (TAG) to its accumulation in the liver, via reduced TAG elimination by β-oxidation combined with reduced hepatic efflux. We propose that sEng might be a biomarker of NASH development, and the presence of high levels of sEng might support NASH aggravation by impairing the essential defensive mechanism protecting NASH liver against excessive TAG and cholesterol accumulation, suggesting the importance of high sEng levels in patients prone to develop NASH.
Collapse
Affiliation(s)
- Ivone Cristina Igreja Sá
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, 500 05 Hradec Kralove, Czech Republic; (I.C.I.S.); (K.T.); (S.E.); (B.V.); (I.N.); (M.V.)
| | - Katarina Tripska
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, 500 05 Hradec Kralove, Czech Republic; (I.C.I.S.); (K.T.); (S.E.); (B.V.); (I.N.); (M.V.)
| | - Milos Hroch
- Department of Biochemistry, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic;
| | - Radomir Hyspler
- Centrum for Research and Development University Hospital, Hradec Kralove, 500 03 Hradec Kralove, Czech Republic; (R.H.); (A.T.)
| | - Alena Ticha
- Centrum for Research and Development University Hospital, Hradec Kralove, 500 03 Hradec Kralove, Czech Republic; (R.H.); (A.T.)
| | - Hana Lastuvkova
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (H.L.); (J.S.); (E.D.)
| | - Jolana Schreiberova
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (H.L.); (J.S.); (E.D.)
| | - Eva Dolezelova
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (H.L.); (J.S.); (E.D.)
| | - Samira Eissazadeh
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, 500 05 Hradec Kralove, Czech Republic; (I.C.I.S.); (K.T.); (S.E.); (B.V.); (I.N.); (M.V.)
| | - Barbora Vitverova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, 500 05 Hradec Kralove, Czech Republic; (I.C.I.S.); (K.T.); (S.E.); (B.V.); (I.N.); (M.V.)
| | - Iveta Najmanova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, 500 05 Hradec Kralove, Czech Republic; (I.C.I.S.); (K.T.); (S.E.); (B.V.); (I.N.); (M.V.)
| | - Martina Vasinova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, 500 05 Hradec Kralove, Czech Republic; (I.C.I.S.); (K.T.); (S.E.); (B.V.); (I.N.); (M.V.)
| | - Miguel Pericacho
- Biomedical Research Institute of Salamanca and Renal and Cardiovascular Physiopathology Unit, Department of Physiology and Pharmacology, University of Salamanca, 370 06 Salamanca, Spain;
| | - Stanislav Micuda
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic; (H.L.); (J.S.); (E.D.)
| | - Petr Nachtigal
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, 500 05 Hradec Kralove, Czech Republic; (I.C.I.S.); (K.T.); (S.E.); (B.V.); (I.N.); (M.V.)
| |
Collapse
|