1
|
Li D, Zhong Z, Ko CN, Tian T, Yang C. From mundane to classic: Sinomenine as a multi-therapeutic agent. Br J Pharmacol 2025; 182:2159-2180. [PMID: 37846470 DOI: 10.1111/bph.16267] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/10/2023] [Accepted: 10/08/2023] [Indexed: 10/18/2023] Open
Abstract
Sinomenine is an active substance extracted from the traditional Chinese medicine Sinomenium acutum. Sinomenine has been shown to mediate a wide range of pharmacological actions and is known to possess good anti-inflammatory, immunosuppressive, antitumor, neuroprotective, antiarrhythmic and other pharmacological effects. Understanding the underlying mechanisms and the association between the targets and the pharmaceutical effects on different diseases is crucial to the discovery and design of new treatment strategies. In this review, we aim to give a systematic and comprehensive overview of the research progress of sinomenine over the past 20 years. We first describe the metabolism of sinomenine in vivo and then summarize the pharmacological actions of sinomenine on different diseases. Furthermore, the potential binding properties of sinomenine and the potential of developing new sinomenine-based drugs are also reviewed. LINKED ARTICLES: This article is part of a themed issue Natural Products and Cancer: From Drug Discovery to Prevention and Therapy. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.10/issuetoc.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Chung-Nga Ko
- The International Eye Research Institute of The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| | - Tiantian Tian
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, China
| | - Chao Yang
- National Engineering Research Center For Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
2
|
Zheng Y, Tan H, Chai J, Han L, Zhai C, Lee J, Li X, Zhao Y. Ginseng fruit rare saponins (GFRS) improved inflammatory response: In vitro and in vivo assessment. Fitoterapia 2024; 179:106244. [PMID: 39396651 DOI: 10.1016/j.fitote.2024.106244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/24/2024] [Accepted: 10/05/2024] [Indexed: 10/15/2024]
Abstract
Inflammation is the body's protective immune response to tissue damage. Ginseng has a long history of medicinal use, and its active ingredient ginsenosides have anti-inflammatory effects. Ginseng fruit rare saponins (GFRS) is a transformation product of ginseng saponins and rich in a variety of rare saponins. We used HPLC-DAD method to study GFRS rare saponins with ginsenoside F4, R-Rg3, SRg3, Rk1, Rg6, Rg5, Rk3 and Rh4. However, there is no study on the use of GFRS to reduce skin inflammation. This study enriched the action pathway of GFRS through network pharmacology and revealed the anti-inflammatory effect of GFRS for the first time. In vitro experiments showed that GFRS could significantly reduce the release of NO in lipopolysaccharide (LPS) -induced RAW264.7 cells and HaCaT cells, and reduce the secretion and expression of inflammation-related factors Interleukin-6 (IL-6), Tumor necrosis factor-α (TNF-α) and Interleukin-17 A (IL-17 A), thereby reducing cell inflammatory damage. In the imiquimod (IMQ) -induced mouse inflammatory model, the therapeutic effect of GFRS on the pathogenesis of psoriasis-like dermatitis was studied. In vivo experiments showed that the skin erythema, scales, thickness and inflammatory infiltration of GFRS-treated mice were reduced, and the psoriasis area severity index score was significantly lower than that of IMQ group. GFRS restored IMQ-induced spleen size and reduced the secretion and expression of TNF-α, IL-6, Interferon-γ (IFN-γ) and IL-17 A in serum. In summary, our results demonstrate that GFRS alleviates IMQ-induced dermatitis symptoms, effectively reduces the secretion of inflammatory factors, and inhibits IL-17 A expression.
Collapse
Affiliation(s)
- Yifei Zheng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Hongyan Tan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Jiayi Chai
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Linlin Han
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Changzhen Zhai
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Jungjoon Lee
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Xiaomin Li
- Perfect (Guangdong) Co., Ltd., Guangdong 528400, China.
| | - Yuqing Zhao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China.
| |
Collapse
|
3
|
Long Q, Ma T, Wang Y, Chen S, Tang S, Wang T, Zhou Y, Xu K, Wan P, Cao Y. Orientin alleviates the inflammatory response in psoriasis like dermatitis in BALB/c mice by inhibiting the MAPK signaling pathway. Int Immunopharmacol 2024; 134:112261. [PMID: 38761783 DOI: 10.1016/j.intimp.2024.112261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Psoriasis, a chronic inflammatory condition of the skin, is characterized by an atypical proliferation of epidermal keratinocytes and immune cell infiltration. Orientin is a flavonoid monomer with potent anti-inflammatory activities. However, the therapeutic effects of orientin on psoriasis and the underlying mechanisms have not been elucidated. OBJECTIVE To investigate the therapeutic effect of orientin on psoriasis and the underlying mechanisms using network pharmacology and experimental studies. METHODS A psoriasis-like mouse model was established using imiquimod (IMQ). Lipopolysaccharide (LPS) was used to stimulate the RAW264.7 and HaCaT cells in vitro. The therapeutic effects of orientin and the underlying mechanism were analyzed using histopathological, immunohistochemical, quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay, flow cytometry, and western blotting analyses. RESULTS Orientin ameliorated skin lesions and suppressed keratinocyte proliferation and immune cell infiltration in the IMQ-induced psoriasis-like mouse model. Additionally, orientin inhibited the secretion of the pro-inflammatory factors interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6, IL-8, IL-17, and IL-23 in the psoriasis-like mouse model and LPS-induced RAW264.7 and HaCaT cells. Furthermore, orientin mitigated the LPS-induced upregulation of reactive oxygen species and downregulation of IL-10 and glutathione levels. Orientin alleviated inflammation by downregulating the MAPK signaling pathway. CONCLUSION Orientin alleviated psoriasis-like dermatitis by suppressing the MAPK signaling pathway, suggesting that orientin is a potential therapeutic for psoriasis.
Collapse
Affiliation(s)
- Qiu Long
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550000, China; Molecular Biology Laboratory, Guizhou Medical University, Guiyang, Guizhou 550000, China
| | - Ting Ma
- Department of Dermatology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550000, China
| | - Ye Wang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550000, China
| | - Shaojie Chen
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550000, China; Department of Hepatobiliary Surgery, Guizhou Medical University Hospital, Guiyang, Guizhou 550000, China
| | - Shanshan Tang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550000, China
| | - Tao Wang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550000, China
| | - Yi Zhou
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550000, China
| | - Kexin Xu
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550000, China
| | - Pengjie Wan
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Department of Dermatology, Guizhou Branch of Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Guiyang, Guizhou 550000, China.
| | - Yu Cao
- Department of Dermatology, Guizhou Medical University Hospital, Guiyang, Guizhou 550000, China.
| |
Collapse
|
4
|
Hou W, Huang L, Huang H, Liu S, Dai W, Tang J, Chen X, Lu X, Zheng Q, Zhou Z, Zhang Z, Lan J. Bioactivities and Mechanisms of Action of Sinomenine and Its Derivatives: A Comprehensive Review. Molecules 2024; 29:540. [PMID: 38276618 PMCID: PMC10818773 DOI: 10.3390/molecules29020540] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Sinomenine, an isoquinoline alkaloid extracted from the roots and stems of Sinomenium acutum, has been extensively studied for its derivatives as bioactive agents. This review concentrates on the research advancements in the biological activities and action mechanisms of sinomenine-related compounds until November 2023. The findings indicate a broad spectrum of pharmacological effects, including antitumor, anti-inflammation, neuroprotection, and immunosuppressive properties. These compounds are notably effective against breast, lung, liver, and prostate cancers, exhibiting IC50 values of approximately 121.4 nM against PC-3 and DU-145 cells, primarily through the PI3K/Akt/mTOR, NF-κB, MAPK, and JAK/STAT signaling pathways. Additionally, they manifest anti-inflammatory and analgesic effects predominantly via the NF-κB, MAPK, and Nrf2 signaling pathways. Utilized in treating rheumatic arthritis, these alkaloids also play a significant role in cardiovascular and cerebrovascular protection, as well as organ protection through the NF-κB, Nrf2, MAPK, and PI3K/Akt/mTOR signaling pathways. This review concludes with perspectives and insights on this topic, highlighting the potential of sinomenine-related compounds in clinical applications and the development of medications derived from natural products.
Collapse
Affiliation(s)
- Wen Hou
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Lejun Huang
- College of Rehabilitation, Gannan Medical University, Ganzhou 341000, China;
| | - Hao Huang
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Shenglan Liu
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Wei Dai
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Jianhong Tang
- Laboratory Animal Engineering Research Center of Ganzhou, Gannan Medical University, Ganzhou 341000, China;
| | - Xiangzhao Chen
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Xiaolu Lu
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Qisheng Zheng
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Zhinuo Zhou
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Ziyun Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (W.H.); (H.H.); (S.L.); (W.D.); (X.C.); (X.L.); (Q.Z.); (Z.Z.); (Z.Z.)
| | - Jinxia Lan
- College of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
5
|
Chen G, Lv C, Nie Q, Li X, Lv Y, Liao G, Liu S, Ge W, Chen J, Du Y. Essential Oil of Matricaria chamomilla Alleviate Psoriatic-Like Skin Inflammation by Inhibiting PI3K/Akt/mTOR and p38MAPK Signaling Pathway. Clin Cosmet Investig Dermatol 2024; 17:59-77. [PMID: 38222858 PMCID: PMC10785696 DOI: 10.2147/ccid.s445008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
Background The traditional Matricaria chamomilla L. has been used to treat dermatitis for thousands of years. Due to emerging trends in alternative medicine, patients prefer natural remedies to relieve their symptoms. Therefore, finding safe and effective plant medicines for topical applications on the skin is an important treatment strategy for dermatologists. German chamomile (Matricaria chamomilla L.) from the Compositae family is a famous medicinal plant, often known as the "star of medicinal species."However, the function of Matricaria chamomilla essential oil on skin inflammation has not been thoroughly examined in earlier research. Methods GC-MS analyzed the components of MCEO, and this study explored the anti-inflammation effects of MCEO on psoriasis with network pharmacological pathway prediction. Following this, we used clinical samples of psoriasis patients to confirm the secretory characteristic of relative inflammatory markers. The therapeutic effect of MCEO on skin inflammation was detected by examination of human keratinocytes HaCaT. At the same time, we prepared imiquimod-induced psoriatic-like skin inflammation in mice to investigate thoroughly the potential inhibition functions of MCEO on psoriatic skin injury and inflammation. Results MCEO significantly reduced interleukin-22/tumor necrosis factor α/lipopolysaccharide-stimulated elevation of HaCaT cell inflammation, which was correlated with downregulating PI3K/Akt/mTOR and p38MAPK pathways activation mediated by MCEO in HaCaT cells treated with IL-22/TNF-α/LPS. Skin inflammation was evaluated based on the PASI score, HE staining, and relative inflammatory cytokine levels. The results showed that MCEO could significantly contribute to inflammatory skin disease treatment. Conclusion MCEO inhibited inflammation in HaCaT keratinocytes induced by IL-22/TNF-α/LPS, the potential mechanisms associated with inhibiting excessive activation and crosstalk between PI3K/Akt/mTOR and p38MAPK pathways. MCEO ameliorated skin injury in IMQ-induced psoriatic-like skin inflammation of mice by downregulating the levels of inflammatory cytokines but not IL-17A. Thus, anti-inflammatory plant drugs with different targets with combined applications were a potential therapeutic strategy in psoriasis.
Collapse
Affiliation(s)
- Guang Chen
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, 318000, People’s Republic of China
| | - Caohua Lv
- Department of Dermatology, Taizhou Second People’s Hospital, Taizhou, 317200, People’s Republic of China
| | - Qing Nie
- Weifang Centers for Disease Control and Prevention, Weifang, 261061, People’s Republic of China
| | - Xin Li
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, 318000, People’s Republic of China
| | - Yinyi Lv
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, 318000, People’s Republic of China
| | - Guoyan Liao
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, 318000, People’s Republic of China
| | - Shuangchun Liu
- Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, 318000, People’s Republic of China
| | - Weiwei Ge
- Department of Dermatology, Taizhou Second People’s Hospital, Taizhou, 317200, People’s Republic of China
| | - Jinguang Chen
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, 318000, People’s Republic of China
| | - Yunting Du
- Department of Laboratory Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, People’s Republic of China
| |
Collapse
|
6
|
Liu Y, Li H, Zhao X. Sinomenine attenuates lipopolysaccharide-induced inflammation and apoptosis of WI-38 cells by reducing glutathione S-transferase M1 expression. Chem Biol Drug Des 2023; 102:434-443. [PMID: 36303295 DOI: 10.1111/cbdd.14161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/05/2022] [Accepted: 10/22/2022] [Indexed: 12/01/2022]
Abstract
Pediatric pneumonia is an infectious lung disease with high morbidity and mortality. Sinomenine, an alkaloid extracted from Caulis Sinomenii, exerts anti-inflammatory and anti-apoptotic activities. Lipopolysaccharide (LPS) is widely used for the establishment of an inflammatory model. This research aimed to explore the influences of sinomenine on LPS-caused inflammatory injuries in fetal lung WI-38 cells. WI-38 cells were treated with LPS to establish a cellular model of pediatric pneumonia. Cell viability was evaluated using CCK-8 assay. Apoptosis was evaluated using TUNEL staining and caspase-3 activity assays. Inflammatory cytokines and NF-κB p65 phosphorylation levels were measured by Enzyme-Linked Immunosorbent Assay. Glutathione S-transferase M1 (GSTM1) expression was detected by western blotting. Results showed that LPS reduced WI-38 cell viability, and sinomenine protected cells against LPS-induced viability reduction. Sinomenine concentration-dependently attenuated LPS-induced inflammation by reducing TNF-α, IL-1β and MCP-1, and increasing IL-10 levels. Sinomenine mitigated LPS-induced apoptosis. GSTM1 was screened by matching the targets of sinomenine and pediatric pneumonia. GSTM1 was upregulated in LPS-treated WI-38 cells, and this effect was attenuated after sinomenine treatment. GSTM1 was upstream of NF-κB pathway. Overexpression of GSTM1 reversed the suppressive functions of sinomenine on LPS-stimulated inflammation and apoptosis. Overall, sinomenine attenuates inflammation and apoptosis in WI-38 cells stimulated by LPS via inhibiting GSTM1 expression, indicating the therapeutic potential of sinomenine in pediatric pneumonia.
Collapse
Affiliation(s)
- Yan Liu
- Department of Paediatrics, The First Hospital of Yulin, Yulin, China
| | - Huilin Li
- Department of Nuclear Medicine, The First Hospital of Yulin, Yulin, China
| | - Xiao Zhao
- Outpatient Department of Pediatrics, Qingdao Municipal Hospital (Group), Qingdao, China
| |
Collapse
|
7
|
Zhang K, Liu Y, Zhao Y, Guo Q, An S, Wu S. Oxymatrine blocks the NLRP3 inflammasome pathway, partly downregulating the inflammatory responses of M1 macrophages differentiated from THP-1 monocytes. Biochem Biophys Rep 2023; 34:101482. [PMID: 37215292 PMCID: PMC10196785 DOI: 10.1016/j.bbrep.2023.101482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
Many chronic inflammatory diseases, such as autoimmune inflammation, are associated with M1 macrophages, and the key to their treatment is blocking inflammation. Oxymatrine (OMT), a traditional Chinese medicine, has a marked anti-inflammatory effect. However, its anti-inflammatory target and mechanism in M1 cells remain unclear, which limits its clinical application. In this study, we investigated the anti-inflammatory effects of oxymatrine (OMT) on the M1 inflammatory response. We also determined the relationship between OMT treatment and the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) pathway with OMT treatment. To this end, we induced the differentiation of human peripheral blood monocytes (THP-1) into M1 cells. THP-1 cells were induced with a phorbol ester (phorbol-12-myristate-13-acetate (PMA)) and differentiated into naïve M0 macrophages. M0 cells were induced into M1 cells using lipopolysaccharide (LPS). The experimental groups were divided into the M0 macrophage group (NC), M1 inflammatory response group (LPS group), and M1 group treated with different concentrations of OMT (LPS + OMT-L, LPS + OMT-M, LPS + OMT-H). The cells in the OMT-treated groups were treated with OMT for 6 h, followed by LPS for 24 h, and the LPS group was treated with LPS only. The resulting supernatants and cells were collected. The secretion levels of NO were detected by the Griess method and the secretion levels of TNF-α and IL-1β in the supernatants were detected by the ELISA method. The secretion levels of these inflammatory factors were reduced in every OMT-treated group compared to the LPS group (P < 0.01), and the most significant reductions were found in the OMT-H group (P < 0.0001). By western blotting, the protein expression levels of TLR4, NF-κB, NLRP3, and Caspase-1 were all found to be downregulated in the cells of OMT-treated groups compared to the LPS group (P < 0.0001). In situ changes in NLRP3 expression were observed using immunofluorescence. The fluorescence intensity of NLRP3 in M1 cells was weaker in all OMT intervention groups than in the LPS group (P < 0.001). In conclusion, OMT has significant anti-inflammatory effects on the M1 inflammatory responses, and the TLR4/NF-κB/NLRP3 pathway was blocked proportional to the concentration of OMT.
Collapse
Affiliation(s)
- Ke Zhang
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Youyang Liu
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
| | - Yunlu Zhao
- Department of Cardiovascular Diseases, Shinnshu University Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Qi Guo
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto, 390-8621, Japan
| | - Shengjun An
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, No. 326 Xinshi South Road, Qiaoxi District, Shi Jiazhuang, 050090, Hebei, China
| | - Shuhui Wu
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, Hebei, China
- Hebei Provincial Engineering Laboratory of Plant Bioreactor Preparation Technology, No. 326 Xinshi South Road, Qiaoxi District, Shi Jiazhuang, 050090, Hebei, China
| |
Collapse
|
8
|
Carthamus tinctorius Suppresses LPS-Induced Anti-Inflammatory Responses by Inhibiting the MAPKs/NF-κB Signaling Pathway in HaCaT Cells. Sci Pharm 2023. [DOI: 10.3390/scipharm91010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
This study aimed to elucidate the anti-inflammatory activity of C. tinctorius leaves by measuring inflammatory parameters such as nitric oxide (NO) production and mRNA expression of iNOS, interleukin-6 (IL-6), and IL-1β in lipopolysaccharide (LPS)-induced HaCaT cells. Further, the effect of C. tinctorius ethanol extract on the MAPKs/NF-κB signaling pathway was examined in HaCaT cells. The phytochemical profile of the ethanol extract of C. tinctorius leaves was determined using UPLC-QTOF-MS/MS. The results indicated that the ethanol extract of C. tinctorius effectively attenuated LPS-induced secretion of NO, IL-6, and IL-1β in HaCaT cells. Further, LPS-stimulated mRNA and protein expressions of iNOS were decreased by pre-treatment with C. tinctorius ethanol extract at the transcriptional level in HaCaT cells. Moreover, the ethanol extract of C. tinctorius suppressed NF-κB signaling in LPS-induced HaCaT cells. This suppression was mediated by MAPKs/NF-κB signaling, inhibiting the phosphorylation of p38 and p65 in HaCaT cells. However, there is no significant effect on the phosphorylation of JNK by the ethanol extract. The QTOF-MS/MS analysis revealed the identification of 27 components in the ethanol extract of C. tinctorius leaves. The data demonstrate that the ethanol extract of C. tinctorius leaves protects the LPS-induced HaCaT cells by inhibiting the expression of iNOS, IL-6, and IL-1β and suppressing the phosphorylation of the p38, p65, p-JNK via inactivation of MAPKs/NF-κB signaling pathway. These results demonstrate that C. tinctorius leaves may serve as a potential candidate to prevent inflammation-related diseases.
Collapse
|
9
|
Zong D, Liu X, Li J, Long Y, Ouyang R, Chen Y. LncRNA-CCAT1/miR-152-3p is involved in CSE-induced inflammation in HBE cells via regulating ERK signaling pathway. Int Immunopharmacol 2022; 109:108818. [PMID: 35523108 DOI: 10.1016/j.intimp.2022.108818] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 11/05/2022]
Abstract
Emerging studies have noted that dysregulated long non-coding RNAs (lncRNAs) are implicated in the pathological processes of chronic obstructive pulmonary disease (COPD). LncRNA colon cancer-associated transcript 1 (CCAT1) plays well-defined roles in the inflammatory progression. The study aims to figure out the effect and regulatory mechanism of CCAT1 in the cigarette smoke induced inflammation in COPD. The results showed that CCAT1 was highly expressed in lung tissues of smokers with COPD compared with never-smokers without COPD. In human bronchial epithelial (HBE) cells, cigarette smoke extract (CSE) treatment led to an increase in CCAT1 expression in a dose- and time- dependent manner. Functional experiments showed that knockdown of CCAT1 amelioratedCSE-inducedinflammation. Mechanistically, CCAT1 directly targeted miR-152-3p, and miR-152-3p overexpression reversed the pro-inflammatory effects of CCAT1 on HBE cells. Subsequently, miR-152-3p was found to regulate ERK signaling pathway. PD98059, an ERK specific inhibitor, reversed miR-152-3p knockdown mediated inflammation in HBE cells. In addition, CCAT1 acted as a sponge for miR-152-3p to positively regulate ERK signaling pathway. Overall, current findings suggest that CCAT1 promoted inflammation by activating ERK signal pathway via sponging miR-152-3p in CSE-treated HBE cells. These results may provide a novel therapeutic target for alleviating cigarette smoke mediated airway inflammation.
Collapse
Affiliation(s)
- Dandan Zong
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Xiangming Liu
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Jinhua Li
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Yingjiao Long
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Ruoyun Ouyang
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Yan Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
10
|
Zeng X, Luo X, Mao X, Wen D, Zhang H, Wang J. Inflammatory and immune-related factor Caspase 1 contributes to the development of oral lichen planus. Arch Oral Biol 2021; 131:105244. [PMID: 34481194 DOI: 10.1016/j.archoralbio.2021.105244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE In this study, we aimed at underlying the potential regulatory mechanism and overall biological functions of caspase 1 (CASP1) in oral lichen planus (OLP). DESIGN Buccal mucosa tissue samples were gained from healthy subjects or patients diagnosed with OLP. Immunochemical staining was applied to detect CASP1 in OLP tissues. Lipopolysaccharide (LPS) was used to construct OLP in vitro models. Cell counting kit-8 (CCK-8) and flow cytometry assay were applied to detecte cell viability and apoptosis. RESULTS The upregulation of CASP1 in OLP has been identified through comprehensive bioinformatics analysis and verified in clinical samples. In OLP tissues, inflammation-related factors, including tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, IL-6, and IL-18, were elevated and positively correlated with CASP1. In HaCaT cells, LPS stimulation induced CASP1 upregulation, suppressed cell viability, facilitated cell apoptosis, and elevated the levels of TNF-α, IL-1β, IL-6, and IL-18; silencing of CASP1 attenuated LPS-induced damages to HaCaT cells. Pearson's correlation analysis identified that 45 immune-related genes were positively correlated with CASP1; these 45 genes were enriched in the immune system process, associated with combined immunodeficiency, and spleen-specific and CD56 + NK cell-specific. PPI network among CASP1 and correlated immune-related factors was constructed, and CASP1 was positively correlated with RAC2, CYBB, and ARHGDIB. In HaCaT cells, LPS stimulation induced RAC2, CYBB, and ARHGDIB expression, whereas knocking down CASP1 attenuated LPS-induced increases in RAC2, CYBB, and ARHGDIB. CONCLUSION CASP1 is upregulated in OLP tissues. Knockdown of CASP1 in HaCaT cells could protect HaCaT cells from LPS-induced inflammatory injury. Comprehensive bioinformatics indicates that the interaction of CASP1 with RAC2, CYBB, and ARHGDIB, might be the potential molecular mechanism.
Collapse
Affiliation(s)
- Xuefang Zeng
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China; Department of Immunology, Yueyang Vocational Technigal College, Yueyang, 414000, Hunan, China
| | - Xue Luo
- Department of Immunology, Yueyang Vocational Technigal College, Yueyang, 414000, Hunan, China
| | - Xia Mao
- Department of Immunology, Yueyang Vocational Technigal College, Yueyang, 414000, Hunan, China
| | - Dada Wen
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Huamin Zhang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Jie Wang
- Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
11
|
Zheng X, Li W, Xu H, Liu J, Ren L, Yang Y, Li S, Wang J, Ji T, Du G. Sinomenine ester derivative inhibits glioblastoma by inducing mitochondria-dependent apoptosis and autophagy by PI3K/AKT/mTOR and AMPK/mTOR pathway. Acta Pharm Sin B 2021; 11:3465-3480. [PMID: 34900530 PMCID: PMC8642618 DOI: 10.1016/j.apsb.2021.05.027] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/22/2021] [Accepted: 05/19/2021] [Indexed: 12/31/2022] Open
Abstract
Glioblastoma multiforme (GBM) in the central nervous system is the most lethal advanced glioma and currently there is no effective treatment for it. Studies of sinomenine, an alkaloid from the Chinese medicinal plant, Sinomenium acutum, showed that it had inhibitory effects on several kinds of cancer. Here, we synthesized a sinomenine derivative, sino-wcj-33 (SW33), tested it for antitumor activity on GBM and explored the underlying mechanism. SW33 significantly inhibited proliferation and colony formation of GBM and reduced migration and invasion of U87 and U251 cells. It also arrested the cell cycle at G2/M phase and induced mitochondria-dependent apoptosis. Differential gene enrichment analysis and pathway validation showed that SW33 exerted anti-GBM effects by regulating PI3K/AKT and AMPK signaling pathways and significantly suppressed tumorigenicity with no obvious adverse effects on the body. SW33 also induced autophagy through the PI3K/AKT/mTOR and AMPK/mTOR pathways. Thus, SW33 appears to be a promising drug for treating GBM effectively and safely.
Collapse
|
12
|
Yang X, Dang X, Zhang X, Zhao S. Liquiritin reduces lipopolysaccharide-aroused HaCaT cell inflammation damage via regulation of microRNA-31/MyD88. Int Immunopharmacol 2021; 101:108283. [PMID: 34731782 DOI: 10.1016/j.intimp.2021.108283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Pressure ulcers are a common issue for people who have limited mobility. This study tested the impact of liquiritin on human keratinocyte HaCaT cell inflammatory damage aroused by lipopolysaccharide (LPS). METHODS HaCaT cells were underwent LPS and/or liquiritin incubation. Cell viability, apoptosis and inflammatory molecules interleukin 6 (IL-6), tumor necrosis factor α (TNF-α) and cyclooxygenase-2 (Cox-2) expressions, along with nuclear factor kappa B (NF-κB) and c-Jun N-terminal kinase (JNK) pathways activities were tested by MTT assay, Guava Nexin assay, ELISA and western blotting, respectively. qRT-PCR was done for measuring microRNA-31 (miR-31) expression. miR-31 inhibitor was transfected to silence miR-31. Animal pressure ulcers was established on the dorsal skin of adult rats. The effects of liquiritin on wound healing were analyzed by measuring wound closure rates. RESULTS LPS aroused HaCaT cell inflammatory damage, as evidenced by the decrease of cell viability, increase of cell apoptosis and enhanced expressions of IL-6, TNF-α and Cox-2. Liquiritin protected HaCaT cells against LPS-aroused inflammatory damage through increasing cell viability, decreasing cell apoptosis, and reducing IL-6, TNF-α and Cox-2 expressions. Liquiritin attenuated the LPS-aroused NF-κB and JNK pathways activation in HaCaT cells. Rat pressure ulcers model also confirmed that liquiritin promoted wound healing. In mechanism, miR-31 expression was boosted by liquiritin in HaCaT cells. Silencing miR-31 weakened the impacts of liquiritin on LPS-irritated HaCaT cells. Myeloid differentiation factor 88 (MyD88) was a target of miR-31 in HaCaT cells. CONCLUSION This research affirmed the beneficial impact of liquiritin on pressure ulcers. Liquiritin reduced LPS-aroused HaCaT cell inflammatory damage might be implemented via raising miR-31 expression, lowering MyD88 expression, and repressing NF-κB and JNK pathways.
Collapse
Affiliation(s)
- Xuehui Yang
- Nursing Department, Shandong Provincial Third Hospital, Jinan, Shandong 250031, China
| | - Xiuwei Dang
- Department of Medicine and Chemical Engineering, Jinan Technician College, Jinan, Shandong 250031, China
| | - Xue Zhang
- Department of Operating Room, Tianqiao People's Hospital of Jinan, Jinan, Shandong 250031, China
| | - Siren Zhao
- Department of Neurosurgery, Shandong Provincial Third Hospital, Jinan, Shandong 250031, China.
| |
Collapse
|
13
|
Zhang G, Zhang C, Sun J, Xiong Y, Wang L, Chen D. Phytochemical Regulation of RNA in Treating Inflammatory Bowel Disease and Colon Cancer: Inspirations from Cell and Animal Studies. J Pharmacol Exp Ther 2021; 376:464-472. [PMID: 33397676 DOI: 10.1124/jpet.120.000354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
Recent studies suggest an important role for RNA, especially noncoding RNA, in inflammatory bowel disease (IBD) and colon cancer. Drug development based on regulating RNA rather than protein is a promising new area. Phytochemicals are naturally occurring plant-derived compounds with chemical diversity, biologic activity, easy availability, and low toxicity. Many phytochemicals have been shown to exert protective effects on IBD and colon cancer through modulation of RNAs. The aim of this study was to summarize the advancements of phytochemicals in regulating RNA for the treatment of IBD and colon cancer. This review involves many phytochemicals, including polyphenols, flavones, and alkaloids, which can influence various types of RNAs, including microRNA, long noncoding RNA, as well as messenger RNA, by influencing a variety of upstream molecules or regulating epigenetic processes. The limitation for many current studies is that the specific mechanisms of phytochemicals regulating RNA have not been fully uncovered. Accompanied by more identified functions of RNAs, especially noncoding RNA functions, the screening of RNA-regulating phytochemicals has presented challenges as well as opportunities for the prevention and treatment of IBD and colon cancer. SIGNIFICANCE STATEMENT: Noncoding RNAs, which constitute the majority of the human transcriptional genome, play a key role in the disease state and are considered as important therapeutic targets in inflammatory bowel disease (IBD) and colon cancer. Recent studies have shown that phytochemicals regulate the expression of many noncoding RNAs involved in IBD and colon cancer. Therefore, identifying the specific molecular mechanism of phytochemicals regulating noncoding RNA in disease models may result in novel and effective therapeutic opportunities.
Collapse
Affiliation(s)
- Guolin Zhang
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian City, China (G.Z., C.Z., J.S., L.W., D.C.) and Central Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China (Y.X.)
| | - Chi Zhang
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian City, China (G.Z., C.Z., J.S., L.W., D.C.) and Central Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China (Y.X.)
| | - Jia'ao Sun
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian City, China (G.Z., C.Z., J.S., L.W., D.C.) and Central Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China (Y.X.)
| | - Yongjian Xiong
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian City, China (G.Z., C.Z., J.S., L.W., D.C.) and Central Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China (Y.X.)
| | - Liang Wang
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian City, China (G.Z., C.Z., J.S., L.W., D.C.) and Central Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China (Y.X.)
| | - Dapeng Chen
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian City, China (G.Z., C.Z., J.S., L.W., D.C.) and Central Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China (Y.X.)
| |
Collapse
|
14
|
Silencing long noncoding RNA colon cancer-associated transcript-1 upregulates microRNA-34a-5p to promote proliferation and differentiation of osteoblasts in osteoporosis. Cancer Gene Ther 2021; 28:1150-1161. [PMID: 33402731 DOI: 10.1038/s41417-020-00264-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/29/2020] [Accepted: 11/11/2020] [Indexed: 01/10/2023]
Abstract
Long noncoding RNAs (lncRNAs) have been revealed to be related to multiple physiological and pathology processes such as development, carcinogenesis, and osteogenesis. It is reported that lncRNAs might exert function in osteoblast differentiation and bone formation. Here, we determined this study to clarify whether lncRNA CCAT1 could regulate osteoblast proliferation and differentiation in ovariectomized rats with osteoporosis. The osteoporosis models were established by bilateral ovariectomy and treated with CCAT1 siRNAs to discuss the effect of CCAT1 on pathological changes and osteocyte apoptosis in ovariectomized rats with osteoporosis. The osteoblasts from ovariectomized rats were cultured in vitro, which were then treated with CCAT1 siRNAs to explore the role of CCAT1 in osteoblast proliferation and differentiation. Moreover, the relationships among CCAT1, miR-34a-5p, and SMURF2 were confirmed. CCAT1 and SMURF2 were amplified while miR-34a-5p expression was inhibited in bone tissues and osteoblasts of ovariectomized rats with osteoporosis. Inhibited CCAT1 improved pathology and restricted osteocyte apoptosis of bone tissues in ovariectomized rats with osteoporosis in vivo, and also enhanced differentiation, mineralization abilities, and proliferation, and suppressed apoptosis of osteoblasts from ovariectomized rats in vitro through upregulating miR-34a-5p expression. LncRNA CCAT1 could competitively bind with miR-34a-5p to prevent the degradation of its target gene SMURF2. Results of this research suggested that the CCAT1 inhibits the proliferation and differentiation of osteoblasts in rats with osteoporosis by binding to miR-34a-5p, providing novel biomarkers for osteoporosis treatment.
Collapse
|
15
|
Zhu M, Wang H, Chen J, Zhu H. Sinomenine improve diabetic nephropathy by inhibiting fibrosis and regulating the JAK2/STAT3/SOCS1 pathway in streptozotocin-induced diabetic rats. Life Sci 2020; 265:118855. [PMID: 33278392 DOI: 10.1016/j.lfs.2020.118855] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022]
Abstract
AIMS To investigate the therapeutic effects and potent mechanism of sinomenine (SIN) nanoliposomes on nephropathy in diabetic rats. MAIN METHODS The protective efficacies of SIN on the oxidative injury in renal HK-2 cell induced by hydrogen peroxide (H2O2) were investigated via the CCK-8 assay. Forty SD rats with streptozotocin (STZ)-induced diabetic kidney disease (DKD) were assigned to the saline group and three SIN groups (10, 20 and 40 mg/kg). During 6-week treatment, body weight, fasting glucose level and other metabolic parameters were recorded. H&E staining and changes in renal functions as well as expression levels of apoptosis and fibrosis-related factors in renal tissues were assessed. The qPCR and western blotting (WB) methods were used to detect relative expression levels of JAK/STAT/SOCS pathway-related factors in the renal tissues. KEY FINDINGS Cell viabilities of HK-2 cells with oxidative injury were obviously improved by incubating with SIN at 320 μg/mL for 92.9%. Significantly up-regulated GPX1, SOD2 and GSH contributed to the down-regulated ROS content in SIN-treated groups. Moreover, 6-week administration of SIN improved renal functions and worsening nephropathy morphology of DKD rats. SIN also ameliorated gradually increased renal cell apoptosis, suppressed expression levels of fibrosis-related proteins as well as IL-6 and ICAM-1, and regulated JAK2/STAT3/SOCS1 pathway, thereby exhibited protective effects on renal tissues of DKD rats. CONCLUSION SIN protects nephrocytes and decreases renal tissue injury via inhibiting oxidative stress, reducing renal cell apoptosis and fibrosis, regulating the JAK2/STAT3/SOCS1 pathway in DKD rats.
Collapse
Affiliation(s)
- Maolin Zhu
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Huiyang Wang
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou City 310051, Zhejiang Province, PR China
| | - Jiawei Chen
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou City 310051, Zhejiang Province, PR China
| | - Huang Zhu
- Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| |
Collapse
|
16
|
Metabolic mechanism and anti-inflammation effects of sinomenine and its major metabolites N-demethylsinomenine and sinomenine-N-oxide. Life Sci 2020; 261:118433. [PMID: 32950572 DOI: 10.1016/j.lfs.2020.118433] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/30/2020] [Accepted: 09/09/2020] [Indexed: 01/31/2023]
Abstract
AIMS Sinomenine (SIN) is clinically used as an anti-rheumatic drug. However, the metabolic and pharmacological mechanisms of SIN combined with its metabolites are unclear. This study aims to explore the cyclic metabolic mechanism of SIN, the anti-inflammation effects of SIN and its major metabolites (N-demethylsinomenine (DS) and sinomenine-N-oxide (SNO)), and the oxidation property of SNO. MATERIALS AND METHODS SIN was administrated to rats via gavage. Qishe pills (a SIN-containing drug) were orally administrated to humans. The bio-samples were collected to identify SIN's metabolites. Enzymatic and non-enzymatic incubations were used to reveal SIN's metabolic mechanism. Impacts of SIN, SNO and DS on the inflammation-related cytokine's levels and nuclear translocation of NF-κB were evaluated in LPS-induced Raw264.7 cells. ROS induced by SNO (10 μM) was also assessed. KEY FINDINGS CYP3A4 and ROS predominantly mediated the formation of SNO, and CYP3A4 and CYP2C19 primarily mediated the formation of DS. Noteworthily, SNO underwent N-oxide reduction both enzymatically, by xanthine oxidase (XOD), and non-enzymatically, by ferrous ion and heme moiety. The levels of IL-6 and TNF-α and nuclear translocation of NF-κB were ameliorated after pretreatment of SIN in LPS-induced Raw264.7 cells, while limited attenuations were observed after pretreatment of DS (SNO) even at 200 μM. In contrast, SNO induced ROS production. SIGNIFICANCE This study elucidated that SIN underwent both enzymatic and non-enzymatic cyclic metabolism and worked as the predominant anti-inflammation compound, while SNO induced ROS production, suggesting more studies of SIN combined with SNO and DS are necessary in case of DDI and potential toxicities.
Collapse
|
17
|
Lu S, Dong L, Jing X, Gen-Yang C, Zhan-Zheng Z. Abnormal lncRNA CCAT1/microRNA-155/SIRT1 axis promoted inflammatory response and apoptosis of tubular epithelial cells in LPS caused acute kidney injury. Mitochondrion 2020; 53:76-90. [DOI: 10.1016/j.mito.2020.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 03/10/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022]
|